The Krein method and the globally convergent method for experimental data

Comparison of numerical performances of two methods for coefficient inverse problems is described. The first one is the classical Krein integral equation method, and the second one is the recently developed approximately globally convergent numerical method. This comparison is performed for both com...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied numerical mathematics Ročník 74; s. 111 - 127
Hlavní autoři: Karchevsky, Andrey L., Klibanov, Michael V., Nguyen, Lam, Pantong, Natee, Sullivan, Anders
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2013
Témata:
ISSN:0168-9274, 1873-5460
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Comparison of numerical performances of two methods for coefficient inverse problems is described. The first one is the classical Krein integral equation method, and the second one is the recently developed approximately globally convergent numerical method. This comparison is performed for both computationally simulated and experimental data.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-9274
1873-5460
DOI:10.1016/j.apnum.2013.09.003