An Algorithm for Severity Estimation of Plant Leaf Diseases by the Use of Colour Threshold Image Segmentation and Fuzzy Logic Inference: A Proposed Algorithm to Update a “Leaf Doctor” Application

This paper explains a proposed algorithm for severity estimation of plant leaf diseases by using maize leaf diseased samples. In the literature, a number of researchers have addressed the problem of plant leaf disease severity estimation, but a few, such as Sannakki et al., have used fuzzy logic to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AgriEngineering Ročník 1; číslo 2; s. 205 - 219
Hlavní autoři: Sibiya, Malusi, Sumbwanyambe, Mbuyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.06.2019
Témata:
ISSN:2624-7402, 2624-7402
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper explains a proposed algorithm for severity estimation of plant leaf diseases by using maize leaf diseased samples. In the literature, a number of researchers have addressed the problem of plant leaf disease severity estimation, but a few, such as Sannakki et al., have used fuzzy logic to determine the severity estimations of the plant leaf diseases. The present paper aims to update the current algorithm used in the “Leaf Doctor” application that is used to estimate the severities of the plant leaf diseases by introducing the benefits of fuzzy logic decision making rules. This method will contribute to precision agriculture technology as it introduces an algorithm that may be embedded in smartphone devices and used in applications, such as a “Leaf Doctor” application. The applications designed based on the algorithm proposed in this study will help users who are inexperienced and not plant pathologists understand the level of the estimated disease severity. The use of fuzzy logic inference rules along with image segmentation determines the novelty of this approach in comparison with the available methods in the literature.
AbstractList This paper explains a proposed algorithm for severity estimation of plant leaf diseases by using maize leaf diseased samples. In the literature, a number of researchers have addressed the problem of plant leaf disease severity estimation, but a few, such as Sannakki et al., have used fuzzy logic to determine the severity estimations of the plant leaf diseases. The present paper aims to update the current algorithm used in the “Leaf Doctor” application that is used to estimate the severities of the plant leaf diseases by introducing the benefits of fuzzy logic decision making rules. This method will contribute to precision agriculture technology as it introduces an algorithm that may be embedded in smartphone devices and used in applications, such as a “Leaf Doctor” application. The applications designed based on the algorithm proposed in this study will help users who are inexperienced and not plant pathologists understand the level of the estimated disease severity. The use of fuzzy logic inference rules along with image segmentation determines the novelty of this approach in comparison with the available methods in the literature.
Author Sumbwanyambe, Mbuyu
Sibiya, Malusi
Author_xml – sequence: 1
  givenname: Malusi
  orcidid: 0000-0001-5617-768X
  surname: Sibiya
  fullname: Sibiya, Malusi
– sequence: 2
  givenname: Mbuyu
  orcidid: 0000-0003-1709-0607
  surname: Sumbwanyambe
  fullname: Sumbwanyambe, Mbuyu
BookMark eNqFkcFO3DAQhi1EpVLgFao5ctnWseNkU3GJFmhXWgmksudo1plkXSV2sL2VlhMP0j5P34MnaSAcEKrU08zh_78Z_f8HdmidJcY-JvyTlAX_jK03ZFtjibyxbcIF54k6YEciE-ksT7k4fLW_Z6ch_OCcC8VTVRRH7E9poexa503c9tA4D9_p54iKe7gM0fQYjbPgGrjp0EZYETZwYQJhoACbPcQtwTrQk2LhOrfzcLv1FLauq2HZY0sjr-3JxgmEtoar3f39HlauNRqWtiFPVtMXKOHGu8EFql89FB2shxojAcLjw6_pvNPR-ceH31AOQ2f0M_mEvWuwC3T6Mo_Z-urydvFttrr-ulyUq5mWMoszKlTD56jmhailQkJUlIw7z1OBgudKEaaU1QK5lFhLjc2cNsQ3Gc1znefymJ1N3MG7ux2FWPUmaOrGdMjtQiXSPM-SLFVylGaTVHsXgqemGvwYqN9XCa-eyqv-Xd5oPH9j1GbKL3o03f_sfwHjzK4W
CitedBy_id crossref_primary_10_3390_agriculture13101874
crossref_primary_10_3390_rs14020430
crossref_primary_10_3390_agronomy14112652
crossref_primary_10_1088_1757_899X_884_1_012074
crossref_primary_10_3390_mi14020248
crossref_primary_10_1007_s40031_024_01005_2
crossref_primary_10_1080_03235408_2024_2347966
crossref_primary_10_1371_journal_pone_0272002
crossref_primary_10_1109_ACCESS_2022_3215497
crossref_primary_10_1155_2022_6871085
crossref_primary_10_1186_s42483_020_00049_8
crossref_primary_10_3390_polym15051100
crossref_primary_10_3389_fpls_2021_673505
crossref_primary_10_3390_asi6010027
crossref_primary_10_7717_peerj_cs_687
crossref_primary_10_3390_agronomy12081869
crossref_primary_10_1016_j_aquaculture_2024_740547
crossref_primary_10_3390_agriengineering3040047
crossref_primary_10_3390_agriculture13010047
crossref_primary_10_1016_j_compag_2022_106718
crossref_primary_10_1088_2515_7620_ad4900
crossref_primary_10_1051_e3sconf_202448603011
crossref_primary_10_3390_agriculture15060583
crossref_primary_10_1016_j_atech_2022_100083
Cites_doi 10.1094/PDIS-03-15-0319-RE
10.1016/j.mimet.2008.03.008
10.3389/fpls.2016.01419
10.1094/PDIS-03-14-0290-RE
10.3390/bios5030537
10.1111/ppa.12252
10.1155/2016/3289801
10.3390/su10072209
10.1094/PDIS-93-6-0660
10.2737/NE-GTR-327
10.1007/s10658-013-0371-8
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.3390/agriengineering1020015
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2624-7402
EndPage 219
ExternalDocumentID 10_3390_agriengineering1020015
GroupedDBID AADQD
AAFWJ
AAHBH
AAYXX
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
MODMG
M~E
OK1
7S9
L.6
ID FETCH-LOGICAL-c336t-e95f08a5892d35aeaa5e192d0742a20755ea4e6d2a033ad3caf8ebe0b6e87c773
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661680600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-7402
IngestDate Thu Oct 02 10:20:39 EDT 2025
Tue Nov 18 22:07:02 EST 2025
Thu Oct 16 04:30:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-e95f08a5892d35aeaa5e192d0742a20755ea4e6d2a033ad3caf8ebe0b6e87c773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1709-0607
0000-0001-5617-768X
OpenAccessLink https://www.mdpi.com/2624-7402/1/2/15/pdf?version=1558951154
PQID 2477616453
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2477616453
crossref_primary_10_3390_agriengineering1020015
crossref_citationtrail_10_3390_agriengineering1020015
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle AgriEngineering
PublicationYear 2019
References Fang (ref_4) 2015; 5
Mohanty (ref_2) 2016; 7
Kouadio (ref_8) 2015; 64
ref_14
Sannakki (ref_5) 2011; 2
ref_13
Sladojevic (ref_1) 2016; 2016
Wang (ref_6) 2017; 2017
Barbedo (ref_11) 2014; 98
Bock (ref_15) 2009; 93
Amara (ref_3) 2017; 4
Wijekoon (ref_10) 2008; 74
ref_17
ref_9
Sun (ref_7) 2014; 139
Pethybridge (ref_16) 2015; 99
Patil (ref_12) 2011; 3
References_xml – volume: 4
  start-page: 1
  year: 2017
  ident: ref_3
  article-title: Computer Vision and Machine Learning for Robust Phenotyping in Genome-Wide Studies
  publication-title: Inf. Process. Agric.
– volume: 3
  start-page: 297
  year: 2011
  ident: ref_12
  article-title: Leaf Disease Severity Measurement Using Image Processing
  publication-title: Int. J. Eng. Technol.
– volume: 99
  start-page: 1310
  year: 2015
  ident: ref_16
  article-title: Leaf Doctor: A New Portable Application for Quantifying Plant Disease Severity
  publication-title: Plant. Dis.
  doi: 10.1094/PDIS-03-15-0319-RE
– volume: 74
  start-page: 94
  year: 2008
  ident: ref_10
  article-title: Quantifying Fungal Infection of Plant Leaves by Digital Image Analysis Using Scion Image Software
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2008.03.008
– volume: 7
  start-page: 1419
  year: 2016
  ident: ref_2
  article-title: Using Deep Learning for Image-Based Plant Disease Detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– volume: 98
  start-page: 1709
  year: 2014
  ident: ref_11
  article-title: An Automatic Method to Detect and Measure Leaf Disease Symptoms Using Digital Image Processing
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-03-14-0290-RE
– volume: 2
  start-page: 1709
  year: 2011
  ident: ref_5
  article-title: Leaf Disease Grading by Machine Vision and Fuzzy Logic
  publication-title: Int. J. Comp. Tech. Appl.
– volume: 5
  start-page: 537
  year: 2015
  ident: ref_4
  article-title: Current and Prospective Methods for Plant Disease Detection
  publication-title: Biosensors
  doi: 10.3390/bios5030537
– volume: 64
  start-page: 355
  year: 2015
  ident: ref_8
  article-title: A Comparison between Visual Estimates and Image Analysis Measurements to Determine Septoria Leaf Blotch Severity in Winter Wheat
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12252
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_1
  article-title: Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/3289801
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_6
  article-title: Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning
  publication-title: Comput. Intell. Neurosci.
– ident: ref_13
  doi: 10.3390/su10072209
– ident: ref_14
– ident: ref_17
– volume: 93
  start-page: 660
  year: 2009
  ident: ref_15
  article-title: Automated Image Analysis of the Severity of Foliar Citrus Canker Symptoms
  publication-title: Plant. Dis.
  doi: 10.1094/PDIS-93-6-0660
– ident: ref_9
  doi: 10.2737/NE-GTR-327
– volume: 139
  start-page: 125
  year: 2014
  ident: ref_7
  article-title: A Comparison of Disease Severity Measurements Using Image Analysis and Visual Estimates Using A Category Scale for Genetic Analysis of Resistance to Bacterial Spot in Tomato
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-013-0371-8
SSID ssj0002504599
Score 2.2518997
Snippet This paper explains a proposed algorithm for severity estimation of plant leaf diseases by using maize leaf diseased samples. In the literature, a number of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 205
SubjectTerms algorithms
color
corn
decision making
disease severity
foliar diseases
fuzzy logic
leaves
mobile telephones
precision agriculture
Zea mays
Title An Algorithm for Severity Estimation of Plant Leaf Diseases by the Use of Colour Threshold Image Segmentation and Fuzzy Logic Inference: A Proposed Algorithm to Update a “Leaf Doctor” Application
URI https://www.proquest.com/docview/2477616453
Volume 1
WOSCitedRecordID wos000661680600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-7402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504599
  issn: 2624-7402
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6FwgEOiF9RfqpB4hZFTbyx1-YWhVYgQVWpKeotWq_XwVJiR0lcmh5QHwSeh_foI_AEzOz6r1UE9MDFilb2Zq35PPPt7Pww9kZxr4tWF7clro46aI9RD8bc6USx6sWRFrEy-RWfP4qDA__kJDhstX6VuTCnU5Gm_tlZMP-vosYxFDalzt5A3NWkOIC_Ueh4RbHj9Z8EP0jbg-kkw03_l5kJIjzS-A5Etvfwc55VFJHaFa2ovmpMJTjplGZpuCgRUevgH6JizBftEYp7SadU7Q8zivA50pNZkbFkI5n38_PzNTX_TRTqmyKB0Ka8H1IThiWS2npJSHaP5-RnaMt2GWoxtMvIzAlCMfbOMmRVQ6csljtZJI0yipWPKAmTtbT5R9N8mdTHXbPwK6o8OQutFz7M13nT2UH5VWVQltWJjuf0O6LftQpcbxgrlXoDu05TQXfdhq0v1PV1M8J5QHGXckKlpqvXQSpGDLM2nGWwwDV7WkU54v6KZhpvnucWu-0IN6AwxE_far8glZRzTdvT6r1sYjtNtbt5qquc6iqlMDxp9IDdLzY4MLDAfMhaOn3E7pHMbJEX_Zj9HKRQ4QEQolBCFGqIQhaDgSgQNqCEKIRrQIgCQpTusBCFCqJgIApNiAJCFAxEwUAUKoi-hQGUAG0saJWBBShIuLz4bv_eQPPy4gc0QPmEHe_vjYbvO0VDkY7i3Ft1dODGXV-6fuBE3JVaSlfjDici_5B0kDy7Wva1Fzmyy7mMuJKxj0quG3raF0oI_pRtpVmqnzEQAVJhNwiDXhT3PRVJJXytUcFJP1LC8baZW4pkrIpq-9T0ZTr-Myq22W713NzWm_nrE69LiY_RNNB5n0x1li_HTl8Ir-f1Xf78xrO-YHfr7-8l21otcv2K3VGnq2S52DGeqx0D3N867OxG
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Algorithm+for+Severity+Estimation+of+Plant+Leaf+Diseases+by+the+Use+of+Colour+Threshold+Image+Segmentation+and+Fuzzy+Logic+Inference%3A+A+Proposed+Algorithm+to+Update+a+%E2%80%9CLeaf+Doctor%E2%80%9D+Application&rft.jtitle=AgriEngineering&rft.au=Sibiya%2C+Malusi&rft.au=Sumbwanyambe%2C+Mbuyu&rft.date=2019-06-01&rft.issn=2624-7402&rft.eissn=2624-7402&rft.volume=1&rft.issue=2&rft.spage=205&rft.epage=219&rft_id=info:doi/10.3390%2Fagriengineering1020015&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agriengineering1020015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon