Student Performance Prediction Model based on Supervised Machine Learning Algorithms

Higher education institutions aim to forecast student success which is an important research subject. Forecasting student success can enable teachers to prevent students from dropping out before final examinations, identify those who need additional help and boost institution ranking and prestige. M...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IOP conference series. Materials Science and Engineering Ročník 928; číslo 3; s. 32019 - 32036
Hlavní autoři: Salah Hashim, Ali, Akeel Awadh, Wid, Khalaf Hamoud, Alaa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.11.2020
Témata:
ISSN:1757-8981, 1757-899X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Higher education institutions aim to forecast student success which is an important research subject. Forecasting student success can enable teachers to prevent students from dropping out before final examinations, identify those who need additional help and boost institution ranking and prestige. Machine learning techniques in educational data mining aim to develop a model for discovering meaningful hidden patterns and exploring useful information from educational settings. The key traditional characteristics of students (demographic, academic background and behavioural features) are the main essential factors that can represent the training dataset for supervised machine learning algorithms. In this study, we compared the performances of several supervised machine learning algorithms, such as Decision Tree, Naïve Bayes, Logistic Regression, Support Vector Machine, K-Nearest Neighbour, Sequential Minimal Optimisation and Neural Network. We trained a model by using datasets provided by courses in the bachelor study programmes of the College of Computer Science and Information Technology, University of Basra, for academic years 2017-2018 and 2018-2019 to predict student performance on final examinations. Results indicated that logistic regression classifier is the most accurate in predicting the exact final grades of students (68.7% for passed and 88.8% for failed).
AbstractList Higher education institutions aim to forecast student success which is an important research subject. Forecasting student success can enable teachers to prevent students from dropping out before final examinations, identify those who need additional help and boost institution ranking and prestige. Machine learning techniques in educational data mining aim to develop a model for discovering meaningful hidden patterns and exploring useful information from educational settings. The key traditional characteristics of students (demographic, academic background and behavioural features) are the main essential factors that can represent the training dataset for supervised machine learning algorithms. In this study, we compared the performances of several supervised machine learning algorithms, such as Decision Tree, Naïve Bayes, Logistic Regression, Support Vector Machine, K-Nearest Neighbour, Sequential Minimal Optimisation and Neural Network. We trained a model by using datasets provided by courses in the bachelor study programmes of the College of Computer Science and Information Technology, University of Basra, for academic years 2017–2018 and 2018–2019 to predict student performance on final examinations. Results indicated that logistic regression classifier is the most accurate in predicting the exact final grades of students (68.7% for passed and 88.8% for failed).
Author Salah Hashim, Ali
Akeel Awadh, Wid
Khalaf Hamoud, Alaa
Author_xml – sequence: 1
  givenname: Ali
  surname: Salah Hashim
  fullname: Salah Hashim, Ali
  email: alishashim2009@gmail.com
  organization: College of Computer Science and Information Technology / University of Basrah , Iraq
– sequence: 2
  givenname: Wid
  surname: Akeel Awadh
  fullname: Akeel Awadh, Wid
  email: umzainali@gmail.com
  organization: College of Computer Science and Information Technology / University of Basrah , Iraq
– sequence: 3
  givenname: Alaa
  surname: Khalaf Hamoud
  fullname: Khalaf Hamoud, Alaa
  email: Alaak7alaf@gmail.com
  organization: College of Computer Science and Information Technology / University of Basrah , Iraq
BookMark eNqFkFtLwzAUgINMcJv-BSn4XJtLLyn4MoY32HCwCb6FND3dMrqkJp3gv7elMsGXPRxyDjnfOck3QSNjDSB0S_A9wZxHJEuykOf5R5RTHrEIM4pJfoHGp4vRKefkCk2832OcZnGMx2izbo8lmDZYgausO0ijIFg5KLVqtTXB0pZQB4X0UAZduT424L50Xy2l2mkDwQKkM9psg1m9tU63u4O_RpeVrD3c_J5T9P70uJm_hIu359f5bBEqxrI8pIpDXDHJCZE0y2iCVUGJkmVCyjSvMsmBc5xySimOZVWlmJMCcFwwRTHglE3R3TC3cfbzCL4Ve3t0plspaJLSjPMuuq6HoUs5672DSijdyv53rZO6FgSL3qPoFYlel-g8CiYGjx2e_sMbpw_SfZ8H6QBq2_w97Az0Ayqrh4U
CitedBy_id crossref_primary_10_1007_s11036_024_02342_8
crossref_primary_10_1007_s40692_023_00297_5
crossref_primary_10_3390_app15052369
crossref_primary_10_3390_su142013446
crossref_primary_10_1007_s00521_021_06712_1
crossref_primary_10_4102_sajcd_v69i2_912
crossref_primary_10_3389_feduc_2024_1421479
crossref_primary_10_1007_s10489_025_06386_5
crossref_primary_10_1007_s00521_025_11018_7
crossref_primary_10_1080_29932955_2025_2507457
crossref_primary_10_1016_j_asoc_2024_112631
crossref_primary_10_1038_s41598_024_66953_7
crossref_primary_10_70315_uloap_ulete_2022_006
crossref_primary_10_1155_2022_4151487
crossref_primary_10_3390_socsci12120664
crossref_primary_10_14686_buefad_1390209
crossref_primary_10_1155_2022_8924028
crossref_primary_10_3390_educsci11110666
crossref_primary_10_1016_j_eswa_2023_122136
crossref_primary_10_1155_2022_4463163
crossref_primary_10_1007_s42001_025_00384_w
crossref_primary_10_1016_j_procs_2025_04_135
crossref_primary_10_1007_s10639_024_12704_0
Cites_doi 10.1016/S0031-3203(96)00142-2
10.5116/ijme.4dfb.8dfd
10.1007/s10462-018-9620-8
10.2478/eurodl-2014-0008
10.1016/j.sbspro.2013.10.240
10.1016/j.eswa.2014.04.024
10.35741/issn.0258-2724.54.3.25
10.5120/18717-9939
10.1109/MIS.2014.42
10.1007/s10758-014-9223-7
10.9781/ijimai.2018.02.004
10.1016/j.compedu.2016.09.005
10.3390/electronics8060607
10.4236/jcc.2018.64007
10.5120/ijca2017915506
10.3390/data4020065
10.1109/IICETA.2018.8458079
10.2200/S00196ED1V01Y200906AIM006
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1088/1757-899X/928/3/032019
DatabaseName Institute of Physics Open Access Journal Titles (WRLC)
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Student Performance Prediction Model based on Supervised Machine Learning Algorithms
EISSN 1757-899X
ExternalDocumentID 10_1088_1757_899X_928_3_032019
MSE_928_3_032019
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KNG
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PIMPY
PJBAE
PTHSS
RIN
RNS
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3379-2c8e4f3a811a277250cb21cad51d69f7a8e8806822204aff6081be04b3c20e063
IEDL.DBID M7S
ISSN 1757-8981
IngestDate Wed Aug 13 09:23:18 EDT 2025
Sat Nov 29 03:24:16 EST 2025
Tue Nov 18 21:00:49 EST 2025
Wed Aug 21 03:38:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3379-2c8e4f3a811a277250cb21cad51d69f7a8e8806822204aff6081be04b3c20e063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2562788278?pq-origsite=%requestingapplication%
PQID 2562788278
PQPubID 4998670
PageCount 18
ParticipantIDs iop_journals_10_1088_1757_899X_928_3_032019
crossref_citationtrail_10_1088_1757_899X_928_3_032019
proquest_journals_2562788278
crossref_primary_10_1088_1757_899X_928_3_032019
PublicationCentury 2000
PublicationDate 20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationTitleAlternate IOP Conf. Ser.: Mater. Sci. Eng
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Baker (MSE_928_3_032019bib2) 2014; 29
Platt (MSE_928_3_032019bib44) 1998
MeeraGandhi (MSE_928_3_032019bib11) 2010; 1
Guleria (MSE_928_3_032019bib32) 2014
Kostopoulos (MSE_928_3_032019bib29) 2015
Hashima (MSE_928_3_032019bib22) 2018; 53
Akter (MSE_928_3_032019bib27) 2018; 6
Liu (MSE_928_3_032019bib40) 2002; 4
Bradley (MSE_928_3_032019bib51) 1997; 30
Arsad (MSE_928_3_032019bib45) 2013
Natek (MSE_928_3_032019bib15) 2014; 41
Gopal (MSE_928_3_032019bib13) 2018
Witten (MSE_928_3_032019bib26) 2013
de Baker (MSE_928_3_032019bib21) 2008
Marbouti (MSE_928_3_032019bib19) 2016; 103
Millar (MSE_928_3_032019bib38) 2011; 111
Najm (MSE_928_3_032019bib10) 2019; 8
Baker (MSE_928_3_032019bib24) 2014
Sekaran (MSE_928_3_032019bib49) 2016
Godsey (MSE_928_3_032019bib37) 2017
Guo (MSE_928_3_032019bib9) 2015
Chaurasia (MSE_928_3_032019bib43) 2017; 2
Berland (MSE_928_3_032019bib6) 2014; 19
Hamoud (MSE_928_3_032019bib4) 2018; 96
Osmanbegovic (MSE_928_3_032019bib35) 2012; 10
Israel (MSE_928_3_032019bib48) 1992
Zhu (MSE_928_3_032019bib31) 2009; 3
Murphy (MSE_928_3_032019bib30) 2012
Basu (MSE_928_3_032019bib34) 2019; 4
Hastie (MSE_928_3_032019bib42) 2009
Verma (MSE_928_3_032019bib14) 2019
Mohamad (MSE_928_3_032019bib5) 2013; 97
Géron (MSE_928_3_032019bib36) 2019
Fitzmaurice (MSE_928_3_032019bib39) 2001
Ulkareem (MSE_928_3_032019bib46) 2018
Hamoud (MSE_928_3_032019bib16) 2018; 5
Yukselturk (MSE_928_3_032019bib17) 2014; 17
Ulkareem (MSE_928_3_032019bib47) 2018
Luan (MSE_928_3_032019bib1)
Hamoud (MSE_928_3_032019bib28) 2016; 16
Acharya (MSE_928_3_032019bib20) 2014; 107
Hamoud (MSE_928_3_032019bib3) 2017; 178
Hamoud (MSE_928_3_032019bib8) 2019; 54
Tavakol (MSE_928_3_032019bib50) 2011; 2
Han (MSE_928_3_032019bib52) 2011
Hamoud (MSE_928_3_032019bib7) 2018; 44.2
Hussain (MSE_928_3_032019bib18) 2019; 52
Costa (MSE_928_3_032019bib23) 2013; 1
Hamoud (MSE_928_3_032019bib33) 2017; 3
Han (MSE_928_3_032019bib12) 2011
Grus (MSE_928_3_032019bib41) 2019
MSE_928_3_032019bib25
References_xml – volume: 30
  start-page: 1145
  year: 1997
  ident: MSE_928_3_032019bib51
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern recognition
  doi: 10.1016/S0031-3203(96)00142-2
– year: 1992
  ident: MSE_928_3_032019bib48
– volume: 16
  start-page: 26
  year: 2016
  ident: MSE_928_3_032019bib28
  article-title: Selection of best decision tree algorithm for prediction and classification of students’ action
  publication-title: American International Journal of Research in Science, Technology, Engineering & Mathematics
– start-page: 1
  year: 2013
  ident: MSE_928_3_032019bib45
  article-title: A neural network students’ performance prediction model (NNSPPM)
– volume: 2
  start-page: 53
  year: 2011
  ident: MSE_928_3_032019bib50
  article-title: Making sense of Cronbach’s alpha
  publication-title: International journal of medical education
  doi: 10.5116/ijme.4dfb.8dfd
– year: 2012
  ident: MSE_928_3_032019bib30
– volume: 52
  start-page: 381
  year: 2019
  ident: MSE_928_3_032019bib18
  article-title: Using machine learning to predict student difficulties from learning session data
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-018-9620-8
– year: 2018
  ident: MSE_928_3_032019bib13
– start-page: 30
  year: 2018
  ident: MSE_928_3_032019bib46
  article-title: A comparative study to obtain an adequate model in prediction of electricity requirements for a given future period
– year: 2011
  ident: MSE_928_3_032019bib12
– volume: 17
  start-page: 118
  year: 2014
  ident: MSE_928_3_032019bib17
  article-title: Predicting dropout student: an application of data mining methods in an online education program
  publication-title: European Journal of Open, Distance and e-learning
  doi: 10.2478/eurodl-2014-0008
– year: 1998
  ident: MSE_928_3_032019bib44
– volume: 3
  start-page: 27
  year: 2017
  ident: MSE_928_3_032019bib33
  article-title: Applying association rules and decision tree algorithms with tumor diagnosis data
  publication-title: International Research Journal of Engineering and Technology
– volume: 97
  start-page: 320
  year: 2013
  ident: MSE_928_3_032019bib5
  article-title: Educational data mining: A review
  publication-title: Procedia-Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2013.10.240
– volume: 41
  start-page: 6400
  year: 2014
  ident: MSE_928_3_032019bib15
  article-title: Student data mining solution–knowledge management system related to higher education institutions
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2014.04.024
– year: 2019
  ident: MSE_928_3_032019bib36
– volume: 54
  year: 2019
  ident: MSE_928_3_032019bib8
  article-title: Student’s Success Prediction Model Based on Artificial Neural Networks (ANN) and A Combination of Feature Selection Methods
  publication-title: Journal of Southwest Jiaotong University
  doi: 10.35741/issn.0258-2724.54.3.25
– volume: 2
  year: 2017
  ident: MSE_928_3_032019bib43
  article-title: A novel approach for breast cancer detection using data mining techniques
  publication-title: International Journal of Innovative Research in Computer and Communication Engineering (An ISO 3297:2007 Certified Organization) Vol
– ident: MSE_928_3_032019bib25
– start-page: 1
  year: 2019
  ident: MSE_928_3_032019bib14
  article-title: Age group predictive models for the real time prediction of the university students using machine learning: Preliminary results
– volume: 107
  year: 2014
  ident: MSE_928_3_032019bib20
  article-title: Early prediction of students performance using machine learning techniques
  publication-title: International Journal of Computer Applications
  doi: 10.5120/18717-9939
– volume: 29
  start-page: 78
  year: 2014
  ident: MSE_928_3_032019bib2
  article-title: Educational data mining: An advance for intelligent systems in education
  publication-title: IEEE Intelligent systems
  doi: 10.1109/MIS.2014.42
– start-page: 61
  year: 2014
  ident: MSE_928_3_032019bib24
– start-page: 259
  year: 2015
  ident: MSE_928_3_032019bib29
– volume: 1
  year: 2010
  ident: MSE_928_3_032019bib11
  article-title: Machine learning approach for attack prediction and classification using supervised learning algorithms
  publication-title: Int. J. Comput. Sci. Commun
– year: 2008
  ident: MSE_928_3_032019bib21
  article-title: Educational Data Mining 2008
– volume: 96
  year: 2018
  ident: MSE_928_3_032019bib4
  article-title: CLASSIFYING STUDENTS’ANSWERS USING CLUSTERING ALGORITHMS BASED ON PRINCIPLE COMPONENT ANALYSIS
  publication-title: Journal of Theoretical & Applied Information Technology
– volume: 19
  start-page: 205
  year: 2014
  ident: MSE_928_3_032019bib6
  article-title: Educational data mining and learning analytics: Applications to constructionist research
  publication-title: Technology, Knowledge and Learning
  doi: 10.1007/s10758-014-9223-7
– year: 2016
  ident: MSE_928_3_032019bib49
– volume: 5
  start-page: 26
  year: 2018
  ident: MSE_928_3_032019bib16
  article-title: Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis
  publication-title: International Journal of Interactive Multimedia and Artificial Intelligence
  doi: 10.9781/ijimai.2018.02.004
– year: 2011
  ident: MSE_928_3_032019bib52
  article-title: Data mining concepts and techniques third edition
– start-page: 125
  year: 2015
  ident: MSE_928_3_032019bib9
  article-title: Predicting students performance in educational data mining
– volume: 4
  start-page: 826
  year: 2002
  ident: MSE_928_3_032019bib40
  article-title: Fuzzy support vector machines for pattern recognition and data mining
  publication-title: International journal of fuzzy systems
– year: 2013
  ident: MSE_928_3_032019bib26
– volume: 103
  start-page: 1
  year: 2016
  ident: MSE_928_3_032019bib19
  article-title: Models for early prediction of at-risk students in a course using standards-based grading
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2016.09.005
– year: 2001
  ident: MSE_928_3_032019bib39
– year: 2017
  ident: MSE_928_3_032019bib37
– start-page: 126
  year: 2014
  ident: MSE_928_3_032019bib32
  article-title: Predicting student performance using decision tree classifiers and information gain
– volume: 8
  start-page: 607
  year: 2019
  ident: MSE_928_3_032019bib10
  article-title: Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment
  publication-title: Electronics
  doi: 10.3390/electronics8060607
– volume: 1
  start-page: 1
  year: 2013
  ident: MSE_928_3_032019bib23
  article-title: Mineração de dados educacionais: conceitos, técnicas, ferramentas e aplicações
  publication-title: Jornada de Atualização em Informática na Educação
– volume: 6
  start-page: 76
  year: 2018
  ident: MSE_928_3_032019bib27
  article-title: Classification of Hematological Data Using Data Mining Technique to Predict Diseases
  publication-title: Journal of Computer and Communications
  doi: 10.4236/jcc.2018.64007
– volume: 111
  year: 2011
  ident: MSE_928_3_032019bib38
– volume: 10
  start-page: 3
  year: 2012
  ident: MSE_928_3_032019bib35
  article-title: Data mining approach for predicting student performance
  publication-title: Economic Review: Journal of Economics and Business
– ident: MSE_928_3_032019bib1
  article-title: PhD Chief Planning and Research Officer
– volume: 178
  start-page: 6
  year: 2017
  ident: MSE_928_3_032019bib3
  article-title: Students’ success prediction based on Bayes algorithms
  publication-title: International Journal of Computer Applications
  doi: 10.5120/ijca2017915506
– year: 2009
  ident: MSE_928_3_032019bib42
– volume: 4
  start-page: 65
  year: 2019
  ident: MSE_928_3_032019bib34
  article-title: Predictive Models of Student College Commitment Decisions Using Machine Learning
  publication-title: Data
  doi: 10.3390/data4020065
– volume: 44.2
  year: 2018
  ident: MSE_928_3_032019bib7
  article-title: Clinical Data Warehouse: A Review
  publication-title: Iraqi Journal for Computers and Informatics
– volume: 53
  year: 2018
  ident: MSE_928_3_032019bib22
  article-title: Analyzing students’ answers using association rule mining based on feature selection
  publication-title: Journal of Southwest Jiaotong University
– year: 2019
  ident: MSE_928_3_032019bib41
– year: 2018
  ident: MSE_928_3_032019bib47
  article-title: A comparative study to obtain an adequate model in prediction of electricity requirements for a given future period
  doi: 10.1109/IICETA.2018.8458079
– volume: 3
  start-page: 1
  year: 2009
  ident: MSE_928_3_032019bib31
  article-title: Introduction to semi-supervised learning
  publication-title: Synthesis lectures on artificial intelligence and machine learning
  doi: 10.2200/S00196ED1V01Y200906AIM006
SSID ssj0067440
Score 2.5184557
Snippet Higher education institutions aim to forecast student success which is an important research subject. Forecasting student success can enable teachers to...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32019
SubjectTerms Algorithms
Colleges & universities
Data mining
Datasets
Decision Tree
Decision trees
Educational Data Mining
Higher education institutions
K-Nearest Neighbour
Logistic Regression
Machine learning
Mathematical models
Multi-layer Perceptron
Naive Bayes
Neural Network
Neural networks
Optimization
Performance prediction
Prediction models
Students
Supervised Machine Learning
Support vector machines
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles (WRLC)
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aPejBt1itkoM3WXc32d0kxyIWL9ZCK_YWkmy2Fmpb-vD3m2SzVhEpgrcN7ITwTTIzecw3AFxLoUnGUhRolZMgwTILJJLCHQkwJRWOlXTFJki7Tft91vGvCV0uzGTqTf-t-SyJgksI_YM4GhqHZwwrY_2QIRri0JYAt8SfW5immZ3qT_ilMsaZ5b9zOZFOhsZVkvCv_XzzT5tmDD-MtPM8rf1_GPMB2PNhJ2yWAodgQ4-PwO4XMsJj0OuWNJews8olgJ2ZvcixyoO2atoIWq-XQ9PsLqfWzNjWo3uQqaHnah3A5mgwmQ0Xr2_zE_Dcuu_dPQS-5kKgMCYsQIrqpMCCxrFAJvJOIyVRrESexnnGCiKoNis-s2FFlIiiyExIIXWUSKxQpE28cwpq48lYnwGYS-N_I8oSYxQTgRJq68YxxYQUBYljVQdphTRXnpDc1sUYcXcxTim3qHGLGjeoccxL1Oog_JSblpQcayVujGK4X53ztX83KoWvRExkiIjZjRB6_qfOLsAOsjt0l73YALXFbKkvwbZ6Xwznsys3Vz8A6BXigQ
  priority: 102
  providerName: IOP Publishing
Title Student Performance Prediction Model based on Supervised Machine Learning Algorithms
URI https://iopscience.iop.org/article/10.1088/1757-899X/928/3/032019
https://www.proquest.com/docview/2562788278
Volume 928
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: O3W
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: M7S
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: KB.
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6x0EN7KPSlUmDlQ28oTWLnYZ8QIBBVxTZiqbo9RbbjUKTt7nZ36e_vjNdhkZDKoYdEShxLVj57ZvyY7wP4aLQrC5XzyNmmjDJhishwo_2SgLLGitQaLzZRDgZyNFJVWHBbhGOVnU30hrqZWlojj9E1c5yu4XU0-x2RahTtrgYJjR5sEUsC90f3hp0lLoj8zidE5miJlUy7DGGc9IV3ahQrLmMRk444se08cE692-nskYX2bud8-38bvAMvQ8DJjlc95BVsuMlrePGAhvANXA9XBJesWmcRsGpOWzgEGyO9tDEjf9cwfBzezcjA0NOlP4rpWGBpvWHH4xtsw_Lnr8Vb-HZ-dn16EQW1hcgKUaqIW-myVmiZpppjzJ0n1vDU6iZPm0K1pZYOx3pBAUWS6bYtMJgwLsmMsDxxGOm8g83JdOLeA2sMet5EqgzNYaZ5JkkxTlmljW7LNLW7kHe_ubaBipwUMca13xKXsiZ4aoKnRnhqUa_g2YX4vt5sRcbxZI1DRLEO43Lx5Nf7HZTrKmscP_y7eA-ec5qM-0TFfdhczu_cATyzf5a3i3kftk7OBtVVH3pfTj71fT_F-1fxHUuqz5fVj7_s1OqP
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL3iUamwKH2ASgutF-2qipI4L3uBKtSCQMBopJlKs3NtxwGkYWY6M1D1p_qN3OskDFIlWLHoIos8HMnxyTl-3XsAPhntilxmPHC2LII0MXlguNF-SkBaY5PYGm82UXQ6YjCQ3SX428bC0LbKlhM9UZdjS3PkIUozx-EaHl8nvwJyjaLV1dZCo4bFifvzG4dss73j79i-nzk_POh_OwoaV4HAJkkhA26FS6tEizjWHPuWWWQNj60us7jMZVVo4RDTOQlnlOqqylE0jYtSk1geOVR0fO8yrKbE_n6rYK9l_pyS7fkAzAyZX4q4jUjGQWZzTQ5CyUWYhORbTtl97onh8uV48o8ieJk73PjfPtBLeNF0qNl-_Qe8giU3eg3r99IsvoF-r07gybqLKAnWndISFcGSkR_ckJGelwxPe9cTIlA6O_NbTR1rstCes_3hOdZ5fnE124QfT1KtLVgZjUfuLbDSYM8iEjJFuk81TwU54kkrtdFVEcd2G7K2WZVtUq2T48dQ-SV_IRTBQREcFMJBJaqGwzaEd-UmdbKRR0t8QdSohndmjz6900JnUWSBm3cP3_4Iz4_6Z6fq9Lhz8h7WOE08-KDMHViZT6_dLjyzN_PL2fSD_ysY_HxqlN0C3QE_9w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60iujBt1ifOXiTdTfJPpKjqEVRa0HF3kKSzVahtqWt_n6T7NYHIiJ428BOCJPNzJdN5vsADpQ0WcoTEhidZ0FMVRoooqT_JcC10hRr5cUmsmaTtdu8NQVn77Uw_UEV-o_sY0kUXLqwuhDHQpvwbGDlvB1ywkIaOglwzMNBXkzDTEIT6hQcbujDJCCnjgPP10V6O4YnhcI_9vUlR03bcXwL1D77NJb-adzLsFjBT3RcGq3AlOmtwsInUsI1uLst6S5R66OmALWG7kDHTSJy6mld5LJfjmzz9mXgwo1rXfuLmQZVnK0ddNzt9IdP48fn0TrcN87uTs6DSnsh0JRmPCCambigkmEsiUXgSaQVwVrmCc5TXmSSGbvyUwcvolgWRWqhhTJRrKgmkbG4ZwNqvX7PbALKlc3DEeOxDY6xJDFz-nFcc6lkkWGs65BMvC10RUzu9DG6wh-QMyac54TznLCeE1SUnqtD-G43KKk5frU4tJMjqlU6-vXtncmkf5hYhEgyuyvJ2NafOtuHudZpQ1xdNC-3YZ64TbsvaNyB2nj4YnZhVr-On0bDPf_pvgE8qefg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student+Performance+Prediction+Model+based+on+Supervised+Machine+Learning+Algorithms&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Ali+Salah+Hashim&rft.au=Awadh%2C+Wid+Akeel&rft.au=Alaa+Khalaf+Hamoud&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=928&rft.issue=3&rft_id=info:doi/10.1088%2F1757-899X%2F928%2F3%2F032019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon