Student Performance Prediction Model based on Supervised Machine Learning Algorithms
Higher education institutions aim to forecast student success which is an important research subject. Forecasting student success can enable teachers to prevent students from dropping out before final examinations, identify those who need additional help and boost institution ranking and prestige. M...
Uloženo v:
| Vydáno v: | IOP conference series. Materials Science and Engineering Ročník 928; číslo 3; s. 32019 - 32036 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.11.2020
|
| Témata: | |
| ISSN: | 1757-8981, 1757-899X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Higher education institutions aim to forecast student success which is an important research subject. Forecasting student success can enable teachers to prevent students from dropping out before final examinations, identify those who need additional help and boost institution ranking and prestige. Machine learning techniques in educational data mining aim to develop a model for discovering meaningful hidden patterns and exploring useful information from educational settings. The key traditional characteristics of students (demographic, academic background and behavioural features) are the main essential factors that can represent the training dataset for supervised machine learning algorithms. In this study, we compared the performances of several supervised machine learning algorithms, such as Decision Tree, Naïve Bayes, Logistic Regression, Support Vector Machine, K-Nearest Neighbour, Sequential Minimal Optimisation and Neural Network. We trained a model by using datasets provided by courses in the bachelor study programmes of the College of Computer Science and Information Technology, University of Basra, for academic years 2017-2018 and 2018-2019 to predict student performance on final examinations. Results indicated that logistic regression classifier is the most accurate in predicting the exact final grades of students (68.7% for passed and 88.8% for failed). |
|---|---|
| AbstractList | Higher education institutions aim to forecast student success which is an important research subject. Forecasting student success can enable teachers to prevent students from dropping out before final examinations, identify those who need additional help and boost institution ranking and prestige. Machine learning techniques in educational data mining aim to develop a model for discovering meaningful hidden patterns and exploring useful information from educational settings. The key traditional characteristics of students (demographic, academic background and behavioural features) are the main essential factors that can represent the training dataset for supervised machine learning algorithms. In this study, we compared the performances of several supervised machine learning algorithms, such as Decision Tree, Naïve Bayes, Logistic Regression, Support Vector Machine, K-Nearest Neighbour, Sequential Minimal Optimisation and Neural Network. We trained a model by using datasets provided by courses in the bachelor study programmes of the College of Computer Science and Information Technology, University of Basra, for academic years 2017–2018 and 2018–2019 to predict student performance on final examinations. Results indicated that logistic regression classifier is the most accurate in predicting the exact final grades of students (68.7% for passed and 88.8% for failed). |
| Author | Salah Hashim, Ali Akeel Awadh, Wid Khalaf Hamoud, Alaa |
| Author_xml | – sequence: 1 givenname: Ali surname: Salah Hashim fullname: Salah Hashim, Ali email: alishashim2009@gmail.com organization: College of Computer Science and Information Technology / University of Basrah , Iraq – sequence: 2 givenname: Wid surname: Akeel Awadh fullname: Akeel Awadh, Wid email: umzainali@gmail.com organization: College of Computer Science and Information Technology / University of Basrah , Iraq – sequence: 3 givenname: Alaa surname: Khalaf Hamoud fullname: Khalaf Hamoud, Alaa email: Alaak7alaf@gmail.com organization: College of Computer Science and Information Technology / University of Basrah , Iraq |
| BookMark | eNqFkFtLwzAUgINMcJv-BSn4XJtLLyn4MoY32HCwCb6FND3dMrqkJp3gv7elMsGXPRxyDjnfOck3QSNjDSB0S_A9wZxHJEuykOf5R5RTHrEIM4pJfoHGp4vRKefkCk2832OcZnGMx2izbo8lmDZYgausO0ijIFg5KLVqtTXB0pZQB4X0UAZduT424L50Xy2l2mkDwQKkM9psg1m9tU63u4O_RpeVrD3c_J5T9P70uJm_hIu359f5bBEqxrI8pIpDXDHJCZE0y2iCVUGJkmVCyjSvMsmBc5xySimOZVWlmJMCcFwwRTHglE3R3TC3cfbzCL4Ve3t0plspaJLSjPMuuq6HoUs5672DSijdyv53rZO6FgSL3qPoFYlel-g8CiYGjx2e_sMbpw_SfZ8H6QBq2_w97Az0Ayqrh4U |
| CitedBy_id | crossref_primary_10_1007_s11036_024_02342_8 crossref_primary_10_1007_s40692_023_00297_5 crossref_primary_10_3390_app15052369 crossref_primary_10_3390_su142013446 crossref_primary_10_1007_s00521_021_06712_1 crossref_primary_10_4102_sajcd_v69i2_912 crossref_primary_10_3389_feduc_2024_1421479 crossref_primary_10_1007_s10489_025_06386_5 crossref_primary_10_1007_s00521_025_11018_7 crossref_primary_10_1080_29932955_2025_2507457 crossref_primary_10_1016_j_asoc_2024_112631 crossref_primary_10_1038_s41598_024_66953_7 crossref_primary_10_70315_uloap_ulete_2022_006 crossref_primary_10_1155_2022_4151487 crossref_primary_10_3390_socsci12120664 crossref_primary_10_14686_buefad_1390209 crossref_primary_10_1155_2022_8924028 crossref_primary_10_3390_educsci11110666 crossref_primary_10_1016_j_eswa_2023_122136 crossref_primary_10_1155_2022_4463163 crossref_primary_10_1007_s42001_025_00384_w crossref_primary_10_1016_j_procs_2025_04_135 crossref_primary_10_1007_s10639_024_12704_0 |
| Cites_doi | 10.1016/S0031-3203(96)00142-2 10.5116/ijme.4dfb.8dfd 10.1007/s10462-018-9620-8 10.2478/eurodl-2014-0008 10.1016/j.sbspro.2013.10.240 10.1016/j.eswa.2014.04.024 10.35741/issn.0258-2724.54.3.25 10.5120/18717-9939 10.1109/MIS.2014.42 10.1007/s10758-014-9223-7 10.9781/ijimai.2018.02.004 10.1016/j.compedu.2016.09.005 10.3390/electronics8060607 10.4236/jcc.2018.64007 10.5120/ijca2017915506 10.3390/data4020065 10.1109/IICETA.2018.8458079 10.2200/S00196ED1V01Y200906AIM006 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1088/1757-899X/928/3/032019 |
| DatabaseName | Institute of Physics Open Access Journal Titles (WRLC) IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Student Performance Prediction Model based on Supervised Machine Learning Algorithms |
| EISSN | 1757-899X |
| ExternalDocumentID | 10_1088_1757_899X_928_3_032019 MSE_928_3_032019 |
| GroupedDBID | 1JI 5B3 5PX 5VS AAJIO AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ACIPV AEFHF AEJGL AFKRA AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KB. KNG KQ8 M7S N5L O3W OK1 P2P PDBOC PIMPY PJBAE PTHSS RIN RNS SY9 T37 TR2 TSCCA W28 AAYXX AEINN AFFHD CITATION PHGZM PHGZT PQGLB 8FE 8FG ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c3379-2c8e4f3a811a277250cb21cad51d69f7a8e8806822204aff6081be04b3c20e063 |
| IEDL.DBID | M7S |
| ISSN | 1757-8981 |
| IngestDate | Wed Aug 13 09:23:18 EDT 2025 Sat Nov 29 03:24:16 EST 2025 Tue Nov 18 21:00:49 EST 2025 Wed Aug 21 03:38:29 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3379-2c8e4f3a811a277250cb21cad51d69f7a8e8806822204aff6081be04b3c20e063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2562788278?pq-origsite=%requestingapplication% |
| PQID | 2562788278 |
| PQPubID | 4998670 |
| PageCount | 18 |
| ParticipantIDs | iop_journals_10_1088_1757_899X_928_3_032019 crossref_citationtrail_10_1088_1757_899X_928_3_032019 proquest_journals_2562788278 crossref_primary_10_1088_1757_899X_928_3_032019 |
| PublicationCentury | 2000 |
| PublicationDate | 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | IOP conference series. Materials Science and Engineering |
| PublicationTitleAlternate | IOP Conf. Ser.: Mater. Sci. Eng |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Baker (MSE_928_3_032019bib2) 2014; 29 Platt (MSE_928_3_032019bib44) 1998 MeeraGandhi (MSE_928_3_032019bib11) 2010; 1 Guleria (MSE_928_3_032019bib32) 2014 Kostopoulos (MSE_928_3_032019bib29) 2015 Hashima (MSE_928_3_032019bib22) 2018; 53 Akter (MSE_928_3_032019bib27) 2018; 6 Liu (MSE_928_3_032019bib40) 2002; 4 Bradley (MSE_928_3_032019bib51) 1997; 30 Arsad (MSE_928_3_032019bib45) 2013 Natek (MSE_928_3_032019bib15) 2014; 41 Gopal (MSE_928_3_032019bib13) 2018 Witten (MSE_928_3_032019bib26) 2013 de Baker (MSE_928_3_032019bib21) 2008 Marbouti (MSE_928_3_032019bib19) 2016; 103 Millar (MSE_928_3_032019bib38) 2011; 111 Najm (MSE_928_3_032019bib10) 2019; 8 Baker (MSE_928_3_032019bib24) 2014 Sekaran (MSE_928_3_032019bib49) 2016 Godsey (MSE_928_3_032019bib37) 2017 Guo (MSE_928_3_032019bib9) 2015 Chaurasia (MSE_928_3_032019bib43) 2017; 2 Berland (MSE_928_3_032019bib6) 2014; 19 Hamoud (MSE_928_3_032019bib4) 2018; 96 Osmanbegovic (MSE_928_3_032019bib35) 2012; 10 Israel (MSE_928_3_032019bib48) 1992 Zhu (MSE_928_3_032019bib31) 2009; 3 Murphy (MSE_928_3_032019bib30) 2012 Basu (MSE_928_3_032019bib34) 2019; 4 Hastie (MSE_928_3_032019bib42) 2009 Verma (MSE_928_3_032019bib14) 2019 Mohamad (MSE_928_3_032019bib5) 2013; 97 Géron (MSE_928_3_032019bib36) 2019 Fitzmaurice (MSE_928_3_032019bib39) 2001 Ulkareem (MSE_928_3_032019bib46) 2018 Hamoud (MSE_928_3_032019bib16) 2018; 5 Yukselturk (MSE_928_3_032019bib17) 2014; 17 Ulkareem (MSE_928_3_032019bib47) 2018 Luan (MSE_928_3_032019bib1) Hamoud (MSE_928_3_032019bib28) 2016; 16 Acharya (MSE_928_3_032019bib20) 2014; 107 Hamoud (MSE_928_3_032019bib3) 2017; 178 Hamoud (MSE_928_3_032019bib8) 2019; 54 Tavakol (MSE_928_3_032019bib50) 2011; 2 Han (MSE_928_3_032019bib52) 2011 Hamoud (MSE_928_3_032019bib7) 2018; 44.2 Hussain (MSE_928_3_032019bib18) 2019; 52 Costa (MSE_928_3_032019bib23) 2013; 1 Hamoud (MSE_928_3_032019bib33) 2017; 3 Han (MSE_928_3_032019bib12) 2011 Grus (MSE_928_3_032019bib41) 2019 MSE_928_3_032019bib25 |
| References_xml | – volume: 30 start-page: 1145 year: 1997 ident: MSE_928_3_032019bib51 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern recognition doi: 10.1016/S0031-3203(96)00142-2 – year: 1992 ident: MSE_928_3_032019bib48 – volume: 16 start-page: 26 year: 2016 ident: MSE_928_3_032019bib28 article-title: Selection of best decision tree algorithm for prediction and classification of students’ action publication-title: American International Journal of Research in Science, Technology, Engineering & Mathematics – start-page: 1 year: 2013 ident: MSE_928_3_032019bib45 article-title: A neural network students’ performance prediction model (NNSPPM) – volume: 2 start-page: 53 year: 2011 ident: MSE_928_3_032019bib50 article-title: Making sense of Cronbach’s alpha publication-title: International journal of medical education doi: 10.5116/ijme.4dfb.8dfd – year: 2012 ident: MSE_928_3_032019bib30 – volume: 52 start-page: 381 year: 2019 ident: MSE_928_3_032019bib18 article-title: Using machine learning to predict student difficulties from learning session data publication-title: Artificial Intelligence Review doi: 10.1007/s10462-018-9620-8 – year: 2018 ident: MSE_928_3_032019bib13 – start-page: 30 year: 2018 ident: MSE_928_3_032019bib46 article-title: A comparative study to obtain an adequate model in prediction of electricity requirements for a given future period – year: 2011 ident: MSE_928_3_032019bib12 – volume: 17 start-page: 118 year: 2014 ident: MSE_928_3_032019bib17 article-title: Predicting dropout student: an application of data mining methods in an online education program publication-title: European Journal of Open, Distance and e-learning doi: 10.2478/eurodl-2014-0008 – year: 1998 ident: MSE_928_3_032019bib44 – volume: 3 start-page: 27 year: 2017 ident: MSE_928_3_032019bib33 article-title: Applying association rules and decision tree algorithms with tumor diagnosis data publication-title: International Research Journal of Engineering and Technology – volume: 97 start-page: 320 year: 2013 ident: MSE_928_3_032019bib5 article-title: Educational data mining: A review publication-title: Procedia-Social and Behavioral Sciences doi: 10.1016/j.sbspro.2013.10.240 – volume: 41 start-page: 6400 year: 2014 ident: MSE_928_3_032019bib15 article-title: Student data mining solution–knowledge management system related to higher education institutions publication-title: Expert systems with applications doi: 10.1016/j.eswa.2014.04.024 – year: 2019 ident: MSE_928_3_032019bib36 – volume: 54 year: 2019 ident: MSE_928_3_032019bib8 article-title: Student’s Success Prediction Model Based on Artificial Neural Networks (ANN) and A Combination of Feature Selection Methods publication-title: Journal of Southwest Jiaotong University doi: 10.35741/issn.0258-2724.54.3.25 – volume: 2 year: 2017 ident: MSE_928_3_032019bib43 article-title: A novel approach for breast cancer detection using data mining techniques publication-title: International Journal of Innovative Research in Computer and Communication Engineering (An ISO 3297:2007 Certified Organization) Vol – ident: MSE_928_3_032019bib25 – start-page: 1 year: 2019 ident: MSE_928_3_032019bib14 article-title: Age group predictive models for the real time prediction of the university students using machine learning: Preliminary results – volume: 107 year: 2014 ident: MSE_928_3_032019bib20 article-title: Early prediction of students performance using machine learning techniques publication-title: International Journal of Computer Applications doi: 10.5120/18717-9939 – volume: 29 start-page: 78 year: 2014 ident: MSE_928_3_032019bib2 article-title: Educational data mining: An advance for intelligent systems in education publication-title: IEEE Intelligent systems doi: 10.1109/MIS.2014.42 – start-page: 61 year: 2014 ident: MSE_928_3_032019bib24 – start-page: 259 year: 2015 ident: MSE_928_3_032019bib29 – volume: 1 year: 2010 ident: MSE_928_3_032019bib11 article-title: Machine learning approach for attack prediction and classification using supervised learning algorithms publication-title: Int. J. Comput. Sci. Commun – year: 2008 ident: MSE_928_3_032019bib21 article-title: Educational Data Mining 2008 – volume: 96 year: 2018 ident: MSE_928_3_032019bib4 article-title: CLASSIFYING STUDENTS’ANSWERS USING CLUSTERING ALGORITHMS BASED ON PRINCIPLE COMPONENT ANALYSIS publication-title: Journal of Theoretical & Applied Information Technology – volume: 19 start-page: 205 year: 2014 ident: MSE_928_3_032019bib6 article-title: Educational data mining and learning analytics: Applications to constructionist research publication-title: Technology, Knowledge and Learning doi: 10.1007/s10758-014-9223-7 – year: 2016 ident: MSE_928_3_032019bib49 – volume: 5 start-page: 26 year: 2018 ident: MSE_928_3_032019bib16 article-title: Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis publication-title: International Journal of Interactive Multimedia and Artificial Intelligence doi: 10.9781/ijimai.2018.02.004 – year: 2011 ident: MSE_928_3_032019bib52 article-title: Data mining concepts and techniques third edition – start-page: 125 year: 2015 ident: MSE_928_3_032019bib9 article-title: Predicting students performance in educational data mining – volume: 4 start-page: 826 year: 2002 ident: MSE_928_3_032019bib40 article-title: Fuzzy support vector machines for pattern recognition and data mining publication-title: International journal of fuzzy systems – year: 2013 ident: MSE_928_3_032019bib26 – volume: 103 start-page: 1 year: 2016 ident: MSE_928_3_032019bib19 article-title: Models for early prediction of at-risk students in a course using standards-based grading publication-title: Computers & Education doi: 10.1016/j.compedu.2016.09.005 – year: 2001 ident: MSE_928_3_032019bib39 – year: 2017 ident: MSE_928_3_032019bib37 – start-page: 126 year: 2014 ident: MSE_928_3_032019bib32 article-title: Predicting student performance using decision tree classifiers and information gain – volume: 8 start-page: 607 year: 2019 ident: MSE_928_3_032019bib10 article-title: Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment publication-title: Electronics doi: 10.3390/electronics8060607 – volume: 1 start-page: 1 year: 2013 ident: MSE_928_3_032019bib23 article-title: Mineração de dados educacionais: conceitos, técnicas, ferramentas e aplicações publication-title: Jornada de Atualização em Informática na Educação – volume: 6 start-page: 76 year: 2018 ident: MSE_928_3_032019bib27 article-title: Classification of Hematological Data Using Data Mining Technique to Predict Diseases publication-title: Journal of Computer and Communications doi: 10.4236/jcc.2018.64007 – volume: 111 year: 2011 ident: MSE_928_3_032019bib38 – volume: 10 start-page: 3 year: 2012 ident: MSE_928_3_032019bib35 article-title: Data mining approach for predicting student performance publication-title: Economic Review: Journal of Economics and Business – ident: MSE_928_3_032019bib1 article-title: PhD Chief Planning and Research Officer – volume: 178 start-page: 6 year: 2017 ident: MSE_928_3_032019bib3 article-title: Students’ success prediction based on Bayes algorithms publication-title: International Journal of Computer Applications doi: 10.5120/ijca2017915506 – year: 2009 ident: MSE_928_3_032019bib42 – volume: 4 start-page: 65 year: 2019 ident: MSE_928_3_032019bib34 article-title: Predictive Models of Student College Commitment Decisions Using Machine Learning publication-title: Data doi: 10.3390/data4020065 – volume: 44.2 year: 2018 ident: MSE_928_3_032019bib7 article-title: Clinical Data Warehouse: A Review publication-title: Iraqi Journal for Computers and Informatics – volume: 53 year: 2018 ident: MSE_928_3_032019bib22 article-title: Analyzing students’ answers using association rule mining based on feature selection publication-title: Journal of Southwest Jiaotong University – year: 2019 ident: MSE_928_3_032019bib41 – year: 2018 ident: MSE_928_3_032019bib47 article-title: A comparative study to obtain an adequate model in prediction of electricity requirements for a given future period doi: 10.1109/IICETA.2018.8458079 – volume: 3 start-page: 1 year: 2009 ident: MSE_928_3_032019bib31 article-title: Introduction to semi-supervised learning publication-title: Synthesis lectures on artificial intelligence and machine learning doi: 10.2200/S00196ED1V01Y200906AIM006 |
| SSID | ssj0067440 |
| Score | 2.5184557 |
| Snippet | Higher education institutions aim to forecast student success which is an important research subject. Forecasting student success can enable teachers to... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 32019 |
| SubjectTerms | Algorithms Colleges & universities Data mining Datasets Decision Tree Decision trees Educational Data Mining Higher education institutions K-Nearest Neighbour Logistic Regression Machine learning Mathematical models Multi-layer Perceptron Naive Bayes Neural Network Neural networks Optimization Performance prediction Prediction models Students Supervised Machine Learning Support vector machines |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles (WRLC) dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aPejBt1itkoM3WXc32d0kxyIWL9ZCK_YWkmy2Fmpb-vD3m2SzVhEpgrcN7ITwTTIzecw3AFxLoUnGUhRolZMgwTILJJLCHQkwJRWOlXTFJki7Tft91vGvCV0uzGTqTf-t-SyJgksI_YM4GhqHZwwrY_2QIRri0JYAt8SfW5immZ3qT_ilMsaZ5b9zOZFOhsZVkvCv_XzzT5tmDD-MtPM8rf1_GPMB2PNhJ2yWAodgQ4-PwO4XMsJj0OuWNJews8olgJ2ZvcixyoO2atoIWq-XQ9PsLqfWzNjWo3uQqaHnah3A5mgwmQ0Xr2_zE_Dcuu_dPQS-5kKgMCYsQIrqpMCCxrFAJvJOIyVRrESexnnGCiKoNis-s2FFlIiiyExIIXWUSKxQpE28cwpq48lYnwGYS-N_I8oSYxQTgRJq68YxxYQUBYljVQdphTRXnpDc1sUYcXcxTim3qHGLGjeoccxL1Oog_JSblpQcayVujGK4X53ztX83KoWvRExkiIjZjRB6_qfOLsAOsjt0l73YALXFbKkvwbZ6Xwznsys3Vz8A6BXigQ priority: 102 providerName: IOP Publishing |
| Title | Student Performance Prediction Model based on Supervised Machine Learning Algorithms |
| URI | https://iopscience.iop.org/article/10.1088/1757-899X/928/3/032019 https://www.proquest.com/docview/2562788278 |
| Volume | 928 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: O3W dateStart: 20090201 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: M7S dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: KB. dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: BENPR dateStart: 20090201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: PIMPY dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6x0EN7KPSlUmDlQ28oTWLnYZ8QIBBVxTZiqbo9RbbjUKTt7nZ36e_vjNdhkZDKoYdEShxLVj57ZvyY7wP4aLQrC5XzyNmmjDJhishwo_2SgLLGitQaLzZRDgZyNFJVWHBbhGOVnU30hrqZWlojj9E1c5yu4XU0-x2RahTtrgYJjR5sEUsC90f3hp0lLoj8zidE5miJlUy7DGGc9IV3ahQrLmMRk444se08cE692-nskYX2bud8-38bvAMvQ8DJjlc95BVsuMlrePGAhvANXA9XBJesWmcRsGpOWzgEGyO9tDEjf9cwfBzezcjA0NOlP4rpWGBpvWHH4xtsw_Lnr8Vb-HZ-dn16EQW1hcgKUaqIW-myVmiZpppjzJ0n1vDU6iZPm0K1pZYOx3pBAUWS6bYtMJgwLsmMsDxxGOm8g83JdOLeA2sMet5EqgzNYaZ5JkkxTlmljW7LNLW7kHe_ubaBipwUMca13xKXsiZ4aoKnRnhqUa_g2YX4vt5sRcbxZI1DRLEO43Lx5Nf7HZTrKmscP_y7eA-ec5qM-0TFfdhczu_cATyzf5a3i3kftk7OBtVVH3pfTj71fT_F-1fxHUuqz5fVj7_s1OqP |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL3iUamwKH2ASgutF-2qipI4L3uBKtSCQMBopJlKs3NtxwGkYWY6M1D1p_qN3OskDFIlWLHoIos8HMnxyTl-3XsAPhntilxmPHC2LII0MXlguNF-SkBaY5PYGm82UXQ6YjCQ3SX428bC0LbKlhM9UZdjS3PkIUozx-EaHl8nvwJyjaLV1dZCo4bFifvzG4dss73j79i-nzk_POh_OwoaV4HAJkkhA26FS6tEizjWHPuWWWQNj60us7jMZVVo4RDTOQlnlOqqylE0jYtSk1geOVR0fO8yrKbE_n6rYK9l_pyS7fkAzAyZX4q4jUjGQWZzTQ5CyUWYhORbTtl97onh8uV48o8ieJk73PjfPtBLeNF0qNl-_Qe8giU3eg3r99IsvoF-r07gybqLKAnWndISFcGSkR_ckJGelwxPe9cTIlA6O_NbTR1rstCes_3hOdZ5fnE124QfT1KtLVgZjUfuLbDSYM8iEjJFuk81TwU54kkrtdFVEcd2G7K2WZVtUq2T48dQ-SV_IRTBQREcFMJBJaqGwzaEd-UmdbKRR0t8QdSohndmjz6900JnUWSBm3cP3_4Iz4_6Z6fq9Lhz8h7WOE08-KDMHViZT6_dLjyzN_PL2fSD_ysY_HxqlN0C3QE_9w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60iujBt1ifOXiTdTfJPpKjqEVRa0HF3kKSzVahtqWt_n6T7NYHIiJ428BOCJPNzJdN5vsADpQ0WcoTEhidZ0FMVRoooqT_JcC10hRr5cUmsmaTtdu8NQVn77Uw_UEV-o_sY0kUXLqwuhDHQpvwbGDlvB1ywkIaOglwzMNBXkzDTEIT6hQcbujDJCCnjgPP10V6O4YnhcI_9vUlR03bcXwL1D77NJb-adzLsFjBT3RcGq3AlOmtwsInUsI1uLst6S5R66OmALWG7kDHTSJy6mld5LJfjmzz9mXgwo1rXfuLmQZVnK0ddNzt9IdP48fn0TrcN87uTs6DSnsh0JRmPCCambigkmEsiUXgSaQVwVrmCc5TXmSSGbvyUwcvolgWRWqhhTJRrKgmkbG4ZwNqvX7PbALKlc3DEeOxDY6xJDFz-nFcc6lkkWGs65BMvC10RUzu9DG6wh-QMyac54TznLCeE1SUnqtD-G43KKk5frU4tJMjqlU6-vXtncmkf5hYhEgyuyvJ2NafOtuHudZpQ1xdNC-3YZ64TbsvaNyB2nj4YnZhVr-On0bDPf_pvgE8qefg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student+Performance+Prediction+Model+based+on+Supervised+Machine+Learning+Algorithms&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Ali+Salah+Hashim&rft.au=Awadh%2C+Wid+Akeel&rft.au=Alaa+Khalaf+Hamoud&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=928&rft.issue=3&rft_id=info:doi/10.1088%2F1757-899X%2F928%2F3%2F032019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon |