Bayesian backcalculation of pavement properties using parallel transitional Markov chain Monte Carlo
This paper presents a novel Bayesian method for backcalculation of pavement dynamic modulus, stiffness, thickness, and damping using falling weight deflectometer (FWD) data. The backcalculation procedure yields estimates and uncertainties for each pavement property of interest. As a by‐product of th...
Uloženo v:
| Vydáno v: | Computer-aided civil and infrastructure engineering Ročník 39; číslo 13; s. 1911 - 1927 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.07.2024
|
| Témata: | |
| ISSN: | 1093-9687, 1467-8667 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a novel Bayesian method for backcalculation of pavement dynamic modulus, stiffness, thickness, and damping using falling weight deflectometer (FWD) data. The backcalculation procedure yields estimates and uncertainties for each pavement property of interest. As a by‐product of the Bayesian procedure, information about measurement error is recovered. The Bayesian method is tested on simulated FWD backcalculations and compared with a state‐of‐the‐art trust‐region optimization algorithm, and it achieves estimation errors that are nearly an order of magnitude lower than the trust‐region solver. Confidence intervals are computed from thousands of simulated backcalculations and are shown to quantify uncertainty in estimated pavement properties. To cope with the computational expense of backcalculation, a fully parallel transitional Markov chain Monte Carlo procedure is developed. The fully parallel algorithm scales well to computation with many processor cores, and it yields up to a 50% reduction in computation time when compared to existing parallel implementations. |
|---|---|
| AbstractList | This paper presents a novel Bayesian method for backcalculation of pavement dynamic modulus, stiffness, thickness, and damping using falling weight deflectometer (FWD) data. The backcalculation procedure yields estimates and uncertainties for each pavement property of interest. As a by‐product of the Bayesian procedure, information about measurement error is recovered. The Bayesian method is tested on simulated FWD backcalculations and compared with a state‐of‐the‐art trust‐region optimization algorithm, and it achieves estimation errors that are nearly an order of magnitude lower than the trust‐region solver. Confidence intervals are computed from thousands of simulated backcalculations and are shown to quantify uncertainty in estimated pavement properties. To cope with the computational expense of backcalculation, a fully parallel transitional Markov chain Monte Carlo procedure is developed. The fully parallel algorithm scales well to computation with many processor cores, and it yields up to a 50% reduction in computation time when compared to existing parallel implementations. |
| Author | Coletti, Keaton Davis, R. Benjamin Romeo, Ryan C. |
| Author_xml | – sequence: 1 givenname: Keaton surname: Coletti fullname: Coletti, Keaton organization: University of Georgia – sequence: 2 givenname: Ryan C. surname: Romeo fullname: Romeo, Ryan C. organization: The MathWorks, Inc – sequence: 3 givenname: R. Benjamin surname: Davis fullname: Davis, R. Benjamin email: ben.davis@uga.edu organization: University of Georgia |
| BookMark | eNp9UE1LAzEUDKKgVi_-goA3YWuy6Saboxa_wOJFz8vb7FtNmyY12Sr996bWk4hzeQ_ezDBvjsm-Dx4JOeNszDMul9bgmAteij1yxCdSFbWUaj_vTItCy1odkuOU5ixjMhFHpLuGDSYLnrZgFgacWTsYbPA09HQFH7hEP9BVDCuMg8VE18n613yJ4Bw6OkTwyW4F4OgM4iJ8UPMG1tNZ8APSKUQXTshBDy7h6c8ckZfbm-fpffH4dPcwvXosjBBKFNDWSte65K2sDSt1hZ3QwHVtKtVixbSpmOok75Q0XJcdKJR9j6prQbWyY2JEzne-Oe_7GtPQzMM65mSpEUxWSlaMlZl1sWOZGFKK2DeraJcQNw1nzbbFZtti891iJrNfZGOH74Ly59b9LeE7yad1uPnHvJk9TG92mi9LIYhS |
| CitedBy_id | crossref_primary_10_3390_en18174516 crossref_primary_10_1134_S1061830925700111 crossref_primary_10_3390_coatings14080922 crossref_primary_10_1080_10298436_2025_2487617 crossref_primary_10_1016_j_trgeo_2025_101715 crossref_primary_10_1007_s12206_025_0807_z crossref_primary_10_1111_mice_13325 crossref_primary_10_1111_mice_13346 |
| Cites_doi | 10.1016/j.compstruc.2022.106935 10.3390/su13168831 10.1111/mice.12696 10.1007/s11440-019-00847-1 10.1111/mice.12898 10.1007/978-1-84882-310-5 10.1016/j.advengsoft.2005.10.001 10.1080/10298436.2013.782401 10.1111/j.1467-8667.2012.00762.x 10.3141/2005-10 10.1139/L10-127 10.1016/j.cma.2015.01.015 10.3850/978-981-14-8593-0_4374-cd 10.1111/mice.12987 10.1061/JPEODX.0000044 10.1080/1029843021000067836 10.1061/(ASCE)0733-947X(2006)132:1(76) 10.1177/0361198118821337 10.1145/321941.321951 10.1177/0361198118823500 10.1061/(ASCE)EM.1943-7889.0001066 10.1080/10298436.2021.1883016 10.1111/mice.13014 10.1016/j.conbuildmat.2010.04.040 10.1016/j.conbuildmat.2017.07.034 10.1061/(ASCE)0733-9399(2007)133:7(816) 10.1139/L07-083 10.1093/biomet/57.1.97 10.1080/10298430500150981 10.1016/j.ymssp.2021.108471 10.1111/mice.12624 10.1111/mice.13010 10.1080/17415977.2016.1191073 10.1002/9780470824566 10.3390/app13021192 10.1214/aoap/1034625254 10.1016/j.conbuildmat.2019.117792 10.23919/USNC/URSI49741.2020.9321602 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1111/mice.13123 |
| DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 1927 |
| ExternalDocumentID | 10_1111_mice_13123 MICE13123 |
| Genre | article |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 24P 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABFSI ABJNI ACAHQ ACCZN ACGFS ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBS EDO EMK EST ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K RX1 SUPJJ TN5 TUS UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 ZZTAW ~IA ~WT 31~ AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AGQPQ AHEFC AI. AIQQE ASPBG AVWKF AZFZN BDRZF CAG CITATION COF CWDTD E.L EJD FEDTE HF~ HVGLF LW6 O8X PALCI RJQFR SAMSI VH1 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3373-ab8798921b68c0295ed39a198c57be509c507d61d76c192da7e6ffe7dba7b6d03 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001102736100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1093-9687 |
| IngestDate | Fri Jul 25 06:46:40 EDT 2025 Tue Nov 18 21:22:59 EST 2025 Sat Nov 29 05:42:10 EST 2025 Sun Sep 21 06:15:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3373-ab8798921b68c0295ed39a198c57be509c507d61d76c192da7e6ffe7dba7b6d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13123 |
| PQID | 3065765002 |
| PQPubID | 2045171 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3065765002 crossref_primary_10_1111_mice_13123 crossref_citationtrail_10_1111_mice_13123 wiley_primary_10_1111_mice_13123_MICE13123 |
| PublicationCentury | 2000 |
| PublicationDate | 1 July 2024 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 1 July 2024 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2004; 287 2018; 144 2022; 330 2023; 13 2021; 23 1976; 23 2012 2017; 25 2010 2015; 289 2023; 38 2006; 37 2019; 14 2009 1997 2006; 132 2002; 3 2008; 35 2005 2020; 35 2017; 154 2011; 38 2019; 2673 2016; 142 1997; 7 1999 1970; 57 2021; 36 2021; 13 2022; 167 2013; 15 2010; 24 1995; 1473 2007; 2005 2021 2020 2007; 133 2023; 275 2019 2018 2022; 37 2005; 6 2020; 235 2014 2012; 27 2022; 38 e_1_2_7_5_1 Jensen H. (e_1_2_7_27_1) 2021 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 Ceylan H. (e_1_2_7_10_1) 2004; 287 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_35_1 Meier R. W. (e_1_2_7_41_1) 1995; 1473 e_1_2_7_37_1 e_1_2_7_39_1 Wu S. (e_1_2_7_52_1) 2018 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_42_1 Alland K. D. (e_1_2_7_3_1) 2018 e_1_2_7_12_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_29_1 Chowdhury T. (e_1_2_7_14_1) 1999 Parvini M. (e_1_2_7_43_1) 1997 Pellinen T. K. (e_1_2_7_44_1) 2012 e_1_2_7_51_1 Wang Y. (e_1_2_7_50_1) 2022 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Kim S. S. (e_1_2_7_30_1) 2019 Gopalakrishnan K. (e_1_2_7_21_1) 2014 Li B.‐L. (e_1_2_7_34_1) 2022; 38 |
| References_xml | – year: 2005 article-title: Rapid pavement backcalculation technique for evaluating flexible pavement systems – year: 2009 – volume: 57 start-page: 97 year: 1970 end-page: 109 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika – volume: 1473 start-page: 72 year: 1995 end-page: 81 article-title: Backcalculation of flexible pavement moduli from dynamic deflection basins using artificial neural networks publication-title: Transportation Research Record – volume: 133 start-page: 816 year: 2007 end-page: 832 article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging publication-title: Journal of Engineering Mechanics – volume: 23 start-page: 317 year: 1976 end-page: 327 article-title: Exact and approximate algorithms for scheduling nonidentical processors publication-title: Journal of the ACM – volume: 38 start-page: 2242 year: 2022 end-page: 2256 article-title: A grid‐based classification and box‐based detection fusion model for asphalt pavement crack publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 167 year: 2022 article-title: An efficient and robust sampler for Bayesian inference: Transitional ensemble Markov chain Monte Carlo publication-title: Mechanical Systems and Signal Processing – volume: 14 start-page: 1925 year: 2019 end-page: 2947 article-title: Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method publication-title: Acta Geotechnica – volume: 287 year: 2004 article-title: Use of artificial neural networks for backcalculation of pavement layer moduli publication-title: 2004 FWD Users Group Meeting – volume: 38 start-page: 2300 year: 2023 end-page: 2316 article-title: Pixel‐level thin crack detection on road surface using convolutional neural network for severely imbalanced data publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2021 – volume: 154 start-page: 1164 year: 2017 end-page: 1172 article-title: Evaluation of a highway pavement using non‐destructive tests: Falling weight deflectometer and ground penetrating radar publication-title: Construction and Building Materials – volume: 13 start-page: 8831 year: 2021 article-title: A machine learning approach to determine airport asphalt concrete layer moduli using heavy weight deflectometer data publication-title: Sustainability – year: 2018 – year: 2014 – start-page: 373, year: 2021 article-title: A general two‐phase Markov chain Monte Carlo approach for constrained design optimization: Application to stochastic structural optimization publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 27 start-page: 594 year: 2012 end-page: 607 article-title: A spatial‐Bayesian technique for imputing pavement network repair data publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 132 start-page: 76 year: 2006 end-page: 85 article-title: Determination of required falling weight deflectometer testing frequency for pavement structural evaluation at the network level publication-title: Journal of Transportation Engineering – volume: 144 issue: 2 year: 2018 article-title: Prediction of asphalt pavement responses from FWD surface deflections using soft computing methods publication-title: Journal of Transportation Engineering, Part B: Pavements – start-page: 4, year: 2018 – volume: 235 year: 2020 article-title: Determination of effective frequency range excited by falling weight deflectometer loading history for asphalt pavement publication-title: Construction and Building Materials – volume: 36 start-page: 1435 year: 2021 end-page: 1452 article-title: Morphological simplification of asphaltic mixture components for micromechanical simulation using finite element method publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 1997 – volume: 35 start-page: 57 year: 2008 end-page: 66 article-title: Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network publication-title: Canadian Journal of Civil Engineering – year: 2019 – volume: 142 issue: 5 year: 2016 article-title: Transitional Markov chain Monte Carlo: Observations and improvements publication-title: Journal of Engineering Mechanics – volume: 7 start-page: 110 year: 1997 end-page: 120 article-title: Weak convergence and optimal scaling of random walk Metropolis algorithms publication-title: The Annals of Applied Probability – volume: 275 year: 2023 article-title: A tandem trust‐region optimization approach for ill‐posed falling weight deflectometer backcalculation publication-title: Computers and Structures – volume: 38 start-page: 210 issue: 2 year: 2011 end-page: 220 article-title: Capturing variability in pavement performance models from sufficient time‐series predictors: A case study of the New Brunswick road network publication-title: Canadian Journal of Civil Engineering – volume: 24 start-page: 2177 year: 2010 end-page: 2187 article-title: Co‐variance matrix adaptation evolution strategy for pavement backcalculation publication-title: Construction and Building Materials – volume: 38 start-page: 2339 year: 2023 end-page: 2354 article-title: Efficient data dimensionality reduction method for improving road crack classification algorithms publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 37 start-page: 421 year: 2006 end-page: 431 article-title: Advances in backcalculating the mechanical properties of flexible pavements publication-title: Advances in Engineering Software – volume: 38 start-page: 2225 year: 2023 end-page: 2241 article-title: Regeneration of pavement surface textures using m‐sigmoid‐normalized generative adversarial networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 35 start-page: 1246 year: 2020 end-page: 1260 article-title: Asphalt pavement modulus backcalculation using surface deflections under moving loads publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 83 year: 2012 end-page: 101 article-title: Asphalt mix master curve construction using sigmoidal fitting function with non‐linear least squares optimization publication-title: Recent Advances in Materials Characterization and Modeling of Pavement Systems – year: 2010 – volume: 2673 start-page: 439 year: 2019 end-page: 448 article-title: Visco‐elastic back‐calculation of traffic speed deflectometer measurements publication-title: Journal of the Transportation Research Board – volume: 23 start-page: 3099 year: 2021 end-page: 3112 article-title: Application of a hybrid neural network structure for FWD backcalculation based on LTPP database publication-title: International Journal of Pavement Engineering – volume: 15 start-page: 542 year: 2013 end-page: 557 article-title: Viscowave—A new solution for viscoelastic wave propagation of layered structures subjected to an impact load publication-title: International Journal of Pavement Engineering – volume: 3 start-page: 185 year: 2002 end-page: 195 article-title: Bayesian regression methodology for project prioritization publication-title: International Journal of Pavement Engineering – volume: 6 start-page: 171 issue: 3 year: 2005 end-page: 182 article-title: Backcalculation of full‐depth asphalt pavement layer moduli considering nonlinear stress‐dependent subgrade behavior publication-title: International Journal of Pavement Engineering – volume: 25 start-page: 674 issue: 5 year: 2017 end-page: 693 article-title: Multi‐level backcalculation algorithm for robust determination of pavement layers parameters publication-title: Inverse Problems in Science and Engineering – volume: 330 year: 2022 – volume: 289 start-page: 409 year: 2015 end-page: 428 article-title: X‐TMCMC: Adaptive kriging for Bayesian inverse modeling publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2020 – volume: 2005 start-page: 86 year: 2007 end-page: 94 article-title: Advanced approaches to characterizing nonlinear pavement system responses publication-title: Transportation Research Record – volume: 13 start-page: 1192 year: 2023 article-title: An inversion algorithm for the dynamic modulus of concrete pavement structures based on a convolutional neural network publication-title: Applied Sciences – volume: 2673 start-page: 317 year: 2019 end-page: 331 article-title: Who says back‐calculation is only about layer moduli? publication-title: Transportation Research Record – volume: 37 start-page: 1639 year: 2022 end-page: 1653 article-title: Computational generation of multiphase asphalt nanostructures using random fields publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 1999 – start-page: 4, volume-title: Bayesian annealed sequential importance sampling: An unbiased version of transitional Markov chain Monte Carlo year: 2018 ident: e_1_2_7_52_1 – start-page: 83 year: 2012 ident: e_1_2_7_44_1 article-title: Asphalt mix master curve construction using sigmoidal fitting function with non‐linear least squares optimization publication-title: Recent Advances in Materials Characterization and Modeling of Pavement Systems – ident: e_1_2_7_46_1 doi: 10.1016/j.compstruc.2022.106935 – ident: e_1_2_7_6_1 doi: 10.3390/su13168831 – ident: e_1_2_7_29_1 doi: 10.1111/mice.12696 – ident: e_1_2_7_28_1 doi: 10.1007/s11440-019-00847-1 – ident: e_1_2_7_2_1 doi: 10.1111/mice.12898 – ident: e_1_2_7_16_1 doi: 10.1007/978-1-84882-310-5 – ident: e_1_2_7_20_1 doi: 10.1016/j.advengsoft.2005.10.001 – ident: e_1_2_7_32_1 doi: 10.1080/10298436.2013.782401 – ident: e_1_2_7_47_1 doi: 10.1111/j.1467-8667.2012.00762.x – ident: e_1_2_7_9_1 doi: 10.3141/2005-10 – ident: e_1_2_7_4_1 doi: 10.1139/L10-127 – ident: e_1_2_7_5_1 doi: 10.1016/j.cma.2015.01.015 – ident: e_1_2_7_38_1 doi: 10.3850/978-981-14-8593-0_4374-cd – volume: 287 year: 2004 ident: e_1_2_7_10_1 article-title: Use of artificial neural networks for backcalculation of pavement layer moduli publication-title: 2004 FWD Users Group Meeting – start-page: 373, year: 2021 ident: e_1_2_7_27_1 article-title: A general two‐phase Markov chain Monte Carlo approach for constrained design optimization: Application to stochastic structural optimization publication-title: Computer Methods in Applied Mechanics and Engineering – ident: e_1_2_7_37_1 doi: 10.1111/mice.12987 – ident: e_1_2_7_35_1 doi: 10.1061/JPEODX.0000044 – ident: e_1_2_7_26_1 doi: 10.1080/1029843021000067836 – ident: e_1_2_7_15_1 doi: 10.1061/(ASCE)0733-947X(2006)132:1(76) – ident: e_1_2_7_33_1 doi: 10.1177/0361198118821337 – ident: e_1_2_7_25_1 doi: 10.1145/321941.321951 – volume-title: Pavement deflection analysis using stochastic finite element method [Unpublished doctoral dissertation] year: 1997 ident: e_1_2_7_43_1 – ident: e_1_2_7_42_1 doi: 10.1177/0361198118823500 – ident: e_1_2_7_8_1 doi: 10.1061/(ASCE)EM.1943-7889.0001066 – volume-title: Analyzing falling deflectectometer data on curled and warped concrete slabs [Unpublished doctoral dissertation] year: 2018 ident: e_1_2_7_3_1 – ident: e_1_2_7_23_1 doi: 10.1080/10298436.2021.1883016 – ident: e_1_2_7_45_1 doi: 10.1111/mice.13014 – ident: e_1_2_7_22_1 doi: 10.1016/j.conbuildmat.2010.04.040 – ident: e_1_2_7_40_1 doi: 10.1016/j.conbuildmat.2017.07.034 – volume: 38 start-page: 2242 year: 2022 ident: e_1_2_7_34_1 article-title: A grid‐based classification and box‐based detection fusion model for asphalt pavement crack publication-title: Computer‐Aided Civil and Infrastructure Engineering – ident: e_1_2_7_13_1 doi: 10.1061/(ASCE)0733-9399(2007)133:7(816) – volume-title: Development of asphalt dynamic modulus master curve using falling weight deflectometer measurements year: 2014 ident: e_1_2_7_21_1 – ident: e_1_2_7_48_1 doi: 10.1139/L07-083 – start-page: 127252 volume-title: Construction and Building Materials year: 2022 ident: e_1_2_7_50_1 – volume-title: Use of falling weight deflectometer data for assessing pavement structural evaluation values year: 1999 ident: e_1_2_7_14_1 – ident: e_1_2_7_24_1 doi: 10.1093/biomet/57.1.97 – ident: e_1_2_7_11_1 doi: 10.1080/10298430500150981 – ident: e_1_2_7_39_1 doi: 10.1016/j.ymssp.2021.108471 – ident: e_1_2_7_7_1 – ident: e_1_2_7_51_1 doi: 10.1111/mice.12624 – volume-title: Development of MEPDG input database for asphalt mixtures year: 2019 ident: e_1_2_7_30_1 – ident: e_1_2_7_49_1 doi: 10.1111/mice.13010 – ident: e_1_2_7_18_1 doi: 10.1080/17415977.2016.1191073 – volume: 1473 start-page: 72 year: 1995 ident: e_1_2_7_41_1 article-title: Backcalculation of flexible pavement moduli from dynamic deflection basins using artificial neural networks publication-title: Transportation Research Record – ident: e_1_2_7_53_1 doi: 10.1002/9780470824566 – ident: e_1_2_7_12_1 doi: 10.3390/app13021192 – ident: e_1_2_7_19_1 doi: 10.1214/aoap/1034625254 – ident: e_1_2_7_17_1 doi: 10.1016/j.conbuildmat.2019.117792 – ident: e_1_2_7_31_1 – ident: e_1_2_7_36_1 doi: 10.23919/USNC/URSI49741.2020.9321602 |
| SSID | ssj0000443 |
| Score | 2.437901 |
| Snippet | This paper presents a novel Bayesian method for backcalculation of pavement dynamic modulus, stiffness, thickness, and damping using falling weight... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1911 |
| SubjectTerms | Algorithms Bayesian analysis Computation Confidence intervals Damping Error analysis Markov chains Microprocessors Pavements Uncertainty |
| Title | Bayesian backcalculation of pavement properties using parallel transitional Markov chain Monte Carlo |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13123 https://www.proquest.com/docview/3065765002 |
| Volume | 39 |
| WOSCitedRecordID | wos001102736100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60etCD9YnVKgt6UYgk2U02C158FQ9aRBS8hX1FiyEtbS34791NNm0FEcRbWCYh7OzsfDPMfANwjP1QhT5RXpZI7hGsQ48xKjzBGY5ULJQSohw2Qbvd5OWFPSzAed0LU_FDTBNu1jLK-9oaOBejOSO309rPAmxu3kVYCgJM7ZkOycPsHiauvJ5hj8UJdeSkto5n9u53dzTDmPNItXQ1neb_fnId1hzERBfVmdiABV1sQtPBTeSMeWSW6okO9domrM7RE26BuuSf2jZZIsHlu1GmdLO-UD9DA14yjY_RwKbzh5aXFdki-ldk2cTzXOdobP1gr0o2ItsU1J8g-cZ7Bbq3nFjoig_z_jY8d26erm49N5XBkxhT7HGRUJawMBBxIv2QRVphxgOWyIgKbfCHNBBTxYGisTTwUXGq4yzTVAlORax8vAONol_oXUCRIjaXycMkzgghkvtRpqSBVAwTLbOoBSe1clLpKMvt5Iw8rUMXu79pub8tOJrKDiqijh-l2rWOU2eso9RETSbqioxvaMFpqc1fvpAa67gpn_b-IrwPK6GBQ1Whbxsa4-GHPoBlORn3RsPD8uAewtL1Y-f57gv2OPOP |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED66dLD2YdmylmZLO8H2soGLY8mW9bh1DS1LwhgN5M3ol9tQk4QkDfS_n86WkwzGoPTNiLMxOp3uu-PuO4DPNIxMFDIT5KmWAaM2CoTgKlBS0NgkyhilymETfDhMx2Pxy9fmYC9MxQ-xSbihZZT3NRo4JqR3rBzHtZ93qbt6X8A-c-cobsD-j9-9UX97FTNfYS9oIJKUe35SLOXZvv23R9rCzF2wWnqbXvOZ__kGXnuYSb5V5-It7NlpC5oechJv0Eu3VE91qNdacLhDUfgOzHf5aLHRkiip751CtZ_3RWY5mcuSbXxF5pjSXyA3K8FC-luCjOJFYQuyQl84qRKOBBuDZmui7-RkSgbIi0Uu5KKYHcGod3lzcRX4yQyBppTTQKqUi1REXZWkOoxEbA0VsitSHXNlHQbRDmaapGt4oh2ENJLbJM8tN0pylZiQHkNjOpvaEyCxYZjPlFGa5IwxLcM4N9rBKkGZ1Xnchi-1djLtactxekaR1eEL7m9W7m8bPm1k5xVZxz-lOrWSM2-wy8xFTi7yip1_aMPXUp3_-ULmLOSyfHr_FOGP8OrqZtDP-tfDnx_gIHLwqCr87UBjtXiwp_BSr1eT5eLMn-M_Nkj3bA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEB_UE9GHq5_Y09MFfVGIpNlNNvvoqUVRSx8UfAv7FS2GtrRV8L-_nWTT9uAQxLewTELY2Zn57TDzG4BjGkYmCpkJ8lTLgFEbBUJwFSgpaGwSZYxS5bAJ3umkT0-i62tzsBem4oeYJtzQMkp_jQZuhyafs3Ic137Wos71LsIPFjsni8TOrDtzxMzX1wsaiCTlnp0UC3lm7_4bj2Ygcx6qlrGm3fjmX67DTw8yyXl1KjZgwfY3oeEBJ_HmPHZL9UyHem0T1uYICrfA_JEfFtssiZL61alT-2lfZJCToSy5xidkiAn9ETKzEiyjfybIJ14UtiATjIS9Kt1IsC1o8E70i-z1yT2yYpELOSoG2_DYvnq4uA78XIZAU8ppIFXKRSqilkpSHUYitoYK2RKpjrmyDoFoBzJN0jI80Q5AGsltkueWGyW5SkxId2CpP-jbXSCxYZjNlFGa5IwxLcM4N9qBKkGZ1XnchJNaO5n2pOU4O6PI6ssL7m9W7m8Tjqayw4qq479S-7WSM2-u48zdm9y9K3bRoQmnpTo_-ULm7OOqfPr1FeFDWOletrO7m87tHqxGDhtVVb_7sDQZvdnfsKzfJ73x6KA8xH8Ba2b1VQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+backcalculation+of+pavement+properties+using+parallel+transitional+Markov+chain+Monte+Carlo&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Coletti%2C+Keaton&rft.au=Romeo%2C+Ryan+C.&rft.au=Davis%2C+R.+Benjamin&rft.date=2024-07-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=13&rft.spage=1911&rft.epage=1927&rft_id=info:doi/10.1111%2Fmice.13123&rft.externalDBID=10.1111%252Fmice.13123&rft.externalDocID=MICE13123 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |