An Algorithm for Severity Estimation of Plant Leaf Diseases by the Use of Colour Threshold Image Segmentation and Fuzzy Logic Inference: A Proposed Algorithm to Update a “Leaf Doctor” Application
This paper explains a proposed algorithm for severity estimation of plant leaf diseases by using maize leaf diseased samples. In the literature, a number of researchers have addressed the problem of plant leaf disease severity estimation, but a few, such as Sannakki et al., have used fuzzy logic to...
Uloženo v:
| Vydáno v: | AgriEngineering Ročník 1; číslo 2; s. 205 - 219 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.06.2019
|
| Témata: | |
| ISSN: | 2624-7402, 2624-7402 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper explains a proposed algorithm for severity estimation of plant leaf diseases by using maize leaf diseased samples. In the literature, a number of researchers have addressed the problem of plant leaf disease severity estimation, but a few, such as Sannakki et al., have used fuzzy logic to determine the severity estimations of the plant leaf diseases. The present paper aims to update the current algorithm used in the “Leaf Doctor” application that is used to estimate the severities of the plant leaf diseases by introducing the benefits of fuzzy logic decision making rules. This method will contribute to precision agriculture technology as it introduces an algorithm that may be embedded in smartphone devices and used in applications, such as a “Leaf Doctor” application. The applications designed based on the algorithm proposed in this study will help users who are inexperienced and not plant pathologists understand the level of the estimated disease severity. The use of fuzzy logic inference rules along with image segmentation determines the novelty of this approach in comparison with the available methods in the literature. |
|---|---|
| AbstractList | This paper explains a proposed algorithm for severity estimation of plant leaf diseases by using maize leaf diseased samples. In the literature, a number of researchers have addressed the problem of plant leaf disease severity estimation, but a few, such as Sannakki et al., have used fuzzy logic to determine the severity estimations of the plant leaf diseases. The present paper aims to update the current algorithm used in the “Leaf Doctor” application that is used to estimate the severities of the plant leaf diseases by introducing the benefits of fuzzy logic decision making rules. This method will contribute to precision agriculture technology as it introduces an algorithm that may be embedded in smartphone devices and used in applications, such as a “Leaf Doctor” application. The applications designed based on the algorithm proposed in this study will help users who are inexperienced and not plant pathologists understand the level of the estimated disease severity. The use of fuzzy logic inference rules along with image segmentation determines the novelty of this approach in comparison with the available methods in the literature. |
| Author | Sumbwanyambe, Mbuyu Sibiya, Malusi |
| Author_xml | – sequence: 1 givenname: Malusi orcidid: 0000-0001-5617-768X surname: Sibiya fullname: Sibiya, Malusi – sequence: 2 givenname: Mbuyu orcidid: 0000-0003-1709-0607 surname: Sumbwanyambe fullname: Sumbwanyambe, Mbuyu |
| BookMark | eNqFkcFO3DAQhi1EpVLgFao5ctnWseNkU3GJFmhXWgmksudo1plkXSV2sL2VlhMP0j5P34MnaSAcEKrU08zh_78Z_f8HdmidJcY-JvyTlAX_jK03ZFtjibyxbcIF54k6YEciE-ksT7k4fLW_Z6ch_OCcC8VTVRRH7E9poexa503c9tA4D9_p54iKe7gM0fQYjbPgGrjp0EZYETZwYQJhoACbPcQtwTrQk2LhOrfzcLv1FLauq2HZY0sjr-3JxgmEtoar3f39HlauNRqWtiFPVtMXKOHGu8EFql89FB2shxojAcLjw6_pvNPR-ceH31AOQ2f0M_mEvWuwC3T6Mo_Z-urydvFttrr-ulyUq5mWMoszKlTD56jmhailQkJUlIw7z1OBgudKEaaU1QK5lFhLjc2cNsQ3Gc1znefymJ1N3MG7ux2FWPUmaOrGdMjtQiXSPM-SLFVylGaTVHsXgqemGvwYqN9XCa-eyqv-Xd5oPH9j1GbKL3o03f_sfwHjzK4W |
| CitedBy_id | crossref_primary_10_3390_agriculture13101874 crossref_primary_10_3390_rs14020430 crossref_primary_10_3390_agronomy14112652 crossref_primary_10_1088_1757_899X_884_1_012074 crossref_primary_10_3390_mi14020248 crossref_primary_10_1007_s40031_024_01005_2 crossref_primary_10_1080_03235408_2024_2347966 crossref_primary_10_1371_journal_pone_0272002 crossref_primary_10_1109_ACCESS_2022_3215497 crossref_primary_10_1155_2022_6871085 crossref_primary_10_1186_s42483_020_00049_8 crossref_primary_10_3390_polym15051100 crossref_primary_10_3389_fpls_2021_673505 crossref_primary_10_3390_asi6010027 crossref_primary_10_7717_peerj_cs_687 crossref_primary_10_3390_agronomy12081869 crossref_primary_10_1016_j_aquaculture_2024_740547 crossref_primary_10_3390_agriengineering3040047 crossref_primary_10_3390_agriculture13010047 crossref_primary_10_1016_j_compag_2022_106718 crossref_primary_10_1088_2515_7620_ad4900 crossref_primary_10_1051_e3sconf_202448603011 crossref_primary_10_3390_agriculture15060583 crossref_primary_10_1016_j_atech_2022_100083 |
| Cites_doi | 10.1094/PDIS-03-15-0319-RE 10.1016/j.mimet.2008.03.008 10.3389/fpls.2016.01419 10.1094/PDIS-03-14-0290-RE 10.3390/bios5030537 10.1111/ppa.12252 10.1155/2016/3289801 10.3390/su10072209 10.1094/PDIS-93-6-0660 10.2737/NE-GTR-327 10.1007/s10658-013-0371-8 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.3390/agriengineering1020015 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2624-7402 |
| EndPage | 219 |
| ExternalDocumentID | 10_3390_agriengineering1020015 |
| GroupedDBID | AADQD AAFWJ AAHBH AAYXX AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ MODMG M~E OK1 7S9 L.6 |
| ID | FETCH-LOGICAL-c336t-e95f08a5892d35aeaa5e192d0742a20755ea4e6d2a033ad3caf8ebe0b6e87c773 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661680600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-7402 |
| IngestDate | Thu Oct 02 10:20:39 EDT 2025 Tue Nov 18 22:07:02 EST 2025 Thu Oct 16 04:30:36 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c336t-e95f08a5892d35aeaa5e192d0742a20755ea4e6d2a033ad3caf8ebe0b6e87c773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1709-0607 0000-0001-5617-768X |
| OpenAccessLink | https://www.mdpi.com/2624-7402/1/2/15/pdf?version=1558951154 |
| PQID | 2477616453 |
| PQPubID | 24069 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2477616453 crossref_primary_10_3390_agriengineering1020015 crossref_citationtrail_10_3390_agriengineering1020015 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | AgriEngineering |
| PublicationYear | 2019 |
| References | Fang (ref_4) 2015; 5 Mohanty (ref_2) 2016; 7 Kouadio (ref_8) 2015; 64 ref_14 Sannakki (ref_5) 2011; 2 ref_13 Sladojevic (ref_1) 2016; 2016 Wang (ref_6) 2017; 2017 Barbedo (ref_11) 2014; 98 Bock (ref_15) 2009; 93 Amara (ref_3) 2017; 4 Wijekoon (ref_10) 2008; 74 ref_17 ref_9 Sun (ref_7) 2014; 139 Pethybridge (ref_16) 2015; 99 Patil (ref_12) 2011; 3 |
| References_xml | – volume: 4 start-page: 1 year: 2017 ident: ref_3 article-title: Computer Vision and Machine Learning for Robust Phenotyping in Genome-Wide Studies publication-title: Inf. Process. Agric. – volume: 3 start-page: 297 year: 2011 ident: ref_12 article-title: Leaf Disease Severity Measurement Using Image Processing publication-title: Int. J. Eng. Technol. – volume: 99 start-page: 1310 year: 2015 ident: ref_16 article-title: Leaf Doctor: A New Portable Application for Quantifying Plant Disease Severity publication-title: Plant. Dis. doi: 10.1094/PDIS-03-15-0319-RE – volume: 74 start-page: 94 year: 2008 ident: ref_10 article-title: Quantifying Fungal Infection of Plant Leaves by Digital Image Analysis Using Scion Image Software publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2008.03.008 – volume: 7 start-page: 1419 year: 2016 ident: ref_2 article-title: Using Deep Learning for Image-Based Plant Disease Detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – volume: 98 start-page: 1709 year: 2014 ident: ref_11 article-title: An Automatic Method to Detect and Measure Leaf Disease Symptoms Using Digital Image Processing publication-title: Plant Dis. doi: 10.1094/PDIS-03-14-0290-RE – volume: 2 start-page: 1709 year: 2011 ident: ref_5 article-title: Leaf Disease Grading by Machine Vision and Fuzzy Logic publication-title: Int. J. Comp. Tech. Appl. – volume: 5 start-page: 537 year: 2015 ident: ref_4 article-title: Current and Prospective Methods for Plant Disease Detection publication-title: Biosensors doi: 10.3390/bios5030537 – volume: 64 start-page: 355 year: 2015 ident: ref_8 article-title: A Comparison between Visual Estimates and Image Analysis Measurements to Determine Septoria Leaf Blotch Severity in Winter Wheat publication-title: Plant Pathol. doi: 10.1111/ppa.12252 – volume: 2016 start-page: 1 year: 2016 ident: ref_1 article-title: Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/3289801 – volume: 2017 start-page: 1 year: 2017 ident: ref_6 article-title: Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning publication-title: Comput. Intell. Neurosci. – ident: ref_13 doi: 10.3390/su10072209 – ident: ref_14 – ident: ref_17 – volume: 93 start-page: 660 year: 2009 ident: ref_15 article-title: Automated Image Analysis of the Severity of Foliar Citrus Canker Symptoms publication-title: Plant. Dis. doi: 10.1094/PDIS-93-6-0660 – ident: ref_9 doi: 10.2737/NE-GTR-327 – volume: 139 start-page: 125 year: 2014 ident: ref_7 article-title: A Comparison of Disease Severity Measurements Using Image Analysis and Visual Estimates Using A Category Scale for Genetic Analysis of Resistance to Bacterial Spot in Tomato publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-013-0371-8 |
| SSID | ssj0002504599 |
| Score | 2.2518997 |
| Snippet | This paper explains a proposed algorithm for severity estimation of plant leaf diseases by using maize leaf diseased samples. In the literature, a number of... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 205 |
| SubjectTerms | algorithms color corn decision making disease severity foliar diseases fuzzy logic leaves mobile telephones precision agriculture Zea mays |
| Title | An Algorithm for Severity Estimation of Plant Leaf Diseases by the Use of Colour Threshold Image Segmentation and Fuzzy Logic Inference: A Proposed Algorithm to Update a “Leaf Doctor” Application |
| URI | https://www.proquest.com/docview/2477616453 |
| Volume | 1 |
| WOSCitedRecordID | wos000661680600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-7402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504599 issn: 2624-7402 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6FwgEOiF9RfqpB4hZFTbyx1-YWhVYgQVWpKeotWq_XwVJiR0lcmh5QHwSeh_foI_AEzOz6r1UE9MDFilb2Zq35PPPt7Pww9kZxr4tWF7clro46aI9RD8bc6USx6sWRFrEy-RWfP4qDA__kJDhstX6VuTCnU5Gm_tlZMP-vosYxFDalzt5A3NWkOIC_Ueh4RbHj9Z8EP0jbg-kkw03_l5kJIjzS-A5Etvfwc55VFJHaFa2ovmpMJTjplGZpuCgRUevgH6JizBftEYp7SadU7Q8zivA50pNZkbFkI5n38_PzNTX_TRTqmyKB0Ka8H1IThiWS2npJSHaP5-RnaMt2GWoxtMvIzAlCMfbOMmRVQ6csljtZJI0yipWPKAmTtbT5R9N8mdTHXbPwK6o8OQutFz7M13nT2UH5VWVQltWJjuf0O6LftQpcbxgrlXoDu05TQXfdhq0v1PV1M8J5QHGXckKlpqvXQSpGDLM2nGWwwDV7WkU54v6KZhpvnucWu-0IN6AwxE_far8glZRzTdvT6r1sYjtNtbt5qquc6iqlMDxp9IDdLzY4MLDAfMhaOn3E7pHMbJEX_Zj9HKRQ4QEQolBCFGqIQhaDgSgQNqCEKIRrQIgCQpTusBCFCqJgIApNiAJCFAxEwUAUKoi-hQGUAG0saJWBBShIuLz4bv_eQPPy4gc0QPmEHe_vjYbvO0VDkY7i3Ft1dODGXV-6fuBE3JVaSlfjDici_5B0kDy7Wva1Fzmyy7mMuJKxj0quG3raF0oI_pRtpVmqnzEQAVJhNwiDXhT3PRVJJXytUcFJP1LC8baZW4pkrIpq-9T0ZTr-Myq22W713NzWm_nrE69LiY_RNNB5n0x1li_HTl8Ir-f1Xf78xrO-YHfr7-8l21otcv2K3VGnq2S52DGeqx0D3N867OxG |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Algorithm+for+Severity+Estimation+of+Plant+Leaf+Diseases+by+the+Use+of+Colour+Threshold+Image+Segmentation+and+Fuzzy+Logic+Inference%3A+A+Proposed+Algorithm+to+Update+a+%E2%80%9CLeaf+Doctor%E2%80%9D+Application&rft.jtitle=AgriEngineering&rft.au=Sibiya%2C+Malusi&rft.au=Sumbwanyambe%2C+Mbuyu&rft.date=2019-06-01&rft.issn=2624-7402&rft.eissn=2624-7402&rft.volume=1&rft.issue=2&rft.spage=205&rft.epage=219&rft_id=info:doi/10.3390%2Fagriengineering1020015&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriengineering1020015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon |