An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization
Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 26; číslo 4; s. 631 - 645 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases. |
|---|---|
| AbstractList | Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases. |
| Author | Ma, Lijia Li, Jianqiang Gong, Maoguo Wu, Xunfeng Coello, Carlos A. Coello Lin, Qiuzhen |
| Author_xml | – sequence: 1 givenname: Qiuzhen orcidid: 0000-0003-2415-0401 surname: Lin fullname: Lin, Qiuzhen email: qiuzhlin@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Xunfeng surname: Wu fullname: Wu, Xunfeng organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Lijia orcidid: 0000-0002-1201-8051 surname: Ma fullname: Ma, Lijia organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Jianqiang orcidid: 0000-0002-2208-962X surname: Li fullname: Li, Jianqiang email: lijq@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 5 givenname: Maoguo orcidid: 0000-0002-0415-8556 surname: Gong fullname: Gong, Maoguo organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi'an, China – sequence: 6 givenname: Carlos A. Coello orcidid: 0000-0002-8435-680X surname: Coello fullname: Coello, Carlos A. Coello organization: Computer Science Department, CINVESTAV-IPN, Mexico City, Mexico |
| BookMark | eNp9UMtOwzAQtFCRKIUPQFwicU6x83DiY6lSQCrqgYI4IFmOs0EuSRxspzy-noRWHDhw2p3VzO7sHKNRoxtA6IzgKSGYXa6zx_k0wAGZhgSHLKQHaExYRHyMAzrqe5wyP0nSpyN0bO0GYxLFhI3R86zxssZCnVfg3XfG6BfhwL8SFgpvYUQN79q8eqU2XvbRQmPVFry7rnJK5xuQboDZVlddP2iE-fRWrVO1-hIDPkGHpagsnO7rBD0ssvX8xl-urm_ns6Uvw5A6vwBCCwmFLHCcJJSVQCUAzUuJ0zIXOaM0TgQWqZCE5iSgQPIogoIFSR4UFMIJutjtbY1-68A6vtGdafqTPKCMBmkUkrhnJTuWNNpaAyWXyv34dEaoihPMhyj5ECUfouT7KHsl-aNsjar7b__VnO80CgB--SzGLO7tfAPy24Pg |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_126103 crossref_primary_10_1109_TETCI_2024_3370033 crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1109_TETCI_2024_3372378 crossref_primary_10_1007_s40747_022_00650_8 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_3390_math12081178 crossref_primary_10_1016_j_ins_2024_121079 crossref_primary_10_1109_TETCI_2023_3251400 crossref_primary_10_1109_TETCI_2024_3359517 crossref_primary_10_3390_math12162572 crossref_primary_10_1109_TEVC_2024_3380327 crossref_primary_10_1016_j_ins_2024_120449 crossref_primary_10_1007_s40747_025_01941_6 crossref_primary_10_1016_j_swevo_2022_101170 crossref_primary_10_1109_TEVC_2022_3232776 crossref_primary_10_3390_sym17050671 crossref_primary_10_1109_TETCI_2024_3393388 crossref_primary_10_1016_j_asoc_2025_113367 crossref_primary_10_1016_j_engappai_2023_107745 crossref_primary_10_1007_s00500_025_10432_2 crossref_primary_10_1016_j_asoc_2023_110571 crossref_primary_10_1016_j_asoc_2025_113320 crossref_primary_10_1016_j_swevo_2024_101728 crossref_primary_10_1016_j_swevo_2024_101729 crossref_primary_10_1016_j_swevo_2025_101926 crossref_primary_10_1016_j_ast_2025_110691 crossref_primary_10_1109_ACCESS_2024_3501775 crossref_primary_10_1016_j_ins_2024_121045 crossref_primary_10_3390_math12040554 crossref_primary_10_1007_s12293_023_00404_0 crossref_primary_10_1016_j_ins_2024_121620 crossref_primary_10_1016_j_asoc_2025_112727 crossref_primary_10_1109_TEVC_2023_3340678 crossref_primary_10_1016_j_swevo_2024_101586 |
| Cites_doi | 10.1109/TEVC.2016.2555315 10.1007/s00158-006-0051-9 10.1007/s00500-017-2965-0 10.1109/TEVC.2008.925798 10.1109/CEC.2013.6557876 10.1109/TEVC.2005.861417 10.1109/TSMCC.2005.855506 10.1007/978-3-030-18764-4_8 10.1007/978-3-030-18764-4_10 10.1109/TEVC.2016.2622301 10.1109/TCYB.2018.2794503 10.1109/TEVC.2019.2925959 10.1007/978-3-540-24694-7_71 10.1109/TEVC.2017.2783441 10.1142/9789813148239_0005 10.1016/j.knosys.2020.106520 10.1109/CEC.2018.8477766 10.1016/j.swevo.2011.05.001 10.1023/A:1008202821328 10.1109/TCYB.2018.2811761 10.1109/TCYB.2018.2809430 10.1109/TEVC.2016.2519378 10.1016/j.ejor.2006.08.008 10.1109/TEVC.2018.2802784 10.1016/j.envsoft.2018.11.018 10.1080/01605682.2018.1468860 10.1109/CEC.2002.1007032 10.1145/3071178.3071276 10.1007/978-3-540-76931-6_23 10.1109/TEVC.2013.2281535 10.1080/00401706.2000.10485979 10.1007/s00158-013-1029-z 10.1109/TMTT.2016.2583427 10.1137/S1052623496307510 10.1109/TEVC.2005.859463 10.1016/j.knosys.2020.106418 10.1109/MCI.2017.2742868 10.1016/j.swevo.2019.03.005 10.1016/j.asoc.2012.02.025 10.1109/TEVC.2009.2027359 10.1109/TEVC.2005.851274 10.1109/TEVC.2009.2033671 10.1007/s40747-017-0039-7 10.1109/TEVC.2013.2281533 10.1007/978-3-642-17298-4_24 10.2514/1.12994 10.1109/TEVC.2018.2869001 10.1016/j.ins.2020.01.048 10.1109/TEVC.2017.2693320 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2021.3103936 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 645 |
| ExternalDocumentID | 10_1109_TEVC_2021_3103936 9509584 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 61876110 funderid: 10.13039/501100001809 – fundername: 2018 SEP-Cinvestav Grant (application no. 4) – fundername: Basque Government through the BERC 2018–2021 Program by the Spanish Ministry of Science – fundername: Shenzhen Scientific Research and Development Funding Program grantid: JCYJ20190808164211203 funderid: 10.13039/501100017622 – fundername: Guangdong “Pearl River Talent Recruitment Program” grantid: 2019ZT08X603 – fundername: Shenzhen Science and Technology Innovation Commission grantid: R2020A045 funderid: 10.13039/501100010877 – fundername: CONACyT Project grantid: 1920 funderid: 10.13039/501100003141 – fundername: Joint Funds of the NSFC through Key Program grantid: U1713212 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c336t-de16dcedcd057769fe6cee6bfc08fbab96657a0a8ac16b126e1b44ed927b2d6e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833837200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Mon Jun 30 05:36:02 EDT 2025 Sat Nov 29 03:13:49 EST 2025 Tue Nov 18 21:43:01 EST 2025 Wed Aug 27 02:25:27 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-de16dcedcd057769fe6cee6bfc08fbab96657a0a8ac16b126e1b44ed927b2d6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2415-0401 0000-0002-0415-8556 0000-0002-8435-680X 0000-0002-1201-8051 0000-0002-2208-962X |
| OpenAccessLink | http://hdl.handle.net/20.500.11824/1563 |
| PQID | 2696284315 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2021_3103936 ieee_primary_9509584 proquest_journals_2696284315 crossref_primary_10_1109_TEVC_2021_3103936 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 chugh (ref40) 2019; 23 ref52 ref11 ref54 ref17 ref16 ref18 ref50 ref45 ref48 ref47 ref42 ref41 ref44 ref43 deb (ref51) 1995; 9 ref49 deb (ref46) 2021; 26 ref8 guo (ref10) 2016 ref9 ref3 ref6 ref5 martínez (ref19) 2013 zhang (ref55) 2008 ref35 deb (ref1) 2001 ref34 ref37 ref36 zitzler (ref4) 2001 ref31 jin (ref27) 2019; 49 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 zitzler (ref7) 2004 deb (ref53) 1996; 26 |
| References_xml | – ident: ref37 doi: 10.1109/TEVC.2016.2555315 – ident: ref33 doi: 10.1007/s00158-006-0051-9 – volume: 23 start-page: 3137 year: 2019 ident: ref40 article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms publication-title: Soft Comput doi: 10.1007/s00500-017-2965-0 – ident: ref5 doi: 10.1109/TEVC.2008.925798 – ident: ref24 doi: 10.1109/CEC.2013.6557876 – ident: ref48 doi: 10.1109/TEVC.2005.861417 – ident: ref14 doi: 10.1109/TSMCC.2005.855506 – ident: ref17 doi: 10.1007/978-3-030-18764-4_8 – ident: ref39 doi: 10.1007/978-3-030-18764-4_10 – start-page: 1 year: 2016 ident: ref10 article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces publication-title: Proc IEEE Symp Series Comput Intell – ident: ref16 doi: 10.1109/TEVC.2016.2622301 – volume: 49 start-page: 1012 year: 2019 ident: ref27 article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2794503 – ident: ref38 doi: 10.1109/TEVC.2019.2925959 – ident: ref57 doi: 10.1007/978-3-540-24694-7_71 – volume: 26 start-page: 5 year: 2021 ident: ref46 article-title: Surrogate modeling approaches for multiobjective optimization: Methods, taxonomy, and results publication-title: Comput Math Appl – ident: ref25 doi: 10.1109/TEVC.2017.2783441 – ident: ref30 doi: 10.1142/9789813148239_0005 – ident: ref28 doi: 10.1016/j.knosys.2020.106520 – ident: ref11 doi: 10.1109/CEC.2018.8477766 – volume: 9 start-page: 115 year: 1995 ident: ref51 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref12 doi: 10.1016/j.swevo.2011.05.001 – ident: ref52 doi: 10.1023/A:1008202821328 – ident: ref26 doi: 10.1109/TCYB.2018.2811761 – start-page: 1405 year: 2013 ident: ref19 article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems publication-title: Proc 15th Annu Conf Genet Evol Comput – ident: ref31 doi: 10.1109/TCYB.2018.2809430 – ident: ref47 doi: 10.1109/TEVC.2016.2519378 – ident: ref8 doi: 10.1016/j.ejor.2006.08.008 – ident: ref20 doi: 10.1109/TEVC.2018.2802784 – ident: ref2 doi: 10.1016/j.envsoft.2018.11.018 – year: 2008 ident: ref55 article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition – year: 2001 ident: ref4 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref43 doi: 10.1080/01605682.2018.1468860 – ident: ref54 doi: 10.1109/CEC.2002.1007032 – ident: ref45 doi: 10.1145/3071178.3071276 – ident: ref18 doi: 10.1007/978-3-540-76931-6_23 – year: 2001 ident: ref1 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref3 doi: 10.1109/TEVC.2013.2281535 – ident: ref50 doi: 10.1080/00401706.2000.10485979 – volume: 26 start-page: 30 year: 1996 ident: ref53 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: J Inform Comput Sci – ident: ref22 doi: 10.1007/s00158-013-1029-z – ident: ref9 doi: 10.1109/TMTT.2016.2583427 – ident: ref49 doi: 10.1137/S1052623496307510 – ident: ref34 doi: 10.1109/TEVC.2005.859463 – ident: ref29 doi: 10.1016/j.knosys.2020.106418 – ident: ref58 doi: 10.1109/MCI.2017.2742868 – ident: ref32 doi: 10.1016/j.swevo.2019.03.005 – ident: ref21 doi: 10.1016/j.asoc.2012.02.025 – ident: ref15 doi: 10.1109/TEVC.2009.2027359 – ident: ref41 doi: 10.1109/TEVC.2005.851274 – ident: ref42 doi: 10.1109/TEVC.2009.2033671 – start-page: 832 year: 2004 ident: ref7 article-title: Indicator-based selection in multiobjective search publication-title: Proc Int Conf Parallel Problem Solving Nat – ident: ref56 doi: 10.1007/s40747-017-0039-7 – ident: ref6 doi: 10.1109/TEVC.2013.2281533 – ident: ref44 doi: 10.1007/978-3-642-17298-4_24 – ident: ref23 doi: 10.2514/1.12994 – ident: ref13 doi: 10.1109/TEVC.2018.2869001 – ident: ref36 doi: 10.1016/j.ins.2020.01.048 – ident: ref35 doi: 10.1109/TEVC.2017.2693320 |
| SSID | ssj0014519 |
| Score | 2.6016781 |
| Snippet | Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 631 |
| SubjectTerms | Computational modeling Ensemble surrogate Evolutionary algorithms Evolutionary computation Genetic algorithms Model accuracy model management multiobjective optimization Multiple objective analysis Optimization Predictive models Sorting algorithms Space exploration Subspaces Training Uncertainty |
| Title | An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization |
| URI | https://ieeexplore.ieee.org/document/9509584 https://www.proquest.com/docview/2696284315 |
| Volume | 26 |
| WOSCitedRecordID | wos000833837200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20eNCD1apYv8jBk7ia_WiyOVZp8VQFq_QgLJtkFpS6lW0r-O9NsmkVFMHbHpJl2TfJm2Rm3gCcMoVJoTkNuGHDwHjgNJC54oHIU6apVoYitWs2wQeDdDQSdytwvqyFQUSXfIYX9tHF8vVEze1V2aV5kzCEuQqrnLO6VmsZMbAyKXUyvTAeYzryEcyQisth7_HanASj8MI21RJOjfmLg1xTlR87saOXfvN_H7YFm96NJN0a921YwbIFzUWLBuJXbAs2vukN7sBTtyS9coqvcozkfl5VE3uJFlwZJtOkv0jTIsaPJVYC2aW2E1eiO5Ev9c5Ieu_eWPPqg9yaDefVV3LuwkO_N7y-CXx7hUDFMZsFGkOmFWqljc_GmSjQAIdMFoqmhcylsEGZnOZprkImw4hhKJMEtYi4jDTDeA8a5aTEfSDSCsMVnU4RJnlifAQhU9RcU2sJnArdBrr44Zny2uO2BcY4c2cQKjKLUWYxyjxGbThbTnmrhTf-GrxjQVkO9Hi04WiBauaX5jSLmGCGk-Owc_D7rENYj2yNg8vyO4LGrJrjMayp99nztDpxVvcJchPXAg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfovzMw8-iXVp16XNo8rGRJ2CU_YglCa5gjI76TbB_94kzaagCL71ISmlv0t-l9zd7wCOmMQwUxH1Is2GnvbAqSdSGXk8jZmiSmqKVLbZRNTpxL0ev6vAybQWBhFt8hmemkcby1cDOTZXZTX9Jq4JcwbmGmEY0LJaaxozMEIpZTo91z5j3HMxTJ_yWrf5eKHPgoF_atpqcavH_MVCtq3Kj73YEkxr5X-ftgrLzpEkZyXya1DBfB1WJk0aiFuz67D0TXFwA57OctLMh_gq-kjux0UxMNdo3rnmMkVak0Qtoj1ZYkSQbXI7sUW6A_FS7o2k-e7MNS0-yK3ecl5dLecmPLSa3Yu25xoseLJeZyNPoc-URCWV9toixjPU0CETmaRxJlLBTVgmpWmcSp8JP2DoizBExYNIBIphfQtm80GO20CEkYbLGo3MD9NQewlcxKgiRY0tRJSrKtDJD0-kUx83TTD6iT2FUJ4YjBKDUeIwqsLxdMpbKb3x1-ANA8p0oMOjCnsTVBO3OIdJwDjTrFz3Gzu_zzqEhXb35jq5vuxc7cJiYCoebM7fHsyOijHuw7x8Hz0PiwNrgZ_GFNpJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Surrogate-Based+Framework+for+Expensive+Multiobjective+Evolutionary+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Lin%2C+Qiuzhen&rft.au=Wu%2C+Xunfeng&rft.au=Ma%2C+Lijia&rft.au=Li%2C+Jianqiang&rft.date=2022-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=26&rft.issue=4&rft.spage=631&rft.epage=645&rft_id=info:doi/10.1109%2FTEVC.2021.3103936&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2021_3103936 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |