Multiple Populations for Multiple Objectives Framework with Bias Sorting for Many-objective Optimization

The convergence and diversity enhancement of multiobjective evolutionary algorithms (MOEAs) to efficiently solve many-objective optimization problems (MaOPs) is an active topic in evolutionary computation. By considering the advantages of the multiple populations for multiple objectives (MPMO) frame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 27; H. 5; S. 1
Hauptverfasser: Yang, Qi-Te, Zhan, Zhi-Hui, Kwong, Sam, Zhang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The convergence and diversity enhancement of multiobjective evolutionary algorithms (MOEAs) to efficiently solve many-objective optimization problems (MaOPs) is an active topic in evolutionary computation. By considering the advantages of the multiple populations for multiple objectives (MPMO) framework in solving multi-objective optimization problems and even MaOPs, this paper proposes an MPMO-based algorithm with a bias sorting (BS) method (termed MPMO-BS) for solving MaOPs to achieve both good convergence and diversity perfor-mance. For convergence, the BS method is applied to each popu-lation of the MPMO framework to enhance the role of nondomi-nated sorting by biasedly paying more attention to the objective optimized by the corresponding population. This way, all the populations in the MPMO framework evolve together to promote the convergence performance on all objectives of the MaOP. For diversity, an elite learning strategy is adopted to generate locally mutated solutions, and a reference vector-based maintenance method is adopted to preserve diverse solutions. The performance of the proposed MPMO-BS algorithm is assessed on 29 widely used MaOP test problems and two real-world application prob-lems. The experimental results show its high effectiveness and competitiveness when compared with seven state-of-the-art MOEAs for many-objective optimization.
AbstractList The convergence and diversity enhancement of multiobjective evolutionary algorithms (MOEAs) to efficiently solve many-objective optimization problems (MaOPs) is an active topic in evolutionary computation. By considering the advantages of the multiple populations for multiple objectives (MPMO) framework in solving multiobjective optimization problems and even MaOPs, this article proposes an MPMO-based algorithm with a bias sorting (BS) method (termed MPMO-BS) for solving MaOPs to achieve both good convergence and diversity performance. For convergence, the BS method is applied to each population of the MPMO framework to enhance the role of nondominated sorting by biasedly paying more attention to the objective optimized by the corresponding population. This way, all the populations in the MPMO framework evolve together to promote the convergence performance on all objectives of the MaOP. For diversity, an elite learning strategy is adopted to generate locally mutated solutions, and a reference vector-based maintenance method is adopted to preserve diverse solutions. The performance of the proposed MPMO-BS algorithm is assessed on 29 widely used MaOP test problems and two real-world application problems. The experimental results show its high effectiveness and competitiveness when compared with seven state-of-the-art MOEAs for many-objective optimization.
The convergence and diversity enhancement of multiobjective evolutionary algorithms (MOEAs) to efficiently solve many-objective optimization problems (MaOPs) is an active topic in evolutionary computation. By considering the advantages of the multiple populations for multiple objectives (MPMO) framework in solving multi-objective optimization problems and even MaOPs, this paper proposes an MPMO-based algorithm with a bias sorting (BS) method (termed MPMO-BS) for solving MaOPs to achieve both good convergence and diversity perfor-mance. For convergence, the BS method is applied to each popu-lation of the MPMO framework to enhance the role of nondomi-nated sorting by biasedly paying more attention to the objective optimized by the corresponding population. This way, all the populations in the MPMO framework evolve together to promote the convergence performance on all objectives of the MaOP. For diversity, an elite learning strategy is adopted to generate locally mutated solutions, and a reference vector-based maintenance method is adopted to preserve diverse solutions. The performance of the proposed MPMO-BS algorithm is assessed on 29 widely used MaOP test problems and two real-world application prob-lems. The experimental results show its high effectiveness and competitiveness when compared with seven state-of-the-art MOEAs for many-objective optimization.
Author Yang, Qi-Te
Zhan, Zhi-Hui
Kwong, Sam
Zhang, Jun
Author_xml – sequence: 1
  givenname: Qi-Te
  orcidid: 0000-0001-5430-7073
  surname: Yang
  fullname: Yang, Qi-Te
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zhi-Hui
  orcidid: 0000-0003-0862-0514
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong
– sequence: 4
  givenname: Jun
  orcidid: 0000-0003-4148-4294
  surname: Zhang
  fullname: Zhang, Jun
  organization: Zhejiang Normal University, Jinhua, China
BookMark eNp9kE9LxDAQxYMoqKsfQLwUPHfNJGmTHnVxVVhZwVW8lbSdatZuU5NU0U_v_lEPHjzNwLzfe8zbJ9utbZGQI6BDAJqdzi4eRkNGGRtyBowmaovsQSYgppSl28udqiyWUj3ukn3v55SCSCDbI883fRNM12B0a7u-0cHY1ke1ddHvYVrMsQzmDX00dnqB79a9RO8mPEfnRvvozrpg2qcNo9uP2P7oo2kXzMJ8rk0PyE6tG4-H33NA7scXs9FVPJleXo_OJnHJeRriSjBRlYoBJCBYVSSVTGstGCsAJVdJlWSyRK4KVmZYYF1LVFwBV6wQVHPkA3Ky8e2cfe3Rh3xue9cuI3OmJBNCUKGWKtioSme9d1jnnTML7T5yoPmq0HxVaL4qNP8udMnIP0xpwvq34LRp_iWPN6RBxN-kLAOQKeNf0yiGsQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1002_tee_23796
crossref_primary_10_1007_s40747_024_01523_y
crossref_primary_10_1109_TCYB_2025_3535722
crossref_primary_10_1109_TEVC_2023_3278132
crossref_primary_10_1177_03611981231190635
crossref_primary_10_1111_exsy_13410
crossref_primary_10_32604_cmes_2023_030391
crossref_primary_10_1016_j_ins_2025_122671
crossref_primary_10_1109_JIOT_2024_3498445
crossref_primary_10_1007_s10586_025_05544_1
crossref_primary_10_1016_j_asoc_2023_111202
crossref_primary_10_1109_TETCI_2023_3234575
crossref_primary_10_1016_j_swevo_2024_101648
crossref_primary_10_1007_s10462_024_10913_0
crossref_primary_10_1007_s11227_024_06553_4
crossref_primary_10_1109_TCYB_2024_3372070
crossref_primary_10_1109_TEVC_2023_3294307
crossref_primary_10_26599_TST_2024_9010139
crossref_primary_10_1109_TEVC_2024_3365814
crossref_primary_10_1109_TEVC_2023_3340678
crossref_primary_10_1007_s12293_023_00389_w
crossref_primary_10_1038_s41598_024_70145_8
Cites_doi 10.1109/CEC.2019.8790342
10.1007/978-3-540-70928-2_5
10.1007/978-3-030-72062-9_1
10.1109/TEVC.2021.3051608
10.1109/TITS.2022.3180760
10.1109/TEVC.2014.2373386
10.1145/3377930.3390196
10.1162/evco.2008.16.3.355
10.1109/TEVC.2014.2366498
10.1162/106365602760234108
10.1109/TCYB.2019.2906679
10.1007/s10462-021-10042-y
10.1109/TSMCB.2012.2209115
10.1109/TEVC.2017.2749619
10.1109/TEVC.2017.2769108
10.1109/TEVC.2016.2519378
10.1109/TITS.2020.2994779
10.1109/TEVC.2021.3065659
10.1016/j.asoc.2020.106078
10.1109/TEVC.2012.2227145
10.1109/TCYB.2019.2944873
10.1109/TCYB.2018.2832640
10.1109/ICNC.2008.823
10.1109/CEC.2001.934293
10.1162/EVCO_a_00041
10.1109/ICNN.1995.488968
10.1016/j.ins.2016.06.007
10.1109/TEVC.2015.2420112
10.1109/TSMCA.2004.824873
10.1109/TEVC.2012.2204264
10.1109/TEVC.2020.2979740
10.1007/978-1-4612-4380-9_16
10.1109/TCYB.2019.2943928
10.1109/TSMCB.2009.2015956
10.1109/TEVC.2021.3097339
10.1109/TEVC.2020.3013290
10.1109/TEVC.2018.2875430
10.1109/TEVC.2007.892759
10.1109/TEVC.2003.810758
10.1109/TEVC.2014.2378512
10.1162/EVCO_a_00009
10.1109/TEVC.2005.861417
10.1109/TEVC.2013.2293776
10.1109/TEVC.2006.876362
10.1109/TSMC.2020.3034180
10.1109/TEVC.2016.2592479
10.1109/TEVC.2018.2866854
10.1109/TCYB.2018.2872803
10.1109/4235.996017
10.1109/TEVC.2017.2767023
10.1109/TEVC.2014.2308305
10.1109/TEVC.2015.2443001
10.1109/CEC.2018.8477649
10.1109/TEVC.2018.2791283
10.1109/TSMCB.2008.926329
10.1109/TEVC.2020.2964705
10.1007/1-84628-137-7_6
10.1109/TEVC.2013.2258025
10.1109/TEVC.2016.2587749
10.1109/TEVC.2013.2281535
10.1007/s40747-017-0039-7
10.1109/TEVC.2016.2521175
10.1162/evco_a_00226
10.1109/MCI.2017.2742868
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3212058
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2022_3212058
9911762
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFB2102102
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
97E
AAJGR
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
ESBDL
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
ABAZT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-d424dc82115142db5d76fa422b1e7385d597ce38b2c9ebeff7e8381382b40a3e3
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001189259000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 08:48:12 EST 2025
Sat Nov 29 03:13:49 EST 2025
Tue Nov 18 21:31:34 EST 2025
Tue Nov 25 14:44:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-d424dc82115142db5d76fa422b1e7385d597ce38b2c9ebeff7e8381382b40a3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5430-7073
0000-0003-0862-0514
0000-0001-7484-7261
0000-0003-4148-4294
OpenAccessLink https://ieeexplore.ieee.org/document/9911762
PQID 2872444048
PQPubID 85418
PageCount 1
ParticipantIDs ieee_primary_9911762
crossref_primary_10_1109_TEVC_2022_3212058
proquest_journals_2872444048
crossref_citationtrail_10_1109_TEVC_2022_3212058
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref53
ref52
ref11
ref55
ref10
ref54
li (ref29) 2014; 18
ref17
ref16
ref19
ref18
ref50
ref46
ref45
zitzler (ref5) 2004
ref48
ref47
ref42
ref44
ref43
price (ref49) 2005
ref8
ref7
mendez (ref32) 2015
ref3
ref6
ref40
gómez (ref33) 2015
ref35
ref34
ref37
wang (ref9) 2021
zitzler (ref4) 2001
ref36
ref31
ref75
ref30
ref74
ref77
ref76
ref2
ref1
ref39
ref38
deb (ref73) 1996; 26
zou (ref21) 2008; 38
ref71
ref70
ref24
ref68
ref23
ref67
ref26
golberg (ref58) 1988
ref25
ref69
liu (ref14) 2017; 21
ref20
ref64
ref63
ref22
ref66
ref65
ref28
ref27
wang (ref51) 2022
liu (ref56) 2021
liu (ref41) 2021
deb (ref72) 1995; 9
ref60
ref62
ref61
References_xml – volume: 21
  start-page: 408
  year: 2017
  ident: ref14
  article-title: Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms
  publication-title: IEEE Trans Evol Comput
– ident: ref10
  doi: 10.1109/CEC.2019.8790342
– ident: ref19
  doi: 10.1007/978-3-540-70928-2_5
– ident: ref8
  doi: 10.1007/978-3-030-72062-9_1
– ident: ref39
  doi: 10.1109/TEVC.2021.3051608
– ident: ref43
  doi: 10.1109/TITS.2022.3180760
– ident: ref26
  doi: 10.1109/TEVC.2014.2373386
– ident: ref11
  doi: 10.1145/3377930.3390196
– ident: ref60
  doi: 10.1162/evco.2008.16.3.355
– year: 2021
  ident: ref56
  article-title: A multiobjective framework for many-objective optimization
  publication-title: IEEE Trans Cybern
– ident: ref61
  doi: 10.1109/TEVC.2014.2366498
– ident: ref15
  doi: 10.1162/106365602760234108
– start-page: 679
  year: 2015
  ident: ref33
  article-title: Improved metaheuristic based on the R2 indicator for many-objective optimization
  publication-title: Proc Conf Genet Evol Comput
– ident: ref70
  doi: 10.1109/TCYB.2019.2906679
– volume: 26
  start-page: 30
  year: 1996
  ident: ref73
  article-title: A combined genetic adaptive search for engineering design
  publication-title: Comput Sci Inf
– ident: ref1
  doi: 10.1007/s10462-021-10042-y
– ident: ref7
  doi: 10.1109/TSMCB.2012.2209115
– ident: ref34
  doi: 10.1109/TEVC.2017.2749619
– ident: ref52
  doi: 10.1109/TEVC.2017.2769108
– volume: 9
  start-page: 115
  year: 1995
  ident: ref72
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– year: 1988
  ident: ref58
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref31
  doi: 10.1109/TEVC.2016.2519378
– ident: ref45
  doi: 10.1109/TITS.2020.2994779
– ident: ref47
  doi: 10.1109/TEVC.2021.3065659
– ident: ref76
  doi: 10.1016/j.asoc.2020.106078
– ident: ref23
  doi: 10.1109/TEVC.2012.2227145
– ident: ref50
  doi: 10.1109/TCYB.2019.2944873
– year: 2021
  ident: ref41
  article-title: Many-objective job shop scheduling: A multiple populations for multiple objectives-based genetic algorithm approach
  publication-title: IEEE Trans Cybern
– ident: ref44
  doi: 10.1109/TCYB.2018.2832640
– ident: ref59
  doi: 10.1109/ICNC.2008.823
– ident: ref16
  doi: 10.1109/CEC.2001.934293
– ident: ref63
  doi: 10.1162/EVCO_a_00041
– ident: ref46
  doi: 10.1109/ICNN.1995.488968
– ident: ref64
  doi: 10.1016/j.ins.2016.06.007
– year: 2021
  ident: ref9
  article-title: The dilemma between eliminating dominance-resistant solutions and preserving boundary solutions of extremely convex Pareto fronts
  publication-title: Complex Intell Syst
– ident: ref18
  doi: 10.1109/TEVC.2015.2420112
– ident: ref22
  doi: 10.1109/TSMCA.2004.824873
– ident: ref55
  doi: 10.1109/TEVC.2012.2204264
– year: 2005
  ident: ref49
  article-title: Differential evolution: A practical approach to global optimization
  publication-title: Natural Comput Seca
– ident: ref40
  doi: 10.1109/TEVC.2020.2979740
– ident: ref74
  doi: 10.1007/978-1-4612-4380-9_16
– ident: ref48
  doi: 10.1109/TCYB.2019.2943928
– ident: ref75
  doi: 10.1109/TSMCB.2009.2015956
– ident: ref42
  doi: 10.1109/TEVC.2021.3097339
– ident: ref12
  doi: 10.1109/TEVC.2020.3013290
– ident: ref13
  doi: 10.1109/TEVC.2018.2875430
– ident: ref6
  doi: 10.1109/TEVC.2007.892759
– year: 2001
  ident: ref4
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm
– ident: ref38
  doi: 10.1109/TEVC.2003.810758
– ident: ref54
  doi: 10.1109/TEVC.2014.2378512
– ident: ref35
  doi: 10.1162/EVCO_a_00009
– ident: ref68
  doi: 10.1109/TEVC.2005.861417
– volume: 18
  start-page: 909
  year: 2014
  ident: ref29
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2293776
– ident: ref17
  doi: 10.1109/TEVC.2006.876362
– ident: ref57
  doi: 10.1109/TSMC.2020.3034180
– ident: ref53
  doi: 10.1109/TEVC.2016.2592479
– ident: ref24
  doi: 10.1109/TEVC.2018.2866854
– ident: ref28
  doi: 10.1109/TCYB.2018.2872803
– year: 2022
  ident: ref51
  publication-title: Gene targeting differential evolution A simple and efficient method for large scale optimization
– ident: ref3
  doi: 10.1109/4235.996017
– ident: ref2
  doi: 10.1109/TEVC.2017.2767023
– ident: ref62
  doi: 10.1109/TEVC.2014.2308305
– ident: ref27
  doi: 10.1109/TEVC.2015.2443001
– ident: ref65
  doi: 10.1109/CEC.2018.8477649
– ident: ref37
  doi: 10.1109/TEVC.2018.2791283
– volume: 38
  start-page: 1402
  year: 2008
  ident: ref21
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.926329
– ident: ref36
  doi: 10.1109/TEVC.2020.2964705
– ident: ref67
  doi: 10.1007/1-84628-137-7_6
– start-page: 832
  year: 2004
  ident: ref5
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc Parallel Problem Solving Nat
– start-page: 947
  year: 2015
  ident: ref32
  article-title: GDE-MOEA: A new MOEA based on the generational distance indicator and ?-dominance
  publication-title: Proc Cong Evol Comput
– ident: ref20
  doi: 10.1109/TEVC.2013.2258025
– ident: ref71
  doi: 10.1109/TEVC.2016.2587749
– ident: ref25
  doi: 10.1109/TEVC.2013.2281535
– ident: ref69
  doi: 10.1007/s40747-017-0039-7
– ident: ref30
  doi: 10.1109/TEVC.2016.2521175
– ident: ref77
  doi: 10.1162/evco_a_00226
– ident: ref66
  doi: 10.1109/MCI.2017.2742868
SSID ssj0014519
Score 2.553144
Snippet The convergence and diversity enhancement of multiobjective evolutionary algorithms (MOEAs) to efficiently solve many-objective optimization problems (MaOPs)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Bias
bias sorting
coevolution
Convergence
Evolutionary algorithms
Evolutionary computation
Maintenance engineering
Many-objective optimization problems (MaOPs)
multi-objective evolutionary algorithm (MOEA)
Multiple objective analysis
Optimization
Pareto optimization
Populations
Sociology
Sorting
Sorting algorithms
Statistics
Title Multiple Populations for Multiple Objectives Framework with Bias Sorting for Many-objective Optimization
URI https://ieeexplore.ieee.org/document/9911762
https://www.proquest.com/docview/2872444048
Volume 27
WOSCitedRecordID wos001189259000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5B4gEPoqARRdODJ-NgawvtjkogHhRIRMJt2dbOH1Ew_PDv93XrFhKNiTst2XvJkq99_V77-j6AS6rNk0ino_yOwzF3c3xXJY4XKhFxT2iRbrhN78VwKGczf1yC6-IuDHqmxWe6ZV7Ts3y1iDdmq6yNXMYTJuDuCCGyu1rFiYFpk5IV0_vIGOXMnmB6rt-e9Kc9zAQpbTEM1K5Rd99ag1JRlR-ROF1eBtX__dgB7FsaSW4y3A-hpOc1qOYSDcTO2BrsbfUbrEHFUMusM3MdXh5sLSEZFyJeK4IclhQfRtFbFg9XZJAXcRGzc0tuX8MVeVyYFgTPmQ8GFWeR25MRRqIPe8XzCJ4G_UnvzrG6C07MWHftKE65iiWmhsimqIo6SnSTkFMaedo0v1GYhMSayYjGPo6BJBFa4sLPJI24GzLNjqE8X8z1CZCOq3AQJGjINJc0kSLsKqSALlcsYlw1wM2RCGLblNxoY7wHaXLi-oEBLzDgBRa8BlwVLp9ZR46_jOsGrcLQAtWAZg53YOfsKsDcEbkOx5B2-rvXGVSM2HxWyteE8nq50eewG38hcsuLdDh-A5By3p0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GFNQHp5vi_MyDT2K1TdI1fVRxKO4LnGNvpW1SP9BVrPPv99KmZaAI9qnQOyj8ksvvksv9AI6p0k8iLFf6rsUxd7N8WyaWE0ov4o6nvHzDbdLzBgMxnfqjGpxWd2HQMy8-U2f6NT_Ll2k811tl58hlHE8H3CWXc-oUt7WqMwPdKKUop_eRM4qpOcN0bP98fD25wlyQ0jOGodrW-u4Lq1Auq_IjFucLTLfxv1_bgHVDJMlFgfwm1NSsCY1SpIGYOduEtYWOg01Y1eSy6M3cgqe-qSYko0rGKyPIYkn1YRi9FBExI92yjIvovVty-Rxm5D7VTQgeCx8MK1Za2pMhxqI3c8lzCx661-OrG8soL1gxY51PS3LKZSwwOUQ-RWXkSq-ThJzSyFG6_Y3ENCRWTEQ09nEUJImnBC79TNCI2yFTbBvqs3SmdoC4tsRhkKAhU1zQRHhhRyIJtLlkEeOyDXaJRBCbtuRaHeM1yNMT2w80eIEGLzDgteGkcnkvenL8ZdzSaFWGBqg27JdwB2bWZgFmj8h2OAa13d-9jmDlZtzvBb3bwd0erGrp-aKwbx_qnx9zdQDL8Rei-HGYD81vSi_h5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Populations+for+Multiple+Objectives+Framework+with+Bias+Sorting+for+Many-objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Yang%2C+Qi-Te&rft.au=Zhan%2C+Zhi-Hui&rft.au=Kwong%2C+Sam&rft.au=Zhang%2C+Jun&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2022.3212058&rft.externalDocID=9911762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon