Assisted Gait Phase Estimation Through an Embedded Depth Camera Using Modified Random Forest Algorithm Classification
The paper presents a novel method for the classification of gait phases for power gait orthosis users based on machine learning. The classification uses depth images collected from a Time of Flight camera embedded in the crutches employed for the assisted gait. The machine learning algorithm foresee...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 20; číslo 6; s. 3343 - 3355 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
15.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The paper presents a novel method for the classification of gait phases for power gait orthosis users based on machine learning. The classification uses depth images collected from a Time of Flight camera embedded in the crutches employed for the assisted gait. The machine learning algorithm foresees an initial phase of data collection and processing, identifying the 3D points belonging to the foot and those belonging to the floor. From these, a feature set is computed analyzing the values of percentiles of distances of the foot from the floor, and passed to a modified version of Random Forest classifier, called Sigma-z Random Forest. The classifier considers the uncertainties associated to each feature set and provides both the classification of the gait phase (stance or swing) and an associated confidence value. In this work, we propose the use of the confidence value to improve the reliability of the gait phase classification, by applying an optimized threshold to the confidence value obtained for each new frame. The algorithm has been tested on different subjects and environments. An average classification accuracy of 87.3% has been obtained (+6.3% with respect to the standard random forest classifier), with a minor loss of unclassifiable frames. Results highlight that unclassifiable samples are usually associated to transitions between stance and swing. |
|---|---|
| AbstractList | The paper presents a novel method for the classification of gait phases for power gait orthosis users based on machine learning. The classification uses depth images collected from a Time of Flight camera embedded in the crutches employed for the assisted gait. The machine learning algorithm foresees an initial phase of data collection and processing, identifying the 3D points belonging to the foot and those belonging to the floor. From these, a feature set is computed analyzing the values of percentiles of distances of the foot from the floor, and passed to a modified version of Random Forest classifier, called Sigma-z Random Forest. The classifier considers the uncertainties associated to each feature set and provides both the classification of the gait phase (stance or swing) and an associated confidence value. In this work, we propose the use of the confidence value to improve the reliability of the gait phase classification, by applying an optimized threshold to the confidence value obtained for each new frame. The algorithm has been tested on different subjects and environments. An average classification accuracy of 87.3% has been obtained (+6.3% with respect to the standard random forest classifier), with a minor loss of unclassifiable frames. Results highlight that unclassifiable samples are usually associated to transitions between stance and swing. |
| Author | Pasinetti, Simone Lancini, Matteo Fornaser, Alberto Sansoni, Giovanna De Cecco, Mariolino |
| Author_xml | – sequence: 1 givenname: Simone orcidid: 0000-0002-5098-6395 surname: Pasinetti fullname: Pasinetti, Simone email: simone.pasinetti@unibs.it organization: Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy – sequence: 2 givenname: Alberto surname: Fornaser fullname: Fornaser, Alberto organization: Department of Industrial Engineering, University of Trento, Trento, Italy – sequence: 3 givenname: Matteo orcidid: 0000-0002-2301-876X surname: Lancini fullname: Lancini, Matteo organization: Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy – sequence: 4 givenname: Mariolino surname: De Cecco fullname: De Cecco, Mariolino organization: Department of Industrial Engineering, University of Trento, Trento, Italy – sequence: 5 givenname: Giovanna surname: Sansoni fullname: Sansoni, Giovanna organization: Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy |
| BookMark | eNp9kE1PwjAcxhuDiYB-AOOliedhu25rdyQIqMGXKCTelm77j5WwFdvu4Le3vMSDB09t0uelz2-Aeq1uAaFrSkaUkvTu6WP6MgoJTUdhGvMk4WeoT-NYBJRHore_MxJEjH9eoIG1G-KVPOZ91I2tVdZBiedSOfxWSwt4ap1qpFO6xcva6G5dY9niaZNDWXrlPexcjSeyASPxyqp2jZ91qSrl395lW-oGz7QB6_B4u9ZGubrBk630RZUqDrGX6LySWwtXp3OIVrPpcvIQLF7nj5PxIigYS1wAIuUVI1IAMBJS5vfQiqQhi6GMGZOFkHlORRGTikkqeBTTJE8EkwBFlEchG6LbY-7O6K_O_yjb6M60vjLzISKlHlHkVfSoKoy21kCV7Yzfb74zSrI93WxPN9vTzU50vYf_8RTKHbY5I9X2X-fN0akA4LdJpGGYMMp-AOGnifU |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_LRA_2022_3183791 crossref_primary_10_1109_TEMC_2024_3457629 crossref_primary_10_1109_TASE_2024_3520148 crossref_primary_10_1155_2022_6328826 crossref_primary_10_1109_JSEN_2023_3255255 crossref_primary_10_12677_AIRR_2023_122012 crossref_primary_10_1109_ACCESS_2025_3544758 crossref_primary_10_1109_JSEN_2022_3170295 crossref_primary_10_1515_nleng_2025_0143 crossref_primary_10_3390_s23010538 crossref_primary_10_1109_ACCESS_2021_3104464 crossref_primary_10_3390_machines9120367 crossref_primary_10_3390_s23136213 crossref_primary_10_1186_s12984_021_00906_3 crossref_primary_10_1109_JSEN_2021_3072102 |
| Cites_doi | 10.2340/16501977-1907 10.3389/fnins.2016.00343 10.1109/ICME.2017.8019500 10.1109/TIM.2018.2889233 10.1145/2982142.2982156 10.1007/978-3-642-03778-8_12 10.1016/j.robot.2014.10.012 10.1016/j.proeng.2014.11.745 10.1088/1361-6501/aaf466 10.4108/icst.bodynets.2013.253714 10.1016/j.measurement.2015.07.040 10.1016/j.gaitpost.2015.05.001 10.1007/978-3-030-01887-0_25 10.1109/BSN.2012.26 10.1006/cviu.1999.0832 10.1109/34.709601 10.1088/1741-2560/13/3/031001 10.1109/IEMBS.2010.5627102 10.1109/ISMAR.2004.50 10.1016/j.neunet.2018.02.017 10.1142/9789814525534_0016 10.1016/j.cviu.2006.08.002 10.1109/ICDAR.1995.598994 10.1109/JSEN.2016.2579738 10.3390/s151127738 10.1007/s11517-015-1357-9 10.1109/IEMBS.2010.5627618 10.1016/j.gaitpost.2013.04.021 10.1007/s10439-013-0909-0 10.1109/CSCI.2016.0127 10.1109/ICRA.2014.6907315 10.1109/IWASI.2015.7184960 10.1186/s12984-016-0142-9 10.5194/isprsarchives-XLI-B3-459-2016 10.1016/j.ijforecast.2013.09.009 10.1109/IEMBS.2011.6091602 10.1007/978-3-319-46669-9_58 10.1023/A:1010933404324 10.1016/j.patcog.2012.02.032 10.1097/PHM.0b013e318269d9a3 10.14358/PERS.82.3.189 10.1109/WACV.2011.5711514 10.1155/2012/915053 10.1201/9781315139470 10.1016/j.jbi.2016.07.009 10.3390/s110807314 10.1145/2393216.2393277 10.1007/s00138-015-0701-2 10.1109/TNSRE.2013.2291907 10.1016/j.gaitpost.2012.07.032 10.1179/2045772313Y.0000000126 10.3390/s16101579 10.1016/j.gaitpost.2012.07.012 10.1109/ICA-SYMP.2019.8646253 10.1109/ICORR.2017.8009449 10.1109/EMBC.2012.6347554 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2019.2957667 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 3355 |
| ExternalDocumentID | 10_1109_JSEN_2019_2957667 8922631 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c336t-e897f30a8ee302135581f09235ed533ac8abb18c50f3a1874516b683aeec4b423 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520089000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:20:53 EDT 2025 Tue Nov 18 22:33:10 EST 2025 Sat Nov 29 05:42:57 EST 2025 Wed Aug 27 02:35:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-e897f30a8ee302135581f09235ed533ac8abb18c50f3a1874516b683aeec4b423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2301-876X 0000-0002-5098-6395 |
| OpenAccessLink | http://hdl.handle.net/11379/528653 |
| PQID | 2358911554 |
| PQPubID | 75733 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2019_2957667 proquest_journals_2358911554 crossref_citationtrail_10_1109_JSEN_2019_2957667 ieee_primary_8922631 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-15 |
| PublicationDateYYYYMMDD | 2020-03-15 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref59 ref15 ref14 ref53 ref55 ref11 ref54 ref10 mentch (ref52) 2016; 17 ref17 ref16 ref19 ref18 ho (ref12) 1995; 1 derawi (ref30) 2011 ref51 ref50 (ref60) 0 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 zhu (ref20) 2014 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref33 ref32 ref2 ref1 ref39 ref38 ho (ref57) 1998; 20 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 pauly (ref58) 2004 altuntas (ref31) 2016; 41 ref61 |
| References_xml | – ident: ref38 doi: 10.2340/16501977-1907 – year: 0 ident: ref60 publication-title: Domus salutis homepage – ident: ref1 doi: 10.3389/fnins.2016.00343 – ident: ref49 doi: 10.1109/ICME.2017.8019500 – ident: ref54 doi: 10.1109/TIM.2018.2889233 – ident: ref22 doi: 10.1145/2982142.2982156 – ident: ref32 doi: 10.1007/978-3-642-03778-8_12 – ident: ref43 doi: 10.1016/j.robot.2014.10.012 – ident: ref11 doi: 10.1016/j.proeng.2014.11.745 – ident: ref13 doi: 10.1088/1361-6501/aaf466 – ident: ref19 doi: 10.4108/icst.bodynets.2013.253714 – ident: ref36 doi: 10.1016/j.measurement.2015.07.040 – ident: ref35 doi: 10.1016/j.gaitpost.2015.05.001 – ident: ref53 doi: 10.1007/978-3-030-01887-0_25 – ident: ref41 doi: 10.1109/BSN.2012.26 – ident: ref55 doi: 10.1006/cviu.1999.0832 – volume: 20 start-page: 832 year: 1998 ident: ref57 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – ident: ref2 doi: 10.1088/1741-2560/13/3/031001 – ident: ref26 doi: 10.1109/IEMBS.2010.5627102 – ident: ref28 doi: 10.1109/ISMAR.2004.50 – ident: ref48 doi: 10.1016/j.neunet.2018.02.017 – ident: ref40 doi: 10.1142/9789814525534_0016 – ident: ref23 doi: 10.1016/j.cviu.2006.08.002 – volume: 1 start-page: 278 year: 1995 ident: ref12 article-title: Random decision forests publication-title: Proc 3rd Int Conf Document Anal Recognition doi: 10.1109/ICDAR.1995.598994 – ident: ref9 doi: 10.1109/JSEN.2016.2579738 – ident: ref44 doi: 10.3390/s151127738 – ident: ref8 doi: 10.1007/s11517-015-1357-9 – ident: ref21 doi: 10.1109/IEMBS.2010.5627618 – start-page: 187 year: 2011 ident: ref30 article-title: Gait recognition using time-of-flight sensor publication-title: Proc IEEE Int Conf Biometr Special Interest Group – ident: ref14 doi: 10.1016/j.gaitpost.2013.04.021 – ident: ref45 doi: 10.1007/s10439-013-0909-0 – ident: ref37 doi: 10.1109/CSCI.2016.0127 – ident: ref39 doi: 10.1109/ICRA.2014.6907315 – ident: ref10 doi: 10.1109/IWASI.2015.7184960 – ident: ref6 doi: 10.1186/s12984-016-0142-9 – start-page: 487 year: 2014 ident: ref20 article-title: Validating an iOS-based Rhythmic Auditory Cueing Evaluation (iRACE) for Parkinson's disease publication-title: Proc ACM Conf Multimedia – volume: 41 start-page: 459 year: 2016 ident: ref31 article-title: Measurement and analysis of gait by using a time-of-flight camera publication-title: Proc Int Arch Photogram Remote Sens Spatial Inf Sci (ISPRS) doi: 10.5194/isprsarchives-XLI-B3-459-2016 – ident: ref59 doi: 10.1016/j.ijforecast.2013.09.009 – ident: ref27 doi: 10.1109/IEMBS.2011.6091602 – ident: ref4 doi: 10.1007/978-3-319-46669-9_58 – ident: ref61 doi: 10.1023/A:1010933404324 – ident: ref24 doi: 10.1016/j.patcog.2012.02.032 – volume: 17 start-page: 841 year: 2016 ident: ref52 article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests publication-title: J Mach Learn Res – ident: ref3 doi: 10.1097/PHM.0b013e318269d9a3 – ident: ref51 doi: 10.14358/PERS.82.3.189 – ident: ref34 doi: 10.1109/WACV.2011.5711514 – ident: ref50 doi: 10.1155/2012/915053 – ident: ref56 doi: 10.1201/9781315139470 – ident: ref33 doi: 10.1016/j.jbi.2016.07.009 – ident: ref15 doi: 10.3390/s110807314 – ident: ref18 doi: 10.1145/2393216.2393277 – ident: ref29 doi: 10.1007/s00138-015-0701-2 – ident: ref42 doi: 10.1109/TNSRE.2013.2291907 – ident: ref16 doi: 10.1016/j.gaitpost.2012.07.032 – ident: ref5 doi: 10.1179/2045772313Y.0000000126 – ident: ref46 doi: 10.3390/s16101579 – start-page: 77 year: 2004 ident: ref58 article-title: Uncertainty and variability in point cloud surface data publication-title: Proc 1st Eurograph Conf Point-Based Graph – ident: ref17 doi: 10.1016/j.gaitpost.2012.07.012 – ident: ref47 doi: 10.1109/ICA-SYMP.2019.8646253 – ident: ref7 doi: 10.1109/ICORR.2017.8009449 – ident: ref25 doi: 10.1109/EMBC.2012.6347554 |
| SSID | ssj0019757 |
| Score | 2.3973432 |
| Snippet | The paper presents a novel method for the classification of gait phases for power gait orthosis users based on machine learning. The classification uses depth... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3343 |
| SubjectTerms | Algorithms Cameras Classification Classifiers Data collection Depth sensing Floors Foot Gait gait analysis Image classification Legged locomotion Machine learning measurement Orthoses Radio frequency Sensors Three-dimensional displays Uncertainty |
| Title | Assisted Gait Phase Estimation Through an Embedded Depth Camera Using Modified Random Forest Algorithm Classification |
| URI | https://ieeexplore.ieee.org/document/8922631 https://www.proquest.com/docview/2358911554 |
| Volume | 20 |
| WOSCitedRecordID | wos000520089000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB48EdQH9dTDPX-Qh3sSq23TbpJH0VURXUQ92LeSpOntwm4ru92D--9vJq2r4CHcW6FJKXyZmS_JzHwAP5DhO21iFbgiN0GSpyJQMk0CZZRFxsxj53yh8J3o9-VgoB6W4GRRC4PvfPKZO6VHf5efV3ZOR2VnUiFZoKLpL0KIplZrcWOghO_qiQYcBgkXg_YGMwrV2e1Tr09JXOo0VkivvaT8WwzyoiofPLEPL1eb__djW7DR0kh23uD-FZZcuQ3r75oLbsNqq28-_LMDc0SB8MzZtR7V7GGIsYv10LqbwkX23Kj1MF2y3sQ4dEY5u3Qv9ZBdaDq1Yj6zgN1X-ahAzsoedZlXE0a6nrOanY9_VdNRPZwwL7FJyUf-s7vw86r3fHETtIILgeW8WwdOKlHwUEvnOMZ-6rweFSFSwNTlSAu1ldqYSNo0LLgmMb806pqu5No5mxgkZt9guaxKtwcsttqiuRsepzzRyIqMkBbpmokKW-hQdSB8hSCzbTdyEsUYZ35XEqqMUMsItaxFrQPHiykvTSuOzwbvEEyLgS1CHTh4xTlrjXWWUbUw-nwkVt__PWsf1mLaZlMaX3oAy_V07g5hxf6uR7PpkV-HfwEOm9qv |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED6hMonxAAOGKDDmB57QAkmcNPYjgha2lQqxTupbZDsOrUQT1KaT9u-5c0KZBJrEW6TYUaTPd_fZvrsP4BgZvlU6lJ7NM-1FWZx4UsSRJ7U0yJh5aK0rFO4ng4EYjeTtCnxb1sLgO5d8Zk_p0d3lZ6VZ0FHZmZBIFqhoejWOojCoq7WWdwYycX090YR9L-LJqLnDDHx59uNXd0BpXPI0lEiwnaj8SxRysiqvfLELML3N9_3aJ9hoiCQ7r5HfghVbbMP6P-0Ft2GtUTgf_92BBeJAiGbsSk0qdjvG6MW6aN916SIb1no9TBWsO9UW3VHGLu1jNWYXis6tmMstYDdlNsmRtbI7VWTllJGy57xi5w_35WxSjafMiWxS-pH77Gf43esOL669RnLBM5x3Ks8KmeTcV8JajtGfeq8HuY8kMLYZEkNlhNI6ECb2c65Izi8OOrojuLLWRBqp2S60irKwe8BCowwavOZhzCOFvEgnwiBh00FucuXLNvjPEKSm6UdOshgPqduX-DIl1FJCLW1Qa8PJcspj3Yzjf4N3CKblwAahNhw-45w25jpPqV4YvT5Sq_23Z32FtevhTT_tfx_8PICPIW26KakvPoRWNVvYL_DB_Kkm89mRW5NPlZrd9g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assisted+Gait+Phase+Estimation+Through+an+Embedded+Depth+Camera+Using+Modified+Random+Forest+Algorithm+Classification&rft.jtitle=IEEE+sensors+journal&rft.au=Pasinetti%2C+Simone&rft.au=naser%2C+Alberto&rft.au=Lancini%2C+Matteo&rft.au=De+Cecco%2C+Mariolino&rft.date=2020-03-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=20&rft.issue=6&rft.spage=3343&rft_id=info:doi/10.1109%2FJSEN.2019.2957667&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |