Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation

In this article, we propose a doubly stochastic spatial point process model with both aggregation and repulsion. This model combines the ideas behind Strauss processes and log Gaussian Cox processes. The likelihood for this model is not expressible in closed form but it is easy to simulate realizati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scandinavian journal of statistics Ročník 49; číslo 1; s. 185 - 210
Hlavní autoři: Vihrs, Ninna, Møller, Jesper, Gelfand, Alan E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.03.2022
Témata:
ISSN:0303-6898, 1467-9469
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we propose a doubly stochastic spatial point process model with both aggregation and repulsion. This model combines the ideas behind Strauss processes and log Gaussian Cox processes. The likelihood for this model is not expressible in closed form but it is easy to simulate realizations under the model. We therefore explain how to use approximate Bayesian computation (ABC) to carry out statistical inference for this model. We suggest a method for model validation based on posterior predictions and global envelopes. We illustrate the ABC procedure and model validation approach using both simulated point patterns and a real data example.
Bibliografie:Funding information
The Danish Council for Independent Research | Natural Sciences, 7014‐00074; Villum Fonden, 8721
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12509