The Krein method and the globally convergent method for experimental data

Comparison of numerical performances of two methods for coefficient inverse problems is described. The first one is the classical Krein integral equation method, and the second one is the recently developed approximately globally convergent numerical method. This comparison is performed for both com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics Jg. 74; S. 111 - 127
Hauptverfasser: Karchevsky, Andrey L., Klibanov, Michael V., Nguyen, Lam, Pantong, Natee, Sullivan, Anders
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2013
Schlagworte:
ISSN:0168-9274, 1873-5460
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comparison of numerical performances of two methods for coefficient inverse problems is described. The first one is the classical Krein integral equation method, and the second one is the recently developed approximately globally convergent numerical method. This comparison is performed for both computationally simulated and experimental data.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-9274
1873-5460
DOI:10.1016/j.apnum.2013.09.003