Algebraic operator method for the construction of solitary solutions to nonlinear differential equations

Solutions of the KdV equation are derived by the algebraic operator method based on generalized operators of differentiation. The algebraic operator method based on the generalized operator of differentiation is exploited for the derivation of analytic solutions to the KdV equation. The structure of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in nonlinear science & numerical simulation Ročník 18; číslo 6; s. 1374 - 1389
Hlavní autoři: Navickas, Zenonas, Bikulciene, Liepa, Rahula, Maido, Ragulskis, Minvydas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2013
Témata:
ISSN:1007-5704, 1878-7274
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Solutions of the KdV equation are derived by the algebraic operator method based on generalized operators of differentiation. The algebraic operator method based on the generalized operator of differentiation is exploited for the derivation of analytic solutions to the KdV equation. The structure of solitary solutions and explicit conditions of existence of these solutions in the subspace of initial conditions are derived. It is shown that special solitary solutions exist only on a line in the parameter plane of initial and boundary conditions. This new theoretical result may lead to important findings in a variety of practical applications.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2012.10.009