Geoacoustic and geophysical data‐driven seafloor sediment classification through machine learning algorithms with property‐centered oversampling techniques

This study aims to classify seafloor sediments using physics‐inspired and data‐driven soil models combined with machine learning algorithms and oversampling techniques. The field data used for the input variables include porosity, S‐ and P‐wave velocities and depth. The soil information reported in...

Full description

Saved in:
Bibliographic Details
Published in:Computer-aided civil and infrastructure engineering Vol. 39; no. 14; pp. 2105 - 2121
Main Authors: Park, Junghee, Lee, Jong‐Sub, Yoon, Hyung‐Koo
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.07.2024
Subjects:
ISSN:1093-9687, 1467-8667
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study aims to classify seafloor sediments using physics‐inspired and data‐driven soil models combined with machine learning algorithms and oversampling techniques. The field data used for the input variables include porosity, S‐ and P‐wave velocities and depth. The soil information reported in the original literature and the “six reference sediments” and effective stress‐versus‐depth models proposed by the previous study confirm the sediment type across all of the input variables. We use three machine learning algorithms and four oversampling methods to enhance the performance accuracy and overcome data imbalance in the minority class. The results show that the averaged accuracy of sediment classification with original data corresponds to 0.88 for porosity, 0.61 for S‐wave velocity, and 0.97 for P‐wave velocity. In particular, the enhanced accuracy with oversampled input variables becomes more pronounced when the depth data are considered in a dataset. The class‐oriented grouping method newly proposed in this study appears to be a robust approach to enhancing performance. Surprisingly, model‐based input variables lead to the best performance in all cases. The proposed analyses conducted using machine learning algorithms and oversampling techniques within the physics‐inspired models could be extended to obtain a first‐order assessment of marine sediment properties.
AbstractList This study aims to classify seafloor sediments using physics‐inspired and data‐driven soil models combined with machine learning algorithms and oversampling techniques. The field data used for the input variables include porosity, S‐ and P‐wave velocities and depth. The soil information reported in the original literature and the “six reference sediments” and effective stress‐versus‐depth models proposed by the previous study confirm the sediment type across all of the input variables. We use three machine learning algorithms and four oversampling methods to enhance the performance accuracy and overcome data imbalance in the minority class. The results show that the averaged accuracy of sediment classification with original data corresponds to 0.88 for porosity, 0.61 for S‐wave velocity, and 0.97 for P‐wave velocity. In particular, the enhanced accuracy with oversampled input variables becomes more pronounced when the depth data are considered in a dataset. The class‐oriented grouping method newly proposed in this study appears to be a robust approach to enhancing performance. Surprisingly, model‐based input variables lead to the best performance in all cases. The proposed analyses conducted using machine learning algorithms and oversampling techniques within the physics‐inspired models could be extended to obtain a first‐order assessment of marine sediment properties.
Author Park, Junghee
Yoon, Hyung‐Koo
Lee, Jong‐Sub
Author_xml – sequence: 1
  givenname: Junghee
  surname: Park
  fullname: Park, Junghee
  organization: Incheon National University
– sequence: 2
  givenname: Jong‐Sub
  surname: Lee
  fullname: Lee, Jong‐Sub
  organization: Korea University
– sequence: 3
  givenname: Hyung‐Koo
  surname: Yoon
  fullname: Yoon, Hyung‐Koo
  email: hyungkoo@dju.ac.kr
  organization: Daejeon University
BookMark eNp9kU1OHDEQha2ISPxlwwksZYfUYLcbu2eJRgSQiNiwb9VUV08bue2O7QHNLkfIDXK3nCQeJiuEUpuqxfdeVekdswMfPDF2JsWFLHU5WaQLqWStP7Ej2WhTtVqbgzKLhaoWujWH7DilZ1GqadQR-31LATBsUrbIwfd8TWEet8kiON5Dhj8_f_XRvpDniWBwIcQy9HYinzk6SMkOhc02eJ7HGDbrkU-Ao_XEHUH01q85uHWINo9T4q-l8TmGmWLeFm8sPhSp5-GFYoJpdjtBJhy9_bGhdMo-D-ASffnXT9jTt5un5V318Hh7v7x-qFApoytjJCkyLQEp0_RI_UoMCy0aWMiWiJRegWo0tFLUArAh7Fe1HK4AayJEdcK-7m3Labu1uXsOm-jLxk4JcyWEroUqlNhTGENKkYYObX77PUewrpOi26XQ7VLo3lIokvN3kjnaCeL2Y1ju4VfraPsfsvt-v7zZa_4CVJui9w
CitedBy_id crossref_primary_10_3389_fmars_2024_1370274
Cites_doi 10.1111/mice.12556
10.1142/S0218213014300014
10.1142/S0218213014300026
10.1190/1.1440676
10.1007/s12559-017-9485-1
10.1016/j.asoc.2019.105887
10.1007/s00521-019-04359-7
10.1016/j.enggeo.2020.105930
10.1061/(ASCE)GT.1943-5606.0002426
10.1007/s12559-015-9370-8
10.1007/978-94-011-3568-9_34
10.1162/neco.1996.8.7.1341
10.1016/j.enggeo.2022.106615
10.1016/j.enggeo.2022.106675
10.1061/(ASCE)GT.1943-5606.0001482
10.1111/mice.12772
10.1111/exsy.12357
10.1142/S0218001416390018
10.1193/1.1852561
10.1016/j.enggeo.2019.105145
10.1139/cgj-2016-0044
10.1111/mice.12662
10.1038/s41598-021-86137-x
10.1016/j.enggeo.2022.106720
10.1109/TNNLS.2017.2682102
10.1016/j.enggeo.2021.106044
10.1109/EIT.2018.8500086
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.13126
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 2121
ExternalDocumentID 10_1111_mice_13126
MICE13126
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: NRF‐2020R1A2C2012113; RS‐2023‐00221719
GroupedDBID ..I
.3N
.DC
.GA
05W
0R~
10A
1OC
24P
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAP
EBS
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.4S
1OB
31~
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACUHS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AHEFC
AI.
AIDQK
AIDYY
AIQQE
ARCSS
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EAD
EDO
EJD
EMK
FEDTE
HF~
HVGLF
I-F
LW6
MK~
O8X
PALCI
RJQFR
SAMSI
TUS
VH1
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3376-771e3e78eae374dcedb0f9604a918eee36ba346a81020ac4ecdb21f5ac2eecc3
IEDL.DBID 24P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101633400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Sat Jul 26 03:36:35 EDT 2025
Tue Nov 18 20:54:19 EST 2025
Sat Nov 29 05:42:10 EST 2025
Wed Jan 22 17:18:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3376-771e3e78eae374dcedb0f9604a918eee36ba346a81020ac4ecdb21f5ac2eecc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13126
PQID 3075006203
PQPubID 2045171
PageCount 17
ParticipantIDs proquest_journals_3075006203
crossref_citationtrail_10_1111_mice_13126
crossref_primary_10_1111_mice_13126
wiley_primary_10_1111_mice_13126_MICE13126
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1976; 41
2014b; 23
2020; 86
2011
2017; 28
2021; 147
1997; 67
2016; 53
2021; 280
2016; 30
1995
2005; 21
2020; 35
2021; 284
1992
2020; 32
1991
2015; 7
2016; 142
2017; 9
2021; 36
2021; 11
2019; 258
2018
2014a; 23
2022; 37
2022; 30
2022; 304
2022; 305
1996; 8
2022; 301
2018; 35
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Lee J. S. (e_1_2_7_18_1) 2022; 30
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Goldhammer R. K. (e_1_2_7_10_1) 1997; 67
Clayton C. R. (e_1_2_7_7_1) 1995
References_xml – year: 2011
– volume: 147
  issue: 1
  year: 2021
  article-title: Depth‐dependent seabed properties—Geoacoustic assessment
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 9
  start-page: 411
  year: 2017
  end-page: 422
  article-title: Nature‐inspired chemical reaction optimisation algorithms
  publication-title: Cognitive Computation
– start-page: 0531
  year: 2018
  end-page: 0536
  article-title: SMOTE implementation on phishing data to enhance cybersecurity
– volume: 21
  start-page: 161
  issue: 1
  year: 2005
  end-page: 177
  article-title: Shear‐wave velocity of surficial geologic sediments in northern California: Statistical distributions and depth dependence
  publication-title: Earthquake Spectra
– volume: 30
  issue: 8
  year: 2016
  article-title: Gravitational search algorithm and its variants
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– volume: 23
  issue: 6
  year: 2014b
  article-title: Water drop algorithms
  publication-title: International Journal on Artificial Intelligence Tools
– volume: 301
  year: 2022
  article-title: Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
  publication-title: Engineering Geology
– volume: 36
  start-page: 489
  issue: 4
  year: 2021
  end-page: 503
  article-title: Learning decision boundaries for cone penetration test classification
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 284
  year: 2021
  article-title: Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition
  publication-title: Engineering Geology
– volume: 280
  year: 2021
  article-title: Estimation of the compression behavior of sandy clay considering sand fraction effect based on equivalent void ratio concept
  publication-title: Engineering Geology
– volume: 304
  year: 2022
  article-title: Effect of ocean environmental particles on compressibility, electrical resistivity, and stiffness characteristics of mixtures
  publication-title: Engineering Geology
– volume: 67
  start-page: 26
  issue: 1
  year: 1997
  end-page: 35
  article-title: Compaction and decompaction algorithms for sedimentary carbonates
  publication-title: Journal of Sedimentary Research
– volume: 37
  start-page: 878
  issue: 7
  year: 2022
  end-page: 893
  article-title: Damage detection of nonlinear structures using probability density ratio estimation
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 7
  start-page: 706
  year: 2015
  end-page: 714
  article-title: Nature inspired computing: An overview and some future directions
  publication-title: Cognitive Computation
– volume: 30
  start-page: 247
  issue: 3
  year: 2022
  end-page: 258
  article-title: Study of oversampling algorithms for soil classifications by field velocity resistivity probe
  publication-title: Geomechanics and Engineering
– volume: 258
  year: 2019
  article-title: Compressibility and creep of a diatomaceous soil
  publication-title: Engineering Geology
– year: 1992
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  end-page: 1390
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Computation
– volume: 142
  issue: 6
  year: 2016
  article-title: Soil compressibility models for a wide stress range
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– start-page: 305
  year: 1991
  end-page: 312
– volume: 35
  start-page: 1115
  issue: 10
  year: 2020
  end-page: 1131
  article-title: An integrated simulation method for coupled dynamic systems
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 35
  issue: 6
  year: 2018
  article-title: Smart bacteria‐foraging algorithm‐based customized kernel support vector regression and enhanced probabilistic neural network for compaction quality assessment and control of earth‐rock dam
  publication-title: Expert Systems
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017
  end-page: 3083
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 305
  year: 2022
  article-title: Hydrothermal metalliferous sediments in the Red Sea: Characterization and properties
  publication-title: Engineering Geology
– volume: 23
  issue: 6
  year: 2014a
  article-title: Spiral dynamics algorithm
  publication-title: International Journal on Artificial Intelligence Tools
– year: 1995
– volume: 41
  start-page: 985
  issue: 1
  year: 1976
  end-page: 996
  article-title: Shear‐wave velocity versus depth in marine sediments: A review
  publication-title: Geophysics
– volume: 32
  start-page: 8675
  year: 2020
  end-page: 8690
  article-title: A dynamic ensemble learning algorithm for neural networks
  publication-title: Neural Computing and Applications
– volume: 53
  start-page: 1910
  issue: 12
  year: 2016
  end-page: 1927
  article-title: Cone penetration test (CPT)‐based soil behaviour type (SBT) classification system—An update
  publication-title: Canadian Geotechnical Journal
– volume: 86
  year: 2020
  article-title: Discrete spider monkey optimization for travelling salesman problem
  publication-title: Applied Soft Computing
– volume: 11
  start-page: 6594
  issue: 1
  year: 2021
  article-title: Suggestion for a new deterministic model coupled with machine learning techniques for landslide susceptibility mapping
  publication-title: Scientific Reports
– ident: e_1_2_7_13_1
  doi: 10.1111/mice.12556
– ident: e_1_2_7_26_1
  doi: 10.1142/S0218213014300014
– ident: e_1_2_7_27_1
  doi: 10.1142/S0218213014300026
– volume: 30
  start-page: 247
  issue: 3
  year: 2022
  ident: e_1_2_7_18_1
  article-title: Study of oversampling algorithms for soil classifications by field velocity resistivity probe
  publication-title: Geomechanics and Engineering
– ident: e_1_2_7_11_1
  doi: 10.1190/1.1440676
– ident: e_1_2_7_30_1
  doi: 10.1007/s12559-017-9485-1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.asoc.2019.105887
– ident: e_1_2_7_4_1
  doi: 10.1007/s00521-019-04359-7
– ident: e_1_2_7_25_1
  doi: 10.1016/j.enggeo.2020.105930
– volume: 67
  start-page: 26
  issue: 1
  year: 1997
  ident: e_1_2_7_10_1
  article-title: Compaction and decompaction algorithms for sedimentary carbonates
  publication-title: Journal of Sedimentary Research
– ident: e_1_2_7_17_1
  doi: 10.1061/(ASCE)GT.1943-5606.0002426
– ident: e_1_2_7_28_1
  doi: 10.1007/s12559-015-9370-8
– ident: e_1_2_7_5_1
  doi: 10.1007/978-94-011-3568-9_34
– ident: e_1_2_7_32_1
  doi: 10.1162/neco.1996.8.7.1341
– volume-title: The standard penetration test (SPT): methods and use
  year: 1995
  ident: e_1_2_7_7_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.enggeo.2022.106615
– ident: e_1_2_7_15_1
  doi: 10.1016/j.enggeo.2022.106675
– ident: e_1_2_7_6_1
  doi: 10.1061/(ASCE)GT.1943-5606.0001482
– ident: e_1_2_7_33_1
  doi: 10.1111/mice.12772
– ident: e_1_2_7_8_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_31_1
  doi: 10.1111/exsy.12357
– ident: e_1_2_7_29_1
  doi: 10.1142/S0218001416390018
– ident: e_1_2_7_12_1
  doi: 10.1193/1.1852561
– ident: e_1_2_7_22_1
  doi: 10.1016/j.enggeo.2019.105145
– ident: e_1_2_7_24_1
  doi: 10.1139/cgj-2016-0044
– ident: e_1_2_7_9_1
  doi: 10.1111/mice.12662
– ident: e_1_2_7_20_1
  doi: 10.1038/s41598-021-86137-x
– ident: e_1_2_7_21_1
  doi: 10.1016/j.enggeo.2022.106720
– ident: e_1_2_7_23_1
  doi: 10.1109/TNNLS.2017.2682102
– ident: e_1_2_7_19_1
  doi: 10.1016/j.enggeo.2021.106044
– ident: e_1_2_7_2_1
  doi: 10.1109/EIT.2018.8500086
SSID ssj0000443
Score 2.4277105
Snippet This study aims to classify seafloor sediments using physics‐inspired and data‐driven soil models combined with machine learning algorithms and oversampling...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2105
SubjectTerms Accuracy
Algorithms
Classification (sedimentation)
Effectiveness
Machine learning
Ocean floor
Oversampling
Performance enhancement
S waves
Sediments
Soil porosity
Wave velocity
Title Geoacoustic and geophysical data‐driven seafloor sediment classification through machine learning algorithms with property‐centered oversampling techniques
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13126
https://www.proquest.com/docview/3075006203
Volume 39
WOSCitedRecordID wos001101633400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dShwxFD740wt74W9LV60E6k2FKZPJbDIL3pTWtRciIlq8G5LM2a2w7iwzq-Cdj-Ab-G59kuZkM7tbEEG8G0ISBs5PviRfzgewXxiqAWLjSHEro1RkOspQYeQSYSYtFob7t1W_T9TpaXZ11TlbgMPmLcykPsT0wI0iw-drCnBt6rkgJ7X2b1zwRC7CMudCkU8n6dksD6eBXt8RUUdmKhQnJR7PbOz_y9EMY84jVb_UdNfe9pPrsBogJvs-8YkNWMDhJqwFuMlCMNeuqVF0aNo24f1cecIteDrG0iVMr_fF9LBgfSxHwa6MqKV_Hx6LitIlcwHTG5Rl5T4KrxfALMFy4iF507OgB8RuPHkTWVCr6DM96JfV9fjPTc3oTJiN6HagGt-7uYk4SlKijGimtSbuuxswrTpbf4CL7tHFj19REHSIrHCJzCF5jgJVhhqFSgtyhbhH1WF0h2eIKKTRIpU6c6gn1jZFW5iE99raJuhcTXyEpWE5xE_A2lzzxEguketU2MSYNleSLh3ddtaoXgu-NmbNbSh2Tpobg7zZ9JBlcm-ZFnyZ9h1NSnw822u38Y48hHmdCwJcsUxi0YID7wcvzJC7uDryX9uv6bwDK4kDUhOK8C4sjatb_Azv7N34uq72vMvvwfLP8-7lyT-25Q02
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datswFD6s6WDdRf_W0mz9EXQ3LbhYliM7l6Nt1tI0lJGN3hlZPkkDaRzsbLC7PcLeYO_WJ6mOIicZlELpnRGSMJwffZI-nQ_gc5ZSDRDtexHX0gtFrLwYI_RMIoylxizl9m3Vj3bU6cS3t80bx82htzDT-hCzAzeKDJuvKcDpQHohykmu_YQLHsglWA6NHzVqsHz2rfW9PU_FoWPYN4XXlHHk6pMSlWc--v8VaQ4zF8GqXW1aa6_8z3VYdTCTfZn6xQa8wdEmrDnIyVxAl6apUnWo2jbh_UKJwg_w7yvmJmlazS-mRhnrYz52tmVEL3348zcrKGUyEzS9YZ4X5iOzmgFMEzQnLpI1P3OaQOzeEjiROcWKPlPDfl4MJnf3JaNzYTamG4Ji8tvMTeRRkhNlRDUtFfHfzYBZ5dlyC7qt8-7phedEHTwtTDIzaJ6jwChGhSIKM3IHv0cVYlSTx4goZKpEKFVskI-vdIg6SwPeaygdoHE3sQ21UT7CHWANrniQSi6Rq1DoIE0bPJJ08Wi2tGnUq8NRZddEu4LnpLsxTKqND1kmsZapw-Gs73ha5uPJXruVeyQu1MtEEOjyZeCLOhxbR3hmhsTE1rn9-viSzgfw7qJ73U7al52rT7ASGGA1pQzvQm1S_MQ9eKt_TQZlse8i4BH1wRET
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSuNAGP1YXRG9WP92sbuuDuiNQiSTSSfp5bJrV7GUXhTxLkwmX6pQm5JUwTsfwTfw3XySnW86abuwLIh3IcyEwPeTk5kz5wAcZSlpgGjfi7iWXihi5cUYoWcaYSw1Zim3Z6uuOlG3G19ft3qOm0NnYab6ELMFN6oM26-pwHGc5QtVTnbtp1zwQC7Bx7BpmiwJO4e9eSMOHb--JbyWjCOnTkpEnvncv79Hc5C5CFXtt6a98c633IRPDmSyH9Os2IIPONqGDQc4mSvnytyqPR3qe9uwviBQuAMvv7EwLdM6fjE1ytgAi7GLLCNy6evTc1ZSw2SmZPJhUZTmIrOOAUwTMCcmkg0-c45A7M7SN5E5v4oBU8NBUd5Obu4qRqvCbEz7A-Xk0TybqKNkJsqIaFopYr-bCTPd2eoz9Ntn_Z_nnrN08LQwrcxgeY4CoxgViijMKBn8nPRhVIvHiChkqkQoVWxwj690iDpLA543lQ7QJJv4AsujYoS7wJpc8SCVXCJXodBBmjZ5JGnb0fzQplHegOM6rol2cufkujFM6t8eikxiI9OAw9nY8VTk45-j9ur0SFyhV4kgyOXLwBcNOLGJ8J8nJKayzuzV17cMPoDV3q920rnoXn6DtcCgqilfeA-WJ-U9focV_TC5rcp9m_5_AKiHDvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geoacoustic+and+geophysical+data%E2%80%90driven+seafloor+sediment+classification+through+machine+learning+algorithms+with+property%E2%80%90centered+oversampling+techniques&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Park%2C+Junghee&rft.au=Lee%2C+Jong%E2%80%90Sub&rft.au=Yoon%2C+Hyung%E2%80%90Koo&rft.date=2024-07-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=14&rft.spage=2105&rft.epage=2121&rft_id=info:doi/10.1111%2Fmice.13126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_13126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon