Maximum independent set for intervals by divide and conquer with pruning
Suppose a given set of n intervals contains a maximum independent set of k disjoint intervals. This brief note demonstrates that “divide and conquer with pruning” produces an easy, output‐sensitive O(n log k)‐time algorithm to compute such a maximum independent set. © 2006 Wiley Periodicals, Inc. NE...
Uložené v:
| Vydané v: | Networks Ročník 49; číslo 2; s. 158 - 159 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.03.2007
John Wiley & Sons |
| Predmet: | |
| ISSN: | 0028-3045, 1097-0037 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Suppose a given set of n intervals contains a maximum independent set of k disjoint intervals. This brief note demonstrates that “divide and conquer with pruning” produces an easy, output‐sensitive O(n log k)‐time algorithm to compute such a maximum independent set. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 49(2), 158–159 2007 |
|---|---|
| Bibliografia: | ArticleID:NET20150 ark:/67375/WNG-RC6GR6Z7-W istex:144454F97E89989242E997B60BD48D785E09BEE4 NGA/Darpa - No. HM1582-05-2-0003 NSF - No. 0086013; No. 0429901 |
| ISSN: | 0028-3045 1097-0037 |
| DOI: | 10.1002/net.20150 |