Suboptimal Kalman filtering for linear systems with Gaussian-sum type of noise
This paper develops several suboptimal filtering algorithms for discrete-time linear systems that have state and/or measurement noise of the Gaussian-sum type. These new computational schemes are modifications and generalizations of the well-known algorithms of Sorenson and Alspach and of Masreliez....
Uložené v:
| Vydané v: | Mathematical and computer modelling Ročník 29; číslo 3; s. 101 - 125 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.02.1999
Elsevier Science |
| Predmet: | |
| ISSN: | 0895-7177, 1872-9479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper develops several suboptimal filtering algorithms for discrete-time linear systems that have state and/or measurement noise of the Gaussian-sum type. These new computational schemes are modifications and generalizations of the well-known algorithms of Sorenson and Alspach and of Masreliez. Under the common minimum mean square estimation criterion, these new schemes are derived as recursive computational algorithms. Monte Carlo simulations have shown that these new filtering algorithms significantly improve the computational efficiency and/or filtering performance of the existing algorithms. |
|---|---|
| ISSN: | 0895-7177 1872-9479 |
| DOI: | 10.1016/S0895-7177(99)00034-5 |