Multiple Populations for Multiple Objectives Framework with Bias Sorting for Many-objective Optimization

The convergence and diversity enhancement of multiobjective evolutionary algorithms (MOEAs) to efficiently solve many-objective optimization problems (MaOPs) is an active topic in evolutionary computation. By considering the advantages of the multiple populations for multiple objectives (MPMO) frame...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 27; číslo 5; s. 1
Hlavní autoři: Yang, Qi-Te, Zhan, Zhi-Hui, Kwong, Sam, Zhang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The convergence and diversity enhancement of multiobjective evolutionary algorithms (MOEAs) to efficiently solve many-objective optimization problems (MaOPs) is an active topic in evolutionary computation. By considering the advantages of the multiple populations for multiple objectives (MPMO) framework in solving multi-objective optimization problems and even MaOPs, this paper proposes an MPMO-based algorithm with a bias sorting (BS) method (termed MPMO-BS) for solving MaOPs to achieve both good convergence and diversity perfor-mance. For convergence, the BS method is applied to each popu-lation of the MPMO framework to enhance the role of nondomi-nated sorting by biasedly paying more attention to the objective optimized by the corresponding population. This way, all the populations in the MPMO framework evolve together to promote the convergence performance on all objectives of the MaOP. For diversity, an elite learning strategy is adopted to generate locally mutated solutions, and a reference vector-based maintenance method is adopted to preserve diverse solutions. The performance of the proposed MPMO-BS algorithm is assessed on 29 widely used MaOP test problems and two real-world application prob-lems. The experimental results show its high effectiveness and competitiveness when compared with seven state-of-the-art MOEAs for many-objective optimization.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2022.3212058