Maximum independent set for intervals by divide and conquer with pruning

Suppose a given set of n intervals contains a maximum independent set of k disjoint intervals. This brief note demonstrates that “divide and conquer with pruning” produces an easy, output‐sensitive O(n log k)‐time algorithm to compute such a maximum independent set. © 2006 Wiley Periodicals, Inc. NE...

Full description

Saved in:
Bibliographic Details
Published in:Networks Vol. 49; no. 2; pp. 158 - 159
Main Author: Snoeyink, Jack
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2007
John Wiley & Sons
Subjects:
ISSN:0028-3045, 1097-0037
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Suppose a given set of n intervals contains a maximum independent set of k disjoint intervals. This brief note demonstrates that “divide and conquer with pruning” produces an easy, output‐sensitive O(n log k)‐time algorithm to compute such a maximum independent set. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 49(2), 158–159 2007
Bibliography:ArticleID:NET20150
ark:/67375/WNG-RC6GR6Z7-W
istex:144454F97E89989242E997B60BD48D785E09BEE4
NGA/Darpa - No. HM1582-05-2-0003
NSF - No. 0086013; No. 0429901
ISSN:0028-3045
1097-0037
DOI:10.1002/net.20150