Suboptimal Kalman filtering for linear systems with Gaussian-sum type of noise

This paper develops several suboptimal filtering algorithms for discrete-time linear systems that have state and/or measurement noise of the Gaussian-sum type. These new computational schemes are modifications and generalizations of the well-known algorithms of Sorenson and Alspach and of Masreliez....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical and computer modelling Ročník 29; číslo 3; s. 101 - 125
Hlavní autoři: Wu, H., Chen, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.02.1999
Elsevier Science
Témata:
ISSN:0895-7177, 1872-9479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper develops several suboptimal filtering algorithms for discrete-time linear systems that have state and/or measurement noise of the Gaussian-sum type. These new computational schemes are modifications and generalizations of the well-known algorithms of Sorenson and Alspach and of Masreliez. Under the common minimum mean square estimation criterion, these new schemes are derived as recursive computational algorithms. Monte Carlo simulations have shown that these new filtering algorithms significantly improve the computational efficiency and/or filtering performance of the existing algorithms.
ISSN:0895-7177
1872-9479
DOI:10.1016/S0895-7177(99)00034-5