Federated Learning Over Wireless Device-to-Device Networks: Algorithms and Convergence Analysis

The proliferation of Internet-of-Things (IoT) devices and cloud-computing applications over siloed data centers is motivating renewed interest in the collaborative training of a shared model by multiple individual clients via federated learning (FL). To improve the communication efficiency of FL imp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal on selected areas in communications Ročník 39; číslo 12; s. 3723 - 3741
Hlavní autoři: Xing, Hong, Simeone, Osvaldo, Bi, Suzhi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0733-8716, 1558-0008
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The proliferation of Internet-of-Things (IoT) devices and cloud-computing applications over siloed data centers is motivating renewed interest in the collaborative training of a shared model by multiple individual clients via federated learning (FL). To improve the communication efficiency of FL implementations in wireless systems, recent works have proposed compression and dimension reduction mechanisms, along with digital and analog transmission schemes that account for channel noise, fading, and interference. The prior art has mainly focused on star topologies consisting of distributed clients and a central server. In contrast, this paper studies FL over wireless device-to-device (D2D) networks by providing theoretical insights into the performance of digital and analog implementations of decentralized stochastic gradient descent (DSGD). First, we introduce generic digital and analog wireless implementations of communication-efficient DSGD algorithms, leveraging random linear coding (RLC) for compression and over-the-air computation (AirComp) for simultaneous analog transmissions. Next, under the assumptions of convexity and connectivity, we provide convergence bounds for both implementations. The results demonstrate the dependence of the optimality gap on the connectivity and on the signal-to-noise ratio (SNR) levels in the network. The analysis is corroborated by experiments on an image-classification task.
AbstractList The proliferation of Internet-of-Things (IoT) devices and cloud-computing applications over siloed data centers is motivating renewed interest in the collaborative training of a shared model by multiple individual clients via federated learning (FL). To improve the communication efficiency of FL implementations in wireless systems, recent works have proposed compression and dimension reduction mechanisms, along with digital and analog transmission schemes that account for channel noise, fading, and interference. The prior art has mainly focused on star topologies consisting of distributed clients and a central server. In contrast, this paper studies FL over wireless device-to-device (D2D) networks by providing theoretical insights into the performance of digital and analog implementations of decentralized stochastic gradient descent (DSGD). First, we introduce generic digital and analog wireless implementations of communication-efficient DSGD algorithms, leveraging random linear coding (RLC) for compression and over-the-air computation (AirComp) for simultaneous analog transmissions. Next, under the assumptions of convexity and connectivity, we provide convergence bounds for both implementations. The results demonstrate the dependence of the optimality gap on the connectivity and on the signal-to-noise ratio (SNR) levels in the network. The analysis is corroborated by experiments on an image-classification task.
Author Xing, Hong
Simeone, Osvaldo
Bi, Suzhi
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0001-5206-1225
  surname: Xing
  fullname: Xing, Hong
  email: hong.xing@szu.edu.cn
  organization: College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Osvaldo
  orcidid: 0000-0001-9898-3209
  surname: Simeone
  fullname: Simeone, Osvaldo
  email: osvaldo.simeone@kcl.ac.uk
  organization: Department of Engineering, King’s Communications, Learning & Information Processing (KCLIP) Lab, King's College London, London, U.K
– sequence: 3
  givenname: Suzhi
  orcidid: 0000-0001-6212-690X
  surname: Bi
  fullname: Bi, Suzhi
  email: bsz@szu.edu.cn
  organization: College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9kE1PwzAMhiM0JDbgByAulTh32G36xW0ajA9NcADEMcoadwS6ZCQZaP-eTkUcOCAf7MP72NYzYgNjDTF2gjBGhOr87nEyHSeQ4DhFLDnAHhtilpUxAJQDNoQiTeOywPyAjbx_A0DOy2TIxIwUORlIRXOSzmizjB4-yUUv2lFL3keX9KlrioON-ym6p_Bl3bu_iCbt0jodXlc-kkZFU2s6ckmmC02MbLde-yO238jW0_FPP2TPs6un6U08f7i-nU7mcZ2meYgbSOpcEfEmqxdccpBZJlEVC2gQOEeQdYmKsK4WOSQl5YqngGWhpKwUpyY9ZGf93rWzHxvyQbzZjeue8CLJqiqBKs-hS2Gfqp313lEj1k6vpNsKBLHzKHYexc6j-PHYMcUfptZBBm1NcFK3_5KnPamJ6PdSleVp0tU3EziChQ
CODEN ISACEM
CitedBy_id crossref_primary_10_1016_j_comcom_2024_06_001
crossref_primary_10_1109_TCOMM_2024_3435072
crossref_primary_10_1002_spe_3399
crossref_primary_10_1109_TSP_2024_3358615
crossref_primary_10_1109_TGCN_2022_3186439
crossref_primary_10_1109_TMC_2024_3507381
crossref_primary_10_1109_TMC_2024_3364673
crossref_primary_10_1109_JSAC_2021_3118346
crossref_primary_10_1109_JSTSP_2022_3223498
crossref_primary_10_1109_TWC_2022_3185074
crossref_primary_10_1109_TVT_2023_3234550
crossref_primary_10_1109_TSP_2024_3368751
crossref_primary_10_1109_TWC_2024_3425732
crossref_primary_10_1109_JSAC_2022_3223408
crossref_primary_10_1109_TC_2023_3239542
crossref_primary_10_1109_TMC_2024_3509852
crossref_primary_10_1109_TSIPN_2024_3423668
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1109_JIOT_2024_3352280
crossref_primary_10_3390_app14124989
crossref_primary_10_1109_TVT_2023_3322461
crossref_primary_10_1109_TVT_2024_3506950
crossref_primary_10_1109_TSP_2023_3284381
crossref_primary_10_1109_OJSP_2025_3557332
crossref_primary_10_1109_TWC_2022_3172147
crossref_primary_10_1109_TWC_2023_3327610
crossref_primary_10_1109_TCOMM_2024_3362143
crossref_primary_10_1109_TSP_2025_3546328
crossref_primary_10_1109_TNSM_2022_3232381
crossref_primary_10_1109_TNNLS_2025_3552406
crossref_primary_10_1109_JSEN_2025_3536518
crossref_primary_10_1109_JIOT_2025_3530265
crossref_primary_10_1016_j_compbiomed_2023_107861
crossref_primary_10_1109_JSAC_2021_3118406
crossref_primary_10_1109_JSAC_2021_3118400
crossref_primary_10_1109_TWC_2024_3479769
crossref_primary_10_1109_JSAC_2022_3223661
crossref_primary_10_1109_JIOT_2024_3407584
crossref_primary_10_1109_MNET_011_2300046
crossref_primary_10_1109_JIOT_2023_3329128
crossref_primary_10_1109_JIOT_2024_3481257
crossref_primary_10_1109_TCC_2023_3285534
crossref_primary_10_1109_TITS_2024_3361666
crossref_primary_10_1109_TWC_2024_3407822
crossref_primary_10_1109_JSTSP_2024_3374591
crossref_primary_10_1109_TWC_2023_3271854
crossref_primary_10_1109_TSP_2024_3460690
crossref_primary_10_1109_TCOMM_2024_3407208
crossref_primary_10_1109_JIOT_2024_3400512
crossref_primary_10_1109_JIOT_2025_3534898
crossref_primary_10_1109_LSP_2023_3347151
crossref_primary_10_1016_j_comcom_2024_107964
crossref_primary_10_1109_OJCOMS_2025_3574098
crossref_primary_10_1109_MWC_005_2300016
Cites_doi 10.1109/TWC.2019.2946245
10.1109/JPROC.2019.2918951
10.1109/JPROC.2018.2817461
10.1109/ISIT45174.2021.9517780
10.1109/JSAC.2021.3126060
10.1109/MSP.2020.2970170
10.1109/CDC42340.2020.9303828
10.1109/TCOMM.2021.3078783
10.1109/TWC.2020.3024629
10.1017/CBO9781139519793.016
10.1109/SPAWC48557.2020.9154309
10.1109/JSAC.2021.3118400
10.1109/TWC.2020.2974748
10.1561/9781680837896
10.1109/SPAWC48557.2020.9154332
10.1017/CBO9781139042918
10.1109/MSP.2020.2975749
10.1109/MCOM.001.1900103
10.1109/CAMAD50429.2020.9209305
10.1109/GLOBECOM42002.2020.9322286
10.1109/ICC47138.2019.9123209
10.1137/1.9781611976014.13
10.1109/PIMRC.2019.8904164
10.1109/JIOT.2020.3002925
10.1016/j.sysconle.2004.02.022
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2021.3118400
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 3741
ExternalDocumentID 10_1109_JSAC_2021_3118400
9563232
Genre orig-research
GrantInformation_xml – fundername: Key Project of Department of Education of Guangdong Province
  grantid: 2020ZDZX3050
  funderid: 10.13039/501100010226
– fundername: National Natural Science Foundation of China
  grantid: 61901279; 61871271
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2020A1515011484
  funderid: 10.13039/501100003453
– fundername: European Research Council (ERC) through the European Union’s Horizon 2020 Research and Innovation Programme
  grantid: 725731
  funderid: 10.13039/501100000781
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB1803305
  funderid: 10.13039/501100012166
– fundername: Guangdong Province Pearl River Scholar Funding Scheme 2018
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c336t-f02c6dee4f5cb4a40a55a1d7b0f104410ac81de1c9b6028e6d430187daa9d4ef3
IEDL.DBID RIE
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720517900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Mon Jun 30 10:13:50 EDT 2025
Tue Nov 18 21:38:55 EST 2025
Sat Nov 29 03:23:04 EST 2025
Wed Aug 27 02:26:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-f02c6dee4f5cb4a40a55a1d7b0f104410ac81de1c9b6028e6d430187daa9d4ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9898-3209
0000-0001-6212-690X
0000-0001-5206-1225
OpenAccessLink http://www.scopus.com/inward/record.url?scp=85117114243&partnerID=8YFLogxK
PQID 2599209660
PQPubID 85481
PageCount 19
ParticipantIDs ieee_primary_9563232
proquest_journals_2599209660
crossref_primary_10_1109_JSAC_2021_3118400
crossref_citationtrail_10_1109_JSAC_2021_3118400
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref15
vogels (ref23) 2020
ref36
ref31
nedi? (ref16) 2018; 106
ref30
ref33
wu (ref11) 2018
ref32
ref10
ref2
ref1
ref39
ref38
guha roy (ref13) 2019
research (ref14) 2017
bernstein (ref9) 2018
alistarh (ref8) 2017
xiao (ref41) 2017
sun (ref18) 2021
ref24
ref26
ref25
koloskova (ref21) 2020
ref22
abari (ref37) 2016
koloskova (ref20) 2019
stich (ref40) 2018
ref28
ref27
tang (ref19) 2018
ref29
saha (ref34) 2020
ref7
ref4
xin (ref17) 2019
ref3
ref6
ref5
basu (ref12) 2019
References_xml – year: 2017
  ident: ref8
  article-title: QSGD: Communication-efficient SGD via gradient quantization and encoding
  publication-title: Proc Adv Neural Inf Process Syst (NeurIPS)
– ident: ref24
  doi: 10.1109/TWC.2019.2946245
– year: 2020
  ident: ref23
  article-title: Practical low-rank communication compression in decentralized deep learning
  publication-title: Proc Adv Neural Inf Process Syst (NeurIPS)
– year: 2019
  ident: ref20
  article-title: Decentralized stochastic optimization and gossip algorithms with compressed communication
  publication-title: Proc Int Conf Mach Learn (ICML)
– year: 2016
  ident: ref37
  article-title: Over-the-air function computation in sensor networks
  publication-title: arXiv 1612 02307
– ident: ref6
  doi: 10.1109/JPROC.2019.2918951
– year: 2017
  ident: ref41
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: ArXiv 1708 07747
– volume: 106
  start-page: 953
  year: 2018
  ident: ref16
  article-title: Network topology and communication-computation tradeoffs in decentralized optimization
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2018.2817461
– year: 2017
  ident: ref14
  publication-title: Bringing HPC Techniques to Deep Learning
– year: 2018
  ident: ref19
  article-title: $D^{2}$ : Decentralized training over decentralized data
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref33
  doi: 10.1109/ISIT45174.2021.9517780
– ident: ref25
  doi: 10.1109/JSAC.2021.3126060
– ident: ref3
  doi: 10.1109/MSP.2020.2970170
– ident: ref22
  doi: 10.1109/CDC42340.2020.9303828
– ident: ref27
  doi: 10.1109/TCOMM.2021.3078783
– year: 2019
  ident: ref13
  article-title: BrainTorrent: A peer-to-peer environment for decentralized federated learning
  publication-title: arXiv 1905 06731
– ident: ref26
  doi: 10.1109/TWC.2020.3024629
– year: 2020
  ident: ref21
  article-title: Decentralized deep learning with arbitrary communication compression
  publication-title: Proc Int Conf Learn Represent (ICLR)
– year: 2019
  ident: ref17
  article-title: An introduction to decentralized stochastic optimization with gradient tracking
  publication-title: arXiv 1907 09648
– ident: ref35
  doi: 10.1017/CBO9781139519793.016
– ident: ref10
  doi: 10.1109/SPAWC48557.2020.9154309
– ident: ref38
  doi: 10.1109/JSAC.2021.3118400
– ident: ref15
  doi: 10.1109/TWC.2020.2974748
– ident: ref4
  doi: 10.1561/9781680837896
– year: 2020
  ident: ref34
  article-title: Decentralized optimization over noisy, rate-constrained networks: Achieving consensus by communicating differences
  publication-title: arXiv 2010 11292
– year: 2019
  ident: ref12
  article-title: Qsparse-local-SGD: Distributed SGD with quantization, sparsification and local computations
  publication-title: Proc Adv Neural Inf Process Syst (NeurIPS)
– ident: ref1
  doi: 10.1109/SPAWC48557.2020.9154332
– ident: ref2
  doi: 10.1017/CBO9781139042918
– ident: ref5
  doi: 10.1109/MSP.2020.2975749
– year: 2021
  ident: ref18
  article-title: Decentralized federated averaging
  publication-title: arXiv 2104 11375
– ident: ref7
  doi: 10.1109/MCOM.001.1900103
– ident: ref31
  doi: 10.1109/CAMAD50429.2020.9209305
– year: 2018
  ident: ref40
  article-title: Sparsified SGD with memory
  publication-title: Proc Adv Neural Inf Process Syst (NeurIPS)
– ident: ref32
  doi: 10.1109/GLOBECOM42002.2020.9322286
– ident: ref30
  doi: 10.1109/ICC47138.2019.9123209
– ident: ref36
  doi: 10.1137/1.9781611976014.13
– ident: ref28
  doi: 10.1109/PIMRC.2019.8904164
– ident: ref29
  doi: 10.1109/JIOT.2020.3002925
– year: 2018
  ident: ref9
  article-title: signSGD: Compressed optimisation for non-convex problems
  publication-title: Proc Int Conf Mach Learn (ICML)
– year: 2018
  ident: ref11
  article-title: Error compensated quantized SGD and its applications to large-scale distributed optimization
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref39
  doi: 10.1016/j.sysconle.2004.02.022
SSID ssj0014482
Score 2.657895
Snippet The proliferation of Internet-of-Things (IoT) devices and cloud-computing applications over siloed data centers is motivating renewed interest in the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3723
SubjectTerms Algorithms
Channel noise
Clients
Cloud computing
Collaborative work
Convergence
Convexity
D2D networks
Data centers
Data models
decentralized stochastic gradient descent
Device-to-device communication
distributed learning
Federated learning
Image classification
Internet of Things
Machine learning
over-the-air computation
random linear coding
Signal to noise ratio
Stochastic processes
Topology
Wireless communications
Wireless networks
Title Federated Learning Over Wireless Device-to-Device Networks: Algorithms and Convergence Analysis
URI https://ieeexplore.ieee.org/document/9563232
https://www.proquest.com/docview/2599209660
Volume 39
WOSCitedRecordID wos000720517900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBt1hf5OBJjCab3cR4K9UiHqqggrclm2S1UFtpV3-_mey2KIrgLYdkWTLJzHyZmW8AjoJJd0mRFZQn3NLUWUUNywyVMjNo0EShythsQvV6509P-m4OTma1MN77mHzmT3EYY_luZN_xqews-PIieADzMK-UrGu1ZhGDADNixEAJQREENBFMzvTZzX27E5BgwgNARUDDvtmg2FTlhyaO5qW7-r8fW4OVxo0k7Vru6zDnhxuw_IVccBPyLvJEBFfSkYZE9ZnchoNLMOF1EBQcufSoJmg1ovWI9Oqc8MkFaQ-eR-N-9fI6IWboSAdz02OZpidTGpMteOxePXSuadNOgVohZEVLlljpvE_LzBapSZnJMsOdKlgZMFnKmbHBefXc6kIGr8NLlwps2eeM0S71pdiGheFo6HeAZNpq7rQq8SlSJPq8MFIWygjteCkcawGbbnBuG65xbHkxyCPmYDpHmeQok7yRSQuOZ0veaqKNvyZvohBmE5v9b8H-VIp5cxUnecB3OmFIQrr7-6o9WMJv1zkq-7BQjd_9ASzaj6o_GR_GU_YJDq3Oug
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB0tLRL0QAvbii398IETwtSOnaTmttp2VaAEJIrUm-XYTltp2aDdtL-_HicbUYGQevPBViKPPTPPM_MG4G0w6S4p05LyhFsqnc2pYamhWZYaNGiizKvYbCIviuPLS_V9AO_7WhjvfUw-8x9wGGP5rra3-FR2FHx5ETyAJ7CeSpmwtlqrjxkEoBFjBrkQFGFAF8PkTB19_jGeBCyY8ABREdKwB1YotlX5SxdHAzPdfNyvbcGLzpEk41byL2Hg569g4w96wSHoKTJFBGfSkY5G9Yp8C0eXYMrrLKg4cuJRUdCmpu2IFG1W-PIjGc-u6sVNc_1rSczckQlmp8dCTU9WRCbb8HN6ejE5o11DBWqFyBpascRmzntZpbaURjKTpoa7vGRVQGWSM2OD--q5VWUW_A6fOSmwaZ8zRjnpK7EDa_N67l8DSZVV3Km8wsdIkajj0mRZmRuhHK-EYyNgqw3WtmMbx6YXMx1RB1MaZaJRJrqTyQje9Ut-t1Qb_5s8RCH0E7v9H8HeSoq6u4xLHRCeShjSkO7-e9UhPDu7-Hquzz8VX97Ac_xOm7GyB2vN4tbvw1N719wsFwfxxN0D-N_SAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+Over+Wireless+Device-to-Device+Networks%3A+Algorithms+and+Convergence+Analysis&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Xing%2C+Hong&rft.au=Simeone%2C+Osvaldo&rft.au=Bi%2C+Suzhi&rft.date=2021-12-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=39&rft.issue=12&rft.spage=3723&rft.epage=3741&rft_id=info:doi/10.1109%2FJSAC.2021.3118400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2021_3118400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon