Assisted Gait Phase Estimation Through an Embedded Depth Camera Using Modified Random Forest Algorithm Classification

The paper presents a novel method for the classification of gait phases for power gait orthosis users based on machine learning. The classification uses depth images collected from a Time of Flight camera embedded in the crutches employed for the assisted gait. The machine learning algorithm foresee...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 20; číslo 6; s. 3343 - 3355
Hlavní autori: Pasinetti, Simone, Fornaser, Alberto, Lancini, Matteo, De Cecco, Mariolino, Sansoni, Giovanna
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 15.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The paper presents a novel method for the classification of gait phases for power gait orthosis users based on machine learning. The classification uses depth images collected from a Time of Flight camera embedded in the crutches employed for the assisted gait. The machine learning algorithm foresees an initial phase of data collection and processing, identifying the 3D points belonging to the foot and those belonging to the floor. From these, a feature set is computed analyzing the values of percentiles of distances of the foot from the floor, and passed to a modified version of Random Forest classifier, called Sigma-z Random Forest. The classifier considers the uncertainties associated to each feature set and provides both the classification of the gait phase (stance or swing) and an associated confidence value. In this work, we propose the use of the confidence value to improve the reliability of the gait phase classification, by applying an optimized threshold to the confidence value obtained for each new frame. The algorithm has been tested on different subjects and environments. An average classification accuracy of 87.3% has been obtained (+6.3% with respect to the standard random forest classifier), with a minor loss of unclassifiable frames. Results highlight that unclassifiable samples are usually associated to transitions between stance and swing.
AbstractList The paper presents a novel method for the classification of gait phases for power gait orthosis users based on machine learning. The classification uses depth images collected from a Time of Flight camera embedded in the crutches employed for the assisted gait. The machine learning algorithm foresees an initial phase of data collection and processing, identifying the 3D points belonging to the foot and those belonging to the floor. From these, a feature set is computed analyzing the values of percentiles of distances of the foot from the floor, and passed to a modified version of Random Forest classifier, called Sigma-z Random Forest. The classifier considers the uncertainties associated to each feature set and provides both the classification of the gait phase (stance or swing) and an associated confidence value. In this work, we propose the use of the confidence value to improve the reliability of the gait phase classification, by applying an optimized threshold to the confidence value obtained for each new frame. The algorithm has been tested on different subjects and environments. An average classification accuracy of 87.3% has been obtained (+6.3% with respect to the standard random forest classifier), with a minor loss of unclassifiable frames. Results highlight that unclassifiable samples are usually associated to transitions between stance and swing.
Author Pasinetti, Simone
Lancini, Matteo
Fornaser, Alberto
Sansoni, Giovanna
De Cecco, Mariolino
Author_xml – sequence: 1
  givenname: Simone
  orcidid: 0000-0002-5098-6395
  surname: Pasinetti
  fullname: Pasinetti, Simone
  email: simone.pasinetti@unibs.it
  organization: Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
– sequence: 2
  givenname: Alberto
  surname: Fornaser
  fullname: Fornaser, Alberto
  organization: Department of Industrial Engineering, University of Trento, Trento, Italy
– sequence: 3
  givenname: Matteo
  orcidid: 0000-0002-2301-876X
  surname: Lancini
  fullname: Lancini, Matteo
  organization: Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
– sequence: 4
  givenname: Mariolino
  surname: De Cecco
  fullname: De Cecco, Mariolino
  organization: Department of Industrial Engineering, University of Trento, Trento, Italy
– sequence: 5
  givenname: Giovanna
  surname: Sansoni
  fullname: Sansoni, Giovanna
  organization: Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
BookMark eNp9kE1PwjAcxhuDiYB-AOOliedhu25rdyQIqMGXKCTelm77j5WwFdvu4Le3vMSDB09t0uelz2-Aeq1uAaFrSkaUkvTu6WP6MgoJTUdhGvMk4WeoT-NYBJRHore_MxJEjH9eoIG1G-KVPOZ91I2tVdZBiedSOfxWSwt4ap1qpFO6xcva6G5dY9niaZNDWXrlPexcjSeyASPxyqp2jZ91qSrl395lW-oGz7QB6_B4u9ZGubrBk630RZUqDrGX6LySWwtXp3OIVrPpcvIQLF7nj5PxIigYS1wAIuUVI1IAMBJS5vfQiqQhi6GMGZOFkHlORRGTikkqeBTTJE8EkwBFlEchG6LbY-7O6K_O_yjb6M60vjLzISKlHlHkVfSoKoy21kCV7Yzfb74zSrI93WxPN9vTzU50vYf_8RTKHbY5I9X2X-fN0akA4LdJpGGYMMp-AOGnifU
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_LRA_2022_3183791
crossref_primary_10_1109_TEMC_2024_3457629
crossref_primary_10_1109_TASE_2024_3520148
crossref_primary_10_1155_2022_6328826
crossref_primary_10_1109_JSEN_2023_3255255
crossref_primary_10_12677_AIRR_2023_122012
crossref_primary_10_1109_ACCESS_2025_3544758
crossref_primary_10_1109_JSEN_2022_3170295
crossref_primary_10_1515_nleng_2025_0143
crossref_primary_10_3390_s23010538
crossref_primary_10_1109_ACCESS_2021_3104464
crossref_primary_10_3390_machines9120367
crossref_primary_10_3390_s23136213
crossref_primary_10_1186_s12984_021_00906_3
crossref_primary_10_1109_JSEN_2021_3072102
Cites_doi 10.2340/16501977-1907
10.3389/fnins.2016.00343
10.1109/ICME.2017.8019500
10.1109/TIM.2018.2889233
10.1145/2982142.2982156
10.1007/978-3-642-03778-8_12
10.1016/j.robot.2014.10.012
10.1016/j.proeng.2014.11.745
10.1088/1361-6501/aaf466
10.4108/icst.bodynets.2013.253714
10.1016/j.measurement.2015.07.040
10.1016/j.gaitpost.2015.05.001
10.1007/978-3-030-01887-0_25
10.1109/BSN.2012.26
10.1006/cviu.1999.0832
10.1109/34.709601
10.1088/1741-2560/13/3/031001
10.1109/IEMBS.2010.5627102
10.1109/ISMAR.2004.50
10.1016/j.neunet.2018.02.017
10.1142/9789814525534_0016
10.1016/j.cviu.2006.08.002
10.1109/ICDAR.1995.598994
10.1109/JSEN.2016.2579738
10.3390/s151127738
10.1007/s11517-015-1357-9
10.1109/IEMBS.2010.5627618
10.1016/j.gaitpost.2013.04.021
10.1007/s10439-013-0909-0
10.1109/CSCI.2016.0127
10.1109/ICRA.2014.6907315
10.1109/IWASI.2015.7184960
10.1186/s12984-016-0142-9
10.5194/isprsarchives-XLI-B3-459-2016
10.1016/j.ijforecast.2013.09.009
10.1109/IEMBS.2011.6091602
10.1007/978-3-319-46669-9_58
10.1023/A:1010933404324
10.1016/j.patcog.2012.02.032
10.1097/PHM.0b013e318269d9a3
10.14358/PERS.82.3.189
10.1109/WACV.2011.5711514
10.1155/2012/915053
10.1201/9781315139470
10.1016/j.jbi.2016.07.009
10.3390/s110807314
10.1145/2393216.2393277
10.1007/s00138-015-0701-2
10.1109/TNSRE.2013.2291907
10.1016/j.gaitpost.2012.07.032
10.1179/2045772313Y.0000000126
10.3390/s16101579
10.1016/j.gaitpost.2012.07.012
10.1109/ICA-SYMP.2019.8646253
10.1109/ICORR.2017.8009449
10.1109/EMBC.2012.6347554
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2019.2957667
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 3355
ExternalDocumentID 10_1109_JSEN_2019_2957667
8922631
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c336t-e897f30a8ee302135581f09235ed533ac8abb18c50f3a1874516b683aeec4b423
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520089000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:20:53 EDT 2025
Tue Nov 18 22:33:10 EST 2025
Sat Nov 29 05:42:57 EST 2025
Wed Aug 27 02:35:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-e897f30a8ee302135581f09235ed533ac8abb18c50f3a1874516b683aeec4b423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2301-876X
0000-0002-5098-6395
OpenAccessLink http://hdl.handle.net/11379/528653
PQID 2358911554
PQPubID 75733
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSEN_2019_2957667
proquest_journals_2358911554
crossref_citationtrail_10_1109_JSEN_2019_2957667
ieee_primary_8922631
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref59
ref15
ref14
ref53
ref55
ref11
ref54
ref10
mentch (ref52) 2016; 17
ref17
ref16
ref19
ref18
ho (ref12) 1995; 1
derawi (ref30) 2011
ref51
ref50
(ref60) 0
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
zhu (ref20) 2014
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref33
ref32
ref2
ref1
ref39
ref38
ho (ref57) 1998; 20
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
pauly (ref58) 2004
altuntas (ref31) 2016; 41
ref61
References_xml – ident: ref38
  doi: 10.2340/16501977-1907
– year: 0
  ident: ref60
  publication-title: Domus salutis homepage
– ident: ref1
  doi: 10.3389/fnins.2016.00343
– ident: ref49
  doi: 10.1109/ICME.2017.8019500
– ident: ref54
  doi: 10.1109/TIM.2018.2889233
– ident: ref22
  doi: 10.1145/2982142.2982156
– ident: ref32
  doi: 10.1007/978-3-642-03778-8_12
– ident: ref43
  doi: 10.1016/j.robot.2014.10.012
– ident: ref11
  doi: 10.1016/j.proeng.2014.11.745
– ident: ref13
  doi: 10.1088/1361-6501/aaf466
– ident: ref19
  doi: 10.4108/icst.bodynets.2013.253714
– ident: ref36
  doi: 10.1016/j.measurement.2015.07.040
– ident: ref35
  doi: 10.1016/j.gaitpost.2015.05.001
– ident: ref53
  doi: 10.1007/978-3-030-01887-0_25
– ident: ref41
  doi: 10.1109/BSN.2012.26
– ident: ref55
  doi: 10.1006/cviu.1999.0832
– volume: 20
  start-page: 832
  year: 1998
  ident: ref57
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– ident: ref2
  doi: 10.1088/1741-2560/13/3/031001
– ident: ref26
  doi: 10.1109/IEMBS.2010.5627102
– ident: ref28
  doi: 10.1109/ISMAR.2004.50
– ident: ref48
  doi: 10.1016/j.neunet.2018.02.017
– ident: ref40
  doi: 10.1142/9789814525534_0016
– ident: ref23
  doi: 10.1016/j.cviu.2006.08.002
– volume: 1
  start-page: 278
  year: 1995
  ident: ref12
  article-title: Random decision forests
  publication-title: Proc 3rd Int Conf Document Anal Recognition
  doi: 10.1109/ICDAR.1995.598994
– ident: ref9
  doi: 10.1109/JSEN.2016.2579738
– ident: ref44
  doi: 10.3390/s151127738
– ident: ref8
  doi: 10.1007/s11517-015-1357-9
– ident: ref21
  doi: 10.1109/IEMBS.2010.5627618
– start-page: 187
  year: 2011
  ident: ref30
  article-title: Gait recognition using time-of-flight sensor
  publication-title: Proc IEEE Int Conf Biometr Special Interest Group
– ident: ref14
  doi: 10.1016/j.gaitpost.2013.04.021
– ident: ref45
  doi: 10.1007/s10439-013-0909-0
– ident: ref37
  doi: 10.1109/CSCI.2016.0127
– ident: ref39
  doi: 10.1109/ICRA.2014.6907315
– ident: ref10
  doi: 10.1109/IWASI.2015.7184960
– ident: ref6
  doi: 10.1186/s12984-016-0142-9
– start-page: 487
  year: 2014
  ident: ref20
  article-title: Validating an iOS-based Rhythmic Auditory Cueing Evaluation (iRACE) for Parkinson's disease
  publication-title: Proc ACM Conf Multimedia
– volume: 41
  start-page: 459
  year: 2016
  ident: ref31
  article-title: Measurement and analysis of gait by using a time-of-flight camera
  publication-title: Proc Int Arch Photogram Remote Sens Spatial Inf Sci (ISPRS)
  doi: 10.5194/isprsarchives-XLI-B3-459-2016
– ident: ref59
  doi: 10.1016/j.ijforecast.2013.09.009
– ident: ref27
  doi: 10.1109/IEMBS.2011.6091602
– ident: ref4
  doi: 10.1007/978-3-319-46669-9_58
– ident: ref61
  doi: 10.1023/A:1010933404324
– ident: ref24
  doi: 10.1016/j.patcog.2012.02.032
– volume: 17
  start-page: 841
  year: 2016
  ident: ref52
  article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1097/PHM.0b013e318269d9a3
– ident: ref51
  doi: 10.14358/PERS.82.3.189
– ident: ref34
  doi: 10.1109/WACV.2011.5711514
– ident: ref50
  doi: 10.1155/2012/915053
– ident: ref56
  doi: 10.1201/9781315139470
– ident: ref33
  doi: 10.1016/j.jbi.2016.07.009
– ident: ref15
  doi: 10.3390/s110807314
– ident: ref18
  doi: 10.1145/2393216.2393277
– ident: ref29
  doi: 10.1007/s00138-015-0701-2
– ident: ref42
  doi: 10.1109/TNSRE.2013.2291907
– ident: ref16
  doi: 10.1016/j.gaitpost.2012.07.032
– ident: ref5
  doi: 10.1179/2045772313Y.0000000126
– ident: ref46
  doi: 10.3390/s16101579
– start-page: 77
  year: 2004
  ident: ref58
  article-title: Uncertainty and variability in point cloud surface data
  publication-title: Proc 1st Eurograph Conf Point-Based Graph
– ident: ref17
  doi: 10.1016/j.gaitpost.2012.07.012
– ident: ref47
  doi: 10.1109/ICA-SYMP.2019.8646253
– ident: ref7
  doi: 10.1109/ICORR.2017.8009449
– ident: ref25
  doi: 10.1109/EMBC.2012.6347554
SSID ssj0019757
Score 2.3973432
Snippet The paper presents a novel method for the classification of gait phases for power gait orthosis users based on machine learning. The classification uses depth...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3343
SubjectTerms Algorithms
Cameras
Classification
Classifiers
Data collection
Depth sensing
Floors
Foot
Gait
gait analysis
Image classification
Legged locomotion
Machine learning
measurement
Orthoses
Radio frequency
Sensors
Three-dimensional displays
Uncertainty
Title Assisted Gait Phase Estimation Through an Embedded Depth Camera Using Modified Random Forest Algorithm Classification
URI https://ieeexplore.ieee.org/document/8922631
https://www.proquest.com/docview/2358911554
Volume 20
WOSCitedRecordID wos000520089000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB48EdQH9dTDPX-Qh3sSq23TbpJH0VURXUQ92LeSpOntwm4ru92D--9vJq2r4CHcW6FJKXyZmS_JzHwAP5DhO21iFbgiN0GSpyJQMk0CZZRFxsxj53yh8J3o9-VgoB6W4GRRC4PvfPKZO6VHf5efV3ZOR2VnUiFZoKLpL0KIplZrcWOghO_qiQYcBgkXg_YGMwrV2e1Tr09JXOo0VkivvaT8WwzyoiofPLEPL1eb__djW7DR0kh23uD-FZZcuQ3r75oLbsNqq28-_LMDc0SB8MzZtR7V7GGIsYv10LqbwkX23Kj1MF2y3sQ4dEY5u3Qv9ZBdaDq1Yj6zgN1X-ahAzsoedZlXE0a6nrOanY9_VdNRPZwwL7FJyUf-s7vw86r3fHETtIILgeW8WwdOKlHwUEvnOMZ-6rweFSFSwNTlSAu1ldqYSNo0LLgmMb806pqu5No5mxgkZt9guaxKtwcsttqiuRsepzzRyIqMkBbpmokKW-hQdSB8hSCzbTdyEsUYZ35XEqqMUMsItaxFrQPHiykvTSuOzwbvEEyLgS1CHTh4xTlrjXWWUbUw-nwkVt__PWsf1mLaZlMaX3oAy_V07g5hxf6uR7PpkV-HfwEOm9qv
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED6hMonxAAOGKDDmB57QAkmcNPYjgha2lQqxTupbZDsOrUQT1KaT9u-5c0KZBJrEW6TYUaTPd_fZvrsP4BgZvlU6lJ7NM-1FWZx4UsSRJ7U0yJh5aK0rFO4ng4EYjeTtCnxb1sLgO5d8Zk_p0d3lZ6VZ0FHZmZBIFqhoejWOojCoq7WWdwYycX090YR9L-LJqLnDDHx59uNXd0BpXPI0lEiwnaj8SxRysiqvfLELML3N9_3aJ9hoiCQ7r5HfghVbbMP6P-0Ft2GtUTgf_92BBeJAiGbsSk0qdjvG6MW6aN916SIb1no9TBWsO9UW3VHGLu1jNWYXis6tmMstYDdlNsmRtbI7VWTllJGy57xi5w_35WxSjafMiWxS-pH77Gf43esOL669RnLBM5x3Ks8KmeTcV8JajtGfeq8HuY8kMLYZEkNlhNI6ECb2c65Izi8OOrojuLLWRBqp2S60irKwe8BCowwavOZhzCOFvEgnwiBh00FucuXLNvjPEKSm6UdOshgPqduX-DIl1FJCLW1Qa8PJcspj3Yzjf4N3CKblwAahNhw-45w25jpPqV4YvT5Sq_23Z32FtevhTT_tfx_8PICPIW26KakvPoRWNVvYL_DB_Kkm89mRW5NPlZrd9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assisted+Gait+Phase+Estimation+Through+an+Embedded+Depth+Camera+Using+Modified+Random+Forest+Algorithm+Classification&rft.jtitle=IEEE+sensors+journal&rft.au=Pasinetti%2C+Simone&rft.au=naser%2C+Alberto&rft.au=Lancini%2C+Matteo&rft.au=De+Cecco%2C+Mariolino&rft.date=2020-03-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=20&rft.issue=6&rft.spage=3343&rft_id=info:doi/10.1109%2FJSEN.2019.2957667&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon