Federated Learning With Differential Privacy: Algorithms and Performance Analysis

Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients' private data from being exposed to adversaries. Nevertheless, private information can still be divulged by analyzing uploaded parameters from clients, e.g., weights trained in dee...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security Vol. 15; pp. 3454 - 3469
Main Authors: Wei, Kang, Li, Jun, Ding, Ming, Ma, Chuan, Yang, Howard H., Farokhi, Farhad, Jin, Shi, Quek, Tony Q. S., Vincent Poor, H.
Format: Journal Article
Language:English
Published: New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1556-6013, 1556-6021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients' private data from being exposed to adversaries. Nevertheless, private information can still be divulged by analyzing uploaded parameters from clients, e.g., weights trained in deep neural networks. In this paper, to effectively prevent information leakage, we propose a novel framework based on the concept of differential privacy (DP), in which artificial noise is added to parameters at the clients' side before aggregating, namely, noising before model aggregation FL (NbAFL). First, we prove that the NbAFL can satisfy DP under distinct protection levels by properly adapting different variances of artificial noise. Then we develop a theoretical convergence bound on the loss function of the trained FL model in the NbAFL. Specifically, the theoretical bound reveals the following three key properties: 1) there is a tradeoff between convergence performance and privacy protection levels, i.e., better convergence performance leads to a lower protection level; 2) given a fixed privacy protection level, increasing the number <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> of overall clients participating in FL can improve the convergence performance; and 3) there is an optimal number aggregation times (communication rounds) in terms of convergence performance for a given protection level. Furthermore, we propose a <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-client random scheduling strategy, where <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">1\leq K< N </tex-math></inline-formula>) clients are randomly selected from the <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> overall clients to participate in each aggregation. We also develop a corresponding convergence bound for the loss function in this case and the <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-client random scheduling strategy also retains the above three properties. Moreover, we find that there is an optimal <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> that achieves the best convergence performance at a fixed privacy level. Evaluations demonstrate that our theoretical results are consistent with simulations, thereby facilitating the design of various privacy-preserving FL algorithms with different tradeoff requirements on convergence performance and privacy levels.
AbstractList Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients' private data from being exposed to adversaries. Nevertheless, private information can still be divulged by analyzing uploaded parameters from clients, e.g., weights trained in deep neural networks. In this paper, to effectively prevent information leakage, we propose a novel framework based on the concept of differential privacy (DP), in which artificial noise is added to parameters at the clients' side before aggregating, namely, noising before model aggregation FL (NbAFL). First, we prove that the NbAFL can satisfy DP under distinct protection levels by properly adapting different variances of artificial noise. Then we develop a theoretical convergence bound on the loss function of the trained FL model in the NbAFL. Specifically, the theoretical bound reveals the following three key properties: 1) there is a tradeoff between convergence performance and privacy protection levels, i.e., better convergence performance leads to a lower protection level; 2) given a fixed privacy protection level, increasing the number <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> of overall clients participating in FL can improve the convergence performance; and 3) there is an optimal number aggregation times (communication rounds) in terms of convergence performance for a given protection level. Furthermore, we propose a <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-client random scheduling strategy, where <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">1\leq K< N </tex-math></inline-formula>) clients are randomly selected from the <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> overall clients to participate in each aggregation. We also develop a corresponding convergence bound for the loss function in this case and the <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-client random scheduling strategy also retains the above three properties. Moreover, we find that there is an optimal <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> that achieves the best convergence performance at a fixed privacy level. Evaluations demonstrate that our theoretical results are consistent with simulations, thereby facilitating the design of various privacy-preserving FL algorithms with different tradeoff requirements on convergence performance and privacy levels.
Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients’ private data from being exposed to adversaries. Nevertheless, private information can still be divulged by analyzing uploaded parameters from clients, e.g., weights trained in deep neural networks. In this paper, to effectively prevent information leakage, we propose a novel framework based on the concept of differential privacy (DP), in which artificial noise is added to parameters at the clients’ side before aggregating, namely, noising before model aggregation FL (NbAFL). First, we prove that the NbAFL can satisfy DP under distinct protection levels by properly adapting different variances of artificial noise. Then we develop a theoretical convergence bound on the loss function of the trained FL model in the NbAFL. Specifically, the theoretical bound reveals the following three key properties: 1) there is a tradeoff between convergence performance and privacy protection levels, i.e., better convergence performance leads to a lower protection level; 2) given a fixed privacy protection level, increasing the number [Formula Omitted] of overall clients participating in FL can improve the convergence performance; and 3) there is an optimal number aggregation times (communication rounds) in terms of convergence performance for a given protection level. Furthermore, we propose a [Formula Omitted]-client random scheduling strategy, where [Formula Omitted] ([Formula Omitted]) clients are randomly selected from the [Formula Omitted] overall clients to participate in each aggregation. We also develop a corresponding convergence bound for the loss function in this case and the [Formula Omitted]-client random scheduling strategy also retains the above three properties. Moreover, we find that there is an optimal [Formula Omitted] that achieves the best convergence performance at a fixed privacy level. Evaluations demonstrate that our theoretical results are consistent with simulations, thereby facilitating the design of various privacy-preserving FL algorithms with different tradeoff requirements on convergence performance and privacy levels.
Author Li, Jun
Ma, Chuan
Quek, Tony Q. S.
Ding, Ming
Jin, Shi
Vincent Poor, H.
Yang, Howard H.
Wei, Kang
Farokhi, Farhad
Author_xml – sequence: 1
  givenname: Kang
  surname: Wei
  fullname: Wei, Kang
  email: kang.wei@njust.edu.cn
  organization: School of Electrical and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  email: jun.li@njust.edu.cn
  organization: School of Electrical and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Ming
  surname: Ding
  fullname: Ding, Ming
  email: ming.ding@data61.csiro.au
  organization: CSIRO Data61, Sydney, NSW, Australia
– sequence: 4
  givenname: Chuan
  surname: Ma
  fullname: Ma, Chuan
  email: chuan.ma@njust.edu.cn
  organization: School of Electrical and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Howard H.
  surname: Yang
  fullname: Yang, Howard H.
  email: howard_yang@sutd.edu.sg
  organization: Singapore University of Technology and Design, Singapore
– sequence: 6
  givenname: Farhad
  surname: Farokhi
  fullname: Farokhi, Farhad
  email: ffarokhi@unimelb.edu.au
  organization: CSIRO's Data61, Melbourne, VIC, Australia
– sequence: 7
  givenname: Shi
  surname: Jin
  fullname: Jin, Shi
  email: jinshi@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 8
  givenname: Tony Q. S.
  surname: Quek
  fullname: Quek, Tony Q. S.
  email: tonyquek@sutd.edu.sg
  organization: Singapore University of Technology and Design, Singapore
– sequence: 9
  givenname: H.
  surname: Vincent Poor
  fullname: Vincent Poor, H.
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ
BookMark eNp9kFFLwzAQx4NMcJt-APEl4HNn0jRp69uYTgcDJ058LNf2MjO6dCaZsG9vx4YPPvh0x93_dxy_AenZ1iIh15yNOGf53XI2fRvFLGajOM8ymcoz0udSqkixmPd-ey4uyMD7NWNJwlXWJ69TrNFBwJrOEZw1dkU_TPikD0ZrdGiDgYYunPmGan9Px82qdd164ynYmi7Q6dZtwFZIxxaavTf-kpxraDxeneqQvE8fl5PnaP7yNJuM51ElhApRpZXMyxqEgFoyyPIsTRDKNEnLMlNQ1VxDFpdKp7kGoUVVirpUGQOJqebdYEhuj3e3rv3aoQ_Fut257glfxAlPpBBpnHSp9JiqXOu9Q11UJkAwrQ0OTFNwVhz8FQd_xcFfcfLXkfwPuXVmA27_L3NzZAwi_uZzpvK8e-gHEyx-vw
CODEN ITIFA6
CitedBy_id crossref_primary_10_1007_s10586_024_04850_4
crossref_primary_10_3390_s20216230
crossref_primary_10_1016_j_neucom_2024_127290
crossref_primary_10_1109_TWC_2024_3457591
crossref_primary_10_1016_j_neunet_2023_04_007
crossref_primary_10_1109_TII_2021_3126728
crossref_primary_10_1145_3729216
crossref_primary_10_1109_TCSS_2022_3225096
crossref_primary_10_1109_TCC_2025_3540023
crossref_primary_10_1016_j_compeleceng_2023_108661
crossref_primary_10_1109_COMST_2024_3434510
crossref_primary_10_1016_j_comcom_2023_11_022
crossref_primary_10_1109_TIFS_2023_3240291
crossref_primary_10_1109_JIOT_2024_3405939
crossref_primary_10_1109_TWC_2024_3479149
crossref_primary_10_3390_app14135361
crossref_primary_10_1007_s10922_023_09782_9
crossref_primary_10_1016_j_jisa_2025_104224
crossref_primary_10_1109_JIOT_2024_3357779
crossref_primary_10_1109_TCCN_2023_3284548
crossref_primary_10_1109_TASE_2025_3589764
crossref_primary_10_1109_JIOT_2021_3111088
crossref_primary_10_1109_TCSS_2021_3134463
crossref_primary_10_1109_TSC_2023_3332102
crossref_primary_10_1016_j_future_2024_07_035
crossref_primary_10_1155_2022_5031112
crossref_primary_10_1093_jamia_ocad170
crossref_primary_10_1016_j_csbj_2024_12_001
crossref_primary_10_1016_j_engappai_2025_110078
crossref_primary_10_3390_e25111551
crossref_primary_10_1007_s11277_024_11372_0
crossref_primary_10_1007_s13042_025_02612_1
crossref_primary_10_1016_j_compag_2024_109001
crossref_primary_10_1109_ACCESS_2022_3229124
crossref_primary_10_1109_TGRS_2024_3386978
crossref_primary_10_1109_TNET_2024_3438462
crossref_primary_10_1016_j_rcim_2024_102779
crossref_primary_10_1016_j_iswa_2025_200553
crossref_primary_10_1109_ACCESS_2020_3030888
crossref_primary_10_3390_en18174682
crossref_primary_10_1016_j_eswa_2024_126228
crossref_primary_10_3390_app14198959
crossref_primary_10_1109_TNSE_2023_3297880
crossref_primary_10_1016_j_cose_2022_102993
crossref_primary_10_1109_JBHI_2022_3185418
crossref_primary_10_1109_TSG_2024_3503604
crossref_primary_10_1109_TIFS_2022_3232955
crossref_primary_10_1109_TIFS_2025_3593357
crossref_primary_10_1016_j_jisa_2022_103309
crossref_primary_10_1109_TMC_2024_3364372
crossref_primary_10_1109_TDSC_2023_3325889
crossref_primary_10_1109_TIM_2025_3556830
crossref_primary_10_3390_s24051364
crossref_primary_10_1016_j_asoc_2025_113800
crossref_primary_10_1109_MWC_005_2100435
crossref_primary_10_1016_j_ject_2024_12_003
crossref_primary_10_1016_j_neucom_2024_128166
crossref_primary_10_1109_TAI_2024_3419757
crossref_primary_10_1109_TKDE_2024_3454328
crossref_primary_10_3390_jsan14040083
crossref_primary_10_1109_TIFS_2022_3186739
crossref_primary_10_1016_j_inffus_2025_103292
crossref_primary_10_1109_TBDATA_2022_3227326
crossref_primary_10_3390_e26070590
crossref_primary_10_1007_s12083_025_01962_5
crossref_primary_10_1109_JIOT_2021_3127886
crossref_primary_10_1109_JIOT_2023_3293230
crossref_primary_10_1109_ACCESS_2024_3454211
crossref_primary_10_1109_TII_2022_3183465
crossref_primary_10_1007_s10773_021_04867_0
crossref_primary_10_3390_ijerph20156539
crossref_primary_10_1109_ACCESS_2024_3454690
crossref_primary_10_1016_j_aej_2025_03_034
crossref_primary_10_1109_JIOT_2021_3079472
crossref_primary_10_1109_ACCESS_2025_3540878
crossref_primary_10_1109_JIOT_2024_3460349
crossref_primary_10_1109_TNET_2024_3351864
crossref_primary_10_3389_fpsyt_2022_993289
crossref_primary_10_1109_TMC_2025_3564301
crossref_primary_10_1155_2022_1657558
crossref_primary_10_1007_s00778_024_00865_w
crossref_primary_10_1016_j_future_2024_06_023
crossref_primary_10_1109_ACCESS_2022_3175219
crossref_primary_10_1109_JSTSP_2022_3162109
crossref_primary_10_1145_3589264
crossref_primary_10_1007_s10844_023_00797_x
crossref_primary_10_1109_TMC_2023_3237636
crossref_primary_10_1038_s41598_024_70025_1
crossref_primary_10_1109_TCYB_2025_3571953
crossref_primary_10_1109_TNSE_2025_3545912
crossref_primary_10_26599_TST_2023_9010007
crossref_primary_10_3390_s23073570
crossref_primary_10_1109_TDSC_2025_3559108
crossref_primary_10_1109_TII_2022_3170156
crossref_primary_10_1016_j_neunet_2025_107135
crossref_primary_10_1016_j_future_2022_12_026
crossref_primary_10_1109_JIOT_2021_3072611
crossref_primary_10_1109_JIOT_2023_3285868
crossref_primary_10_1109_TDSC_2025_3574745
crossref_primary_10_14778_3748191_3748213
crossref_primary_10_1145_3682068
crossref_primary_10_1145_3433638
crossref_primary_10_1109_JIOT_2024_3408149
crossref_primary_10_1109_COMST_2024_3399612
crossref_primary_10_3390_electronics13224545
crossref_primary_10_1109_TDSC_2022_3218793
crossref_primary_10_1109_ACCESS_2024_3359272
crossref_primary_10_1007_s40747_025_01937_2
crossref_primary_10_1109_ACCESS_2024_3429285
crossref_primary_10_1016_j_ins_2023_03_033
crossref_primary_10_1109_TCE_2025_3533750
crossref_primary_10_1016_j_cosrev_2023_100595
crossref_primary_10_1109_TDSC_2024_3362534
crossref_primary_10_1109_TBDATA_2022_3177170
crossref_primary_10_1145_3591362
crossref_primary_10_3390_electronics11234007
crossref_primary_10_3390_electronics14051024
crossref_primary_10_1145_3650028
crossref_primary_10_1145_3707651
crossref_primary_10_1109_TAC_2024_3519938
crossref_primary_10_1109_JIOT_2024_3370991
crossref_primary_10_1016_j_asoc_2025_112925
crossref_primary_10_1109_JSEN_2023_3285618
crossref_primary_10_1109_TSP_2023_3316590
crossref_primary_10_1109_COMST_2024_3446585
crossref_primary_10_1109_TII_2021_3055283
crossref_primary_10_1109_TWC_2024_3453392
crossref_primary_10_1016_j_ins_2023_119808
crossref_primary_10_1109_JIOT_2022_3229122
crossref_primary_10_1109_ACCESS_2023_3235389
crossref_primary_10_1016_j_iot_2024_101344
crossref_primary_10_1109_TMC_2023_3309633
crossref_primary_10_1007_s10115_025_02339_z
crossref_primary_10_1109_TBDATA_2025_3527202
crossref_primary_10_1109_JSTSP_2024_3485878
crossref_primary_10_1109_TPDS_2024_3413751
crossref_primary_10_1016_j_pmcj_2025_102021
crossref_primary_10_1007_s10462_024_10797_0
crossref_primary_10_1109_TDSC_2023_3234599
crossref_primary_10_1109_LCOMM_2022_3167088
crossref_primary_10_1109_JIOT_2025_3579583
crossref_primary_10_1109_JIOT_2023_3238038
crossref_primary_10_1080_10556788_2023_2280056
crossref_primary_10_1109_TDSC_2024_3364371
crossref_primary_10_1109_TIFS_2025_3602314
crossref_primary_10_1109_TDSC_2023_3346183
crossref_primary_10_3390_app15126918
crossref_primary_10_1007_s11704_023_2283_x
crossref_primary_10_1093_comjnl_bxae081
crossref_primary_10_1109_ACCESS_2020_3034602
crossref_primary_10_1109_TIFS_2023_3340994
crossref_primary_10_1007_s10586_024_04810_y
crossref_primary_10_3390_bdcc8110162
crossref_primary_10_1007_s10479_023_05477_1
crossref_primary_10_1016_j_future_2025_107848
crossref_primary_10_1109_TSUSC_2024_3381812
crossref_primary_10_1155_2021_8967819
crossref_primary_10_1145_3679013
crossref_primary_10_1109_TMC_2025_3569669
crossref_primary_10_1145_3701740
crossref_primary_10_1016_j_inffus_2024_102290
crossref_primary_10_1016_j_jisa_2025_103986
crossref_primary_10_1055_s_0041_1740630
crossref_primary_10_1109_JSTSP_2022_3156756
crossref_primary_10_1109_TII_2021_3073925
crossref_primary_10_1016_j_future_2024_05_048
crossref_primary_10_3390_s25030967
crossref_primary_10_1109_TCE_2023_3338464
crossref_primary_10_1109_JIOT_2024_3356250
crossref_primary_10_1109_TSIPN_2025_3572292
crossref_primary_10_1109_MNET_2024_3442880
crossref_primary_10_1109_TIM_2023_3346494
crossref_primary_10_1109_TDSC_2025_3532957
crossref_primary_10_1109_JSAC_2022_3213347
crossref_primary_10_1016_j_jisa_2025_103992
crossref_primary_10_1109_COMST_2022_3221119
crossref_primary_10_1109_TSP_2023_3317644
crossref_primary_10_1016_j_jobe_2024_111712
crossref_primary_10_1109_TNET_2024_3422264
crossref_primary_10_1121_10_0010070
crossref_primary_10_1109_TNSE_2024_3488719
crossref_primary_10_1109_ACCESS_2021_3130610
crossref_primary_10_1109_TIFS_2024_3402361
crossref_primary_10_3390_e24030430
crossref_primary_10_1145_3678181
crossref_primary_10_1007_s10994_024_06541_y
crossref_primary_10_1016_j_ipm_2022_103211
crossref_primary_10_1109_TCE_2024_3517739
crossref_primary_10_1109_TIFS_2025_3575582
crossref_primary_10_3233_IDT_230104
crossref_primary_10_1109_JIOT_2022_3194813
crossref_primary_10_1109_MWC_007_2200101
crossref_primary_10_2166_wqrj_2024_045
crossref_primary_10_1007_s11633_023_1449_1
crossref_primary_10_1109_TAI_2021_3139055
crossref_primary_10_1109_JIOT_2022_3162826
crossref_primary_10_1109_TSC_2023_3332955
crossref_primary_10_3390_app14188490
crossref_primary_10_1016_j_eswa_2023_120266
crossref_primary_10_1016_j_future_2020_10_007
crossref_primary_10_1109_ACCESS_2023_3325396
crossref_primary_10_1109_TCSS_2024_3361465
crossref_primary_10_1007_s11227_024_06642_4
crossref_primary_10_1109_JIOT_2022_3171767
crossref_primary_10_1109_TMC_2024_3414138
crossref_primary_10_1109_TWC_2024_3446669
crossref_primary_10_1109_TIT_2022_3216793
crossref_primary_10_3390_e25030485
crossref_primary_10_1109_JSAC_2021_3126052
crossref_primary_10_1142_S0129065725500601
crossref_primary_10_1109_TKDE_2023_3241442
crossref_primary_10_1109_ACCESS_2022_3183224
crossref_primary_10_1109_MNET_2024_3371535
crossref_primary_10_1016_j_eswa_2023_122210
crossref_primary_10_1016_j_neucom_2023_126791
crossref_primary_10_1109_TMC_2025_3564390
crossref_primary_10_1109_TIFS_2023_3255171
crossref_primary_10_1109_COMST_2022_3208196
crossref_primary_10_1016_j_jisa_2023_103460
crossref_primary_10_1002_cpe_70072
crossref_primary_10_1016_j_cose_2023_103562
crossref_primary_10_1016_j_iotcps_2023_04_001
crossref_primary_10_3390_electronics14061218
crossref_primary_10_1109_TIFS_2024_3402319
crossref_primary_10_1007_s10994_025_06836_8
crossref_primary_10_1109_TII_2022_3214998
crossref_primary_10_1109_JIOT_2024_3445964
crossref_primary_10_3390_jcp2040044
crossref_primary_10_1007_s10586_024_04558_5
crossref_primary_10_1109_JIOT_2024_3421991
crossref_primary_10_1109_JIOT_2024_3514637
crossref_primary_10_1016_j_trpro_2023_11_819
crossref_primary_10_1109_TIFS_2023_3293417
crossref_primary_10_1109_TIFS_2023_3329441
crossref_primary_10_1016_j_ins_2022_05_083
crossref_primary_10_1109_ACCESS_2023_3287195
crossref_primary_10_1145_3560816
crossref_primary_10_1016_j_jisa_2024_103890
crossref_primary_10_1007_s10462_022_10141_4
crossref_primary_10_1109_JIOT_2023_3277632
crossref_primary_10_1007_s11432_024_4337_1
crossref_primary_10_1109_ACCESS_2023_3257562
crossref_primary_10_1016_j_future_2023_01_019
crossref_primary_10_1007_s11227_022_04745_4
crossref_primary_10_1016_j_comnet_2025_111043
crossref_primary_10_1109_TWC_2022_3225812
crossref_primary_10_3390_make7010013
crossref_primary_10_1016_j_enbuild_2024_115164
crossref_primary_10_1016_j_eswa_2025_127003
crossref_primary_10_1016_j_inffus_2023_102198
crossref_primary_10_1016_j_cmpb_2023_107706
crossref_primary_10_1109_TNSM_2024_3393969
crossref_primary_10_1109_LCOMM_2021_3121297
crossref_primary_10_1016_j_bspc_2024_106577
crossref_primary_10_1145_3745025
crossref_primary_10_1109_TWC_2023_3344137
crossref_primary_10_1007_s10207_023_00754_3
crossref_primary_10_1016_j_compeleceng_2025_110515
crossref_primary_10_1109_TP_2025_3531838
crossref_primary_10_1007_s11276_021_02870_1
crossref_primary_10_1016_j_knosys_2023_111356
crossref_primary_10_3390_jimaging8090233
crossref_primary_10_1016_j_future_2024_04_051
crossref_primary_10_1016_j_knosys_2021_107532
crossref_primary_10_1109_JIOT_2024_3354942
crossref_primary_10_1109_TIFS_2025_3552033
crossref_primary_10_1109_TNNLS_2024_3370297
crossref_primary_10_1109_TNSE_2025_3568030
crossref_primary_10_1109_TIFS_2024_3524160
crossref_primary_10_1109_TCE_2024_3510694
crossref_primary_10_1145_3745032
crossref_primary_10_1109_JIOT_2021_3095077
crossref_primary_10_1155_2020_8845038
crossref_primary_10_1016_j_future_2025_108061
crossref_primary_10_1109_JIOT_2021_3050163
crossref_primary_10_1016_j_ins_2024_121223
crossref_primary_10_3390_electronics12163382
crossref_primary_10_3389_fcomp_2024_1494174
crossref_primary_10_1109_TDSC_2025_3567564
crossref_primary_10_1109_TSMC_2025_3550524
crossref_primary_10_1145_3554980
crossref_primary_10_1109_TIFS_2024_3368879
crossref_primary_10_1007_s10586_024_04957_8
crossref_primary_10_1109_TIFS_2025_3542244
crossref_primary_10_1109_OJCOMS_2025_3566464
crossref_primary_10_1016_j_ibmed_2025_100283
crossref_primary_10_1109_TKDE_2024_3349863
crossref_primary_10_1016_j_eswa_2025_128483
crossref_primary_10_1109_JIOT_2023_3264259
crossref_primary_10_1007_s10586_022_03813_x
crossref_primary_10_1007_s11042_024_20476_5
crossref_primary_10_1109_ACCESS_2024_3472467
crossref_primary_10_1109_TIFS_2023_3302161
crossref_primary_10_1016_j_ipm_2022_103167
crossref_primary_10_1109_JIOT_2024_3439599
crossref_primary_10_1109_TNSM_2023_3263831
crossref_primary_10_1109_TMC_2024_3445957
crossref_primary_10_1109_JIOT_2024_3383226
crossref_primary_10_1145_3702325
crossref_primary_10_1109_JIOT_2024_3427132
crossref_primary_10_1109_TIFS_2021_3097822
crossref_primary_10_1109_TNET_2024_3481437
crossref_primary_10_1016_j_cosrev_2024_100697
crossref_primary_10_32604_cmes_2024_030084
crossref_primary_10_1109_MSP_2021_3125282
crossref_primary_10_1109_TSC_2024_3376247
crossref_primary_10_1109_JIOT_2023_3308170
crossref_primary_10_1109_TKDE_2024_3379001
crossref_primary_10_1007_s10462_024_10766_7
crossref_primary_10_1109_TII_2021_3107783
crossref_primary_10_1109_TDSC_2022_3233580
crossref_primary_10_1109_TPDS_2022_3195207
crossref_primary_10_1109_TIFS_2025_3526050
crossref_primary_10_1109_TMC_2024_3484493
crossref_primary_10_26599_BDMA_2024_9020053
crossref_primary_10_1016_j_knosys_2024_112516
crossref_primary_10_1109_JIOT_2024_3385479
crossref_primary_10_1145_3634686
crossref_primary_10_1109_TPDS_2022_3217271
crossref_primary_10_1097_CM9_0000000000003302
crossref_primary_10_1109_TC_2025_3584272
crossref_primary_10_1109_TIFS_2024_3486611
crossref_primary_10_3390_app14156824
crossref_primary_10_1016_j_adhoc_2025_103962
crossref_primary_10_1007_s11042_023_16543_y
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1109_JBHI_2022_3192648
crossref_primary_10_1145_3725847
crossref_primary_10_1016_j_future_2023_10_013
crossref_primary_10_1111_exsy_70087
crossref_primary_10_3390_electronics14050990
crossref_primary_10_1109_TSIPN_2023_3325963
crossref_primary_10_3390_app15062914
crossref_primary_10_1109_TIFS_2024_3361813
crossref_primary_10_3390_s22165983
crossref_primary_10_1016_j_eswa_2025_128273
crossref_primary_10_1109_TSC_2025_3562359
crossref_primary_10_1016_j_neucom_2021_07_098
crossref_primary_10_1109_JIOT_2023_3289546
crossref_primary_10_3390_app14177993
crossref_primary_10_1016_j_future_2023_10_014
crossref_primary_10_1109_TIM_2023_3328074
crossref_primary_10_1145_3677390
crossref_primary_10_1016_j_inffus_2022_07_024
crossref_primary_10_1016_j_procs_2023_01_177
crossref_primary_10_1109_COMST_2020_3024783
crossref_primary_10_1016_j_engappai_2024_109216
crossref_primary_10_1109_JIOT_2021_3132056
crossref_primary_10_1109_TIFS_2022_3221899
crossref_primary_10_1007_s11277_024_11477_6
crossref_primary_10_1109_TCE_2024_3376561
crossref_primary_10_1145_3460427
crossref_primary_10_1016_j_compeleceng_2024_109893
crossref_primary_10_1145_3501814
crossref_primary_10_1109_TMC_2025_3538871
crossref_primary_10_1108_IJWIS_04_2024_0120
crossref_primary_10_1016_j_eswa_2025_129379
crossref_primary_10_1109_JPROC_2021_3119950
crossref_primary_10_1109_TKDE_2021_3140131
crossref_primary_10_1016_j_egyai_2025_100521
crossref_primary_10_1109_LSP_2024_3431951
crossref_primary_10_1016_j_cose_2023_103278
crossref_primary_10_1007_s10586_024_04759_y
crossref_primary_10_1016_j_inffus_2025_103657
crossref_primary_10_1109_ACCESS_2025_3576261
crossref_primary_10_1109_TWC_2023_3347697
crossref_primary_10_1016_j_jnca_2023_103812
crossref_primary_10_1109_JIOT_2024_3482703
crossref_primary_10_1016_j_comnet_2025_111200
crossref_primary_10_1109_ACCESS_2024_3493112
crossref_primary_10_1109_TCOMM_2021_3078783
crossref_primary_10_1007_s42952_023_00249_w
crossref_primary_10_1016_j_compeleceng_2024_109643
crossref_primary_10_1016_j_csi_2023_103723
crossref_primary_10_1145_3501808
crossref_primary_10_1016_j_csi_2023_103720
crossref_primary_10_1016_j_neucom_2024_128653
crossref_primary_10_1109_JIOT_2022_3151982
crossref_primary_10_1109_TII_2022_3156645
crossref_primary_10_1109_TIFS_2023_3318944
crossref_primary_10_1016_j_eswa_2023_123006
crossref_primary_10_1109_TDSC_2025_3567301
crossref_primary_10_1109_TIFS_2022_3174394
crossref_primary_10_1109_TPAMI_2023_3322785
crossref_primary_10_1109_TETCI_2024_3370005
crossref_primary_10_1109_LWC_2022_3141792
crossref_primary_10_1109_JIOT_2025_3561262
crossref_primary_10_1016_j_ins_2024_120519
crossref_primary_10_1109_TNSE_2022_3217923
crossref_primary_10_1109_TDSC_2025_3526840
crossref_primary_10_1016_j_arcontrol_2023_100913
crossref_primary_10_1186_s13635_025_00203_9
crossref_primary_10_1109_TMC_2024_3466227
crossref_primary_10_1109_TAI_2024_3446759
crossref_primary_10_1038_s41598_024_72894_y
crossref_primary_10_1109_TAC_2023_3348158
crossref_primary_10_3390_math11183807
crossref_primary_10_1016_j_jss_2025_112442
crossref_primary_10_1080_09540091_2023_2299103
crossref_primary_10_1109_TII_2022_3170348
crossref_primary_10_3390_s24248028
crossref_primary_10_1109_JIOT_2022_3154605
crossref_primary_10_1109_TSUSC_2024_3441658
crossref_primary_10_1109_TIFS_2022_3176191
crossref_primary_10_1109_TMC_2025_3574784
crossref_primary_10_1016_j_cose_2021_102402
crossref_primary_10_1109_TITS_2023_3324962
crossref_primary_10_1109_MNET_2024_3494764
crossref_primary_10_1007_s10207_022_00607_5
crossref_primary_10_1109_MCE_2021_3059958
crossref_primary_10_1109_JIOT_2023_3340880
crossref_primary_10_1109_TC_2022_3230904
crossref_primary_10_1016_j_neucom_2023_127043
crossref_primary_10_1109_TMC_2021_3056991
crossref_primary_10_1145_3606274_3606280
crossref_primary_10_1016_j_dsp_2024_104589
crossref_primary_10_1109_TSP_2021_3121632
crossref_primary_10_1109_TIFS_2024_3433537
crossref_primary_10_1007_s10115_022_01664_x
crossref_primary_10_1109_JIOT_2023_3324801
crossref_primary_10_1109_OJCOMS_2024_3521651
crossref_primary_10_1016_j_jisa_2025_104161
crossref_primary_10_32604_cmc_2023_041897
crossref_primary_10_1109_ACCESS_2022_3202008
crossref_primary_10_1080_10408398_2022_2103086
crossref_primary_10_1109_TIFS_2022_3222935
crossref_primary_10_1016_j_ins_2023_119235
crossref_primary_10_1371_journal_pone_0301897
crossref_primary_10_1109_JIOT_2024_3402250
crossref_primary_10_1007_s40012_022_00351_0
crossref_primary_10_1016_j_sysarc_2022_102555
crossref_primary_10_1016_j_apenergy_2025_126177
crossref_primary_10_1109_TSC_2024_3451187
crossref_primary_10_1109_ACCESS_2025_3583436
crossref_primary_10_1002_sim_10290
crossref_primary_10_1007_s11227_025_07322_7
crossref_primary_10_1109_JSTSP_2022_3161786
crossref_primary_10_1109_TETCI_2025_3540420
crossref_primary_10_1016_j_ins_2025_121901
crossref_primary_10_1016_j_knosys_2023_111166
crossref_primary_10_1109_TIFS_2024_3515814
crossref_primary_10_1186_s13634_023_01049_4
crossref_primary_10_3390_electronics13173538
crossref_primary_10_1186_s42400_024_00232_w
crossref_primary_10_1109_JIOT_2024_3391923
crossref_primary_10_1109_TCCN_2022_3196009
crossref_primary_10_1016_j_comcom_2023_05_004
crossref_primary_10_1016_j_cose_2025_104592
crossref_primary_10_3390_info16010008
crossref_primary_10_3390_math13071096
crossref_primary_10_1109_ACCESS_2023_3263533
crossref_primary_10_1109_TDSC_2022_3168556
crossref_primary_10_1016_j_asoc_2021_107235
crossref_primary_10_1002_cpe_7827
crossref_primary_10_1109_TVT_2021_3132226
crossref_primary_10_1016_j_dcan_2025_07_006
crossref_primary_10_1109_TSC_2024_3355188
crossref_primary_10_1109_TBDATA_2024_3403388
crossref_primary_10_32604_cmc_2024_049215
crossref_primary_10_1109_TNSM_2024_3414417
crossref_primary_10_1109_TNSM_2025_3564387
crossref_primary_10_1145_3724113
crossref_primary_10_1109_JETCAS_2024_3463738
crossref_primary_10_1109_TFUZZ_2024_3445468
crossref_primary_10_1109_TMC_2024_3396993
crossref_primary_10_3390_computers13110277
crossref_primary_10_1109_TPAMI_2022_3195956
crossref_primary_10_1145_3555803
crossref_primary_10_1007_s10791_025_09676_1
crossref_primary_10_1109_TWC_2024_3487986
crossref_primary_10_1145_3690768
crossref_primary_10_1109_TDSC_2023_3336977
crossref_primary_10_1016_j_jnca_2025_104201
crossref_primary_10_1109_TKDE_2023_3295601
crossref_primary_10_1109_TCSS_2024_3406528
crossref_primary_10_1109_JSAC_2023_3310060
crossref_primary_10_1109_TPDS_2023_3273490
crossref_primary_10_4018_IJITSA_383947
crossref_primary_10_1016_j_neucom_2021_08_062
crossref_primary_10_1109_TIFS_2023_3265535
crossref_primary_10_1109_JIOT_2021_3102030
crossref_primary_10_1016_j_fsidi_2021_301314
crossref_primary_10_1109_TSP_2023_3244092
crossref_primary_10_1109_JIOT_2025_3558910
crossref_primary_10_1049_cmu2_12722
crossref_primary_10_1109_JIOT_2022_3188833
crossref_primary_10_1109_TCCN_2021_3076167
crossref_primary_10_1109_JIOT_2023_3283853
crossref_primary_10_1109_TWC_2024_3384957
crossref_primary_10_1109_JPROC_2023_3306773
crossref_primary_10_1109_ACCESS_2020_3036322
crossref_primary_10_1167_iovs_65_6_21
crossref_primary_10_3390_telecom6030060
crossref_primary_10_1016_j_inffus_2024_102420
crossref_primary_10_1145_3701039
crossref_primary_10_1145_3687124
crossref_primary_10_1016_j_sysarc_2022_102754
crossref_primary_10_1109_ACCESS_2024_3429205
crossref_primary_10_1109_JIOT_2023_3288078
crossref_primary_10_1016_j_cose_2022_102966
crossref_primary_10_1109_TGRS_2025_3537085
crossref_primary_10_1016_j_neucom_2024_128019
crossref_primary_10_1016_j_knosys_2025_113741
crossref_primary_10_1016_j_rineng_2025_105456
crossref_primary_10_1109_TDSC_2022_3215574
crossref_primary_10_1109_TIFS_2022_3206420
crossref_primary_10_1007_s10586_024_04289_7
crossref_primary_10_1007_s11432_024_4254_5
crossref_primary_10_1007_s10586_024_04837_1
crossref_primary_10_1109_ACCESS_2024_3432610
crossref_primary_10_1109_JIOT_2021_3057419
crossref_primary_10_3390_electronics11091449
crossref_primary_10_32628_IJSRST24116166
crossref_primary_10_1093_bib_bbae641
crossref_primary_10_1109_TNSM_2022_3184992
crossref_primary_10_3390_math11051091
crossref_primary_10_1109_TGRS_2023_3320044
crossref_primary_10_1109_TIFS_2024_3522792
crossref_primary_10_1186_s12911_024_02563_7
crossref_primary_10_3390_fi16110415
crossref_primary_10_1109_TSUSC_2024_3403427
crossref_primary_10_1097_RLU_0000000000004194
crossref_primary_10_1109_ACCESS_2024_3387453
crossref_primary_10_1002_cpe_7901
crossref_primary_10_3390_electronics13132620
crossref_primary_10_1109_TMC_2021_3093316
crossref_primary_10_1145_3744745
crossref_primary_10_1109_TNSM_2024_3405004
crossref_primary_10_1109_JIOT_2024_3520827
crossref_primary_10_1007_s12083_023_01531_8
crossref_primary_10_3390_s22020450
crossref_primary_10_1016_j_asoc_2024_111483
crossref_primary_10_1016_j_knosys_2022_108441
crossref_primary_10_1109_TPDS_2022_3202887
crossref_primary_10_1016_j_sysarc_2024_103279
crossref_primary_10_1007_s10462_024_11036_2
crossref_primary_10_1109_TIFS_2025_3550777
crossref_primary_10_1007_s10489_024_06046_0
crossref_primary_10_1007_s12652_023_04531_x
crossref_primary_10_3389_fcomp_2025_1538277
crossref_primary_10_1109_COMST_2023_3316615
crossref_primary_10_38124_ijisrt_25jul392
crossref_primary_10_1016_j_neucom_2025_130844
crossref_primary_10_1016_j_iot_2025_101579
crossref_primary_10_1109_TMC_2023_3340338
crossref_primary_10_3390_educsci13060566
crossref_primary_10_1109_TMC_2021_3074816
crossref_primary_10_1109_ACCESS_2024_3431031
crossref_primary_10_1109_TGCN_2024_3417379
crossref_primary_10_1016_j_jpdc_2024_104918
crossref_primary_10_1109_COMST_2021_3090430
crossref_primary_10_1109_TKDE_2025_3528551
crossref_primary_10_1109_TITS_2023_3333749
crossref_primary_10_1109_TIFS_2025_3581042
crossref_primary_10_1016_j_jpdc_2024_104916
crossref_primary_10_1016_j_inffus_2025_103187
crossref_primary_10_3390_electronics13163157
crossref_primary_10_1016_j_procs_2021_07_041
crossref_primary_10_1109_TIFS_2022_3227435
crossref_primary_10_1007_s10586_022_03763_4
crossref_primary_10_1016_j_sysarc_2024_103067
crossref_primary_10_1016_j_cie_2023_109592
crossref_primary_10_1016_j_iot_2023_100956
crossref_primary_10_1016_j_comnet_2024_110822
crossref_primary_10_3390_electronics12204364
crossref_primary_10_1145_3616868
crossref_primary_10_1002_spy2_457
crossref_primary_10_1016_j_compeleceng_2025_110160
crossref_primary_10_1109_TIFS_2023_3322328
crossref_primary_10_1109_TMC_2025_3566421
crossref_primary_10_1109_TCE_2024_3367494
crossref_primary_10_1109_TIFS_2022_3228753
crossref_primary_10_1177_03611981231159118
crossref_primary_10_1016_j_chbah_2025_100137
crossref_primary_10_1109_TIFS_2024_3490861
crossref_primary_10_1287_ijoc_2024_0554
crossref_primary_10_1109_TCSS_2023_3304649
crossref_primary_10_1177_14727978251366544
crossref_primary_10_1186_s13677_024_00618_8
crossref_primary_10_1007_s12083_024_01759_y
crossref_primary_10_1007_s11432_023_3918_9
crossref_primary_10_1007_s11633_022_1343_2
crossref_primary_10_1016_j_comnet_2024_110837
crossref_primary_10_3389_fdata_2024_1467222
crossref_primary_10_1016_j_patcog_2024_111143
crossref_primary_10_1016_j_jisa_2022_103201
crossref_primary_10_1016_j_future_2023_04_017
crossref_primary_10_1109_TII_2021_3098010
crossref_primary_10_1109_TDSC_2024_3350206
crossref_primary_10_1109_ACCESS_2022_3141709
crossref_primary_10_1016_j_pmcj_2024_101875
crossref_primary_10_1007_s12083_025_01952_7
crossref_primary_10_1109_TCE_2024_3525084
crossref_primary_10_3390_fi17010018
crossref_primary_10_1109_TBDATA_2023_3264109
crossref_primary_10_1109_TCAD_2024_3509793
crossref_primary_10_3390_app14031224
crossref_primary_10_1002_int_23056
crossref_primary_10_1109_TIFS_2023_3324726
crossref_primary_10_1109_JIOT_2024_3382875
crossref_primary_10_1109_JIOT_2024_3431294
crossref_primary_10_1109_TC_2023_3272801
crossref_primary_10_1109_TIFS_2023_3243490
crossref_primary_10_1109_ACCESS_2024_3424934
crossref_primary_10_1109_JIOT_2023_3313055
crossref_primary_10_1109_TMC_2025_3551368
crossref_primary_10_1007_s11432_024_4465_3
crossref_primary_10_1109_JIOT_2022_3165596
crossref_primary_10_1109_TWC_2022_3143543
crossref_primary_10_1109_JSAC_2023_3310103
crossref_primary_10_1109_TDSC_2022_3208630
crossref_primary_10_1007_s11042_023_17107_w
crossref_primary_10_1109_JIOT_2025_3540103
crossref_primary_10_1109_TII_2021_3134257
crossref_primary_10_3390_electronics12183984
crossref_primary_10_1109_JIOT_2022_3151193
crossref_primary_10_1109_ACCESS_2023_3253026
crossref_primary_10_1109_TITS_2022_3179501
crossref_primary_10_1109_TII_2022_3173996
crossref_primary_10_1109_TSP_2023_3284376
crossref_primary_10_1109_TVT_2024_3380582
crossref_primary_10_1016_j_eswa_2025_128600
crossref_primary_10_1109_JIOT_2025_3587067
crossref_primary_10_1109_JIOT_2021_3086910
crossref_primary_10_1016_j_comcom_2024_04_024
crossref_primary_10_1109_JIOT_2024_3462674
crossref_primary_10_1109_JSEN_2022_3153338
crossref_primary_10_1007_s00607_024_01317_7
crossref_primary_10_1016_j_techsoc_2025_102910
crossref_primary_10_1016_j_bspc_2023_105893
crossref_primary_10_1016_j_jfranklin_2023_04_002
crossref_primary_10_1109_ACCESS_2021_3111118
crossref_primary_10_1109_TWC_2025_3555212
crossref_primary_10_1109_TIFS_2025_3540312
crossref_primary_10_1109_TIFS_2024_3453031
crossref_primary_10_1109_TIT_2025_3567215
crossref_primary_10_3389_frai_2021_746497
crossref_primary_10_1016_j_knosys_2023_110658
crossref_primary_10_1109_TII_2023_3333914
crossref_primary_10_1007_s10489_024_06211_5
crossref_primary_10_1109_JIOT_2021_3104833
crossref_primary_10_1109_TIFS_2025_3536612
crossref_primary_10_1016_j_neucom_2022_04_072
crossref_primary_10_1145_3695876
crossref_primary_10_1016_j_engappai_2021_104468
crossref_primary_10_1016_j_jnca_2023_103768
crossref_primary_10_1016_j_future_2024_01_009
crossref_primary_10_1109_ACCESS_2024_3363884
crossref_primary_10_1016_j_future_2023_03_010
crossref_primary_10_1109_JIOT_2023_3288886
crossref_primary_10_1016_j_future_2023_03_014
crossref_primary_10_14201_adcaij_31647
crossref_primary_10_1007_s11227_023_05846_4
crossref_primary_10_1109_ACCESS_2023_3280637
crossref_primary_10_1109_LSP_2024_3453200
crossref_primary_10_1109_LSP_2024_3400916
crossref_primary_10_1016_j_jnca_2025_104181
crossref_primary_10_1109_TMC_2024_3504271
crossref_primary_10_1016_j_cose_2024_103911
crossref_primary_10_1148_ryai_240485
crossref_primary_10_3389_fmed_2024_1409314
crossref_primary_10_1016_j_adhoc_2025_103761
crossref_primary_10_1016_j_adhoc_2025_103760
crossref_primary_10_1016_j_future_2024_107674
crossref_primary_10_1109_TII_2024_3423457
crossref_primary_10_1145_3708495
crossref_primary_10_1109_JIOT_2025_3584818
crossref_primary_10_1109_ACCESS_2024_3404948
crossref_primary_10_3390_s23156986
crossref_primary_10_1016_j_comnet_2025_111346
crossref_primary_10_1007_s11390_023_2972_9
crossref_primary_10_1016_j_compchemeng_2024_108749
crossref_primary_10_1109_JSAC_2021_3118354
crossref_primary_10_1016_j_future_2024_107646
crossref_primary_10_1016_j_scs_2021_103663
crossref_primary_10_32604_cmes_2023_030512
crossref_primary_10_3390_jeta3030023
crossref_primary_10_3390_math11214547
crossref_primary_10_1108_IJWIS_04_2022_0078
crossref_primary_10_14778_3718057_3718061
crossref_primary_10_1109_TIFS_2024_3374590
crossref_primary_10_1109_TIFS_2024_3379852
crossref_primary_10_1109_JSYST_2022_3218894
crossref_primary_10_1109_ACCESS_2021_3094089
crossref_primary_10_1002_spy2_70032
crossref_primary_10_1145_3596907
crossref_primary_10_1016_j_neucom_2022_11_011
crossref_primary_10_1109_ACCESS_2023_3246126
crossref_primary_10_1109_TII_2023_3331726
crossref_primary_10_1007_s10462_024_10796_1
crossref_primary_10_54097_bfp6m518
crossref_primary_10_1007_s10489_025_06533_y
crossref_primary_10_1016_j_neucom_2023_126407
crossref_primary_10_1007_s11704_021_0598_z
crossref_primary_10_1093_comjnl_bxaf037
crossref_primary_10_2196_56747
crossref_primary_10_1038_s41598_024_84797_z
crossref_primary_10_1111_exsy_13283
crossref_primary_10_3390_s24030968
crossref_primary_10_3390_electronics13224478
crossref_primary_10_1109_TKDE_2024_3382002
crossref_primary_10_3390_fi14090246
crossref_primary_10_1007_s12559_024_10310_3
crossref_primary_10_1109_TKDE_2022_3230959
crossref_primary_10_3390_s20247030
crossref_primary_10_1016_j_future_2025_107706
crossref_primary_10_1109_JIOT_2024_3395310
crossref_primary_10_1186_s42400_024_00293_x
crossref_primary_10_1007_s00354_022_00185_z
crossref_primary_10_1109_JIOT_2023_3299736
crossref_primary_10_1016_j_cose_2024_103700
crossref_primary_10_1109_JIOT_2022_3194930
crossref_primary_10_1007_s10115_024_02285_2
crossref_primary_10_1016_j_eswa_2025_128667
crossref_primary_10_1109_JIOT_2023_3312118
crossref_primary_10_2478_amns_2023_2_00636
crossref_primary_10_1109_TCE_2024_3372696
crossref_primary_10_1109_TDSC_2024_3518841
crossref_primary_10_1109_TIFS_2022_3185770
crossref_primary_10_1145_3555374
crossref_primary_10_1007_s10479_024_06151_w
crossref_primary_10_1145_3729385
crossref_primary_10_1109_TNSE_2024_3409755
crossref_primary_10_1016_j_comnet_2025_111130
crossref_primary_10_1007_s00146_025_02288_9
crossref_primary_10_1109_TIFS_2025_3598587
crossref_primary_10_1016_j_comnet_2025_111139
crossref_primary_10_1007_s11432_022_3678_7
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1109_TII_2022_3203707
crossref_primary_10_32604_cmc_2024_055557
crossref_primary_10_3390_electronics12183938
crossref_primary_10_1007_s11042_024_18771_2
crossref_primary_10_1016_j_cose_2024_103715
crossref_primary_10_1016_j_future_2024_03_041
crossref_primary_10_1016_j_sigpro_2024_109742
crossref_primary_10_1109_TNNLS_2024_3383748
crossref_primary_10_1007_s13042_023_01956_w
crossref_primary_10_1016_j_iot_2025_101532
crossref_primary_10_1016_j_segan_2023_101248
crossref_primary_10_1016_j_iot_2025_101530
crossref_primary_10_1109_LCOMM_2022_3180113
crossref_primary_10_1109_LSENS_2020_3046322
crossref_primary_10_1137_21M1465081
crossref_primary_10_1109_TIFS_2023_3273914
crossref_primary_10_1109_ACCESS_2024_3396146
crossref_primary_10_1109_TIFS_2023_3295949
crossref_primary_10_1109_JIOT_2022_3189361
crossref_primary_10_1002_cpe_8379
crossref_primary_10_3390_electronics12153295
crossref_primary_10_1038_s41467_022_33407_5
crossref_primary_10_1109_TSC_2024_3520867
crossref_primary_10_1145_3570953
crossref_primary_10_1016_j_neucom_2022_10_006
crossref_primary_10_1109_TWC_2023_3279442
crossref_primary_10_1109_JIOT_2024_3363712
crossref_primary_10_1186_s13040_024_00414_9
crossref_primary_10_1109_ACCESS_2024_3495702
crossref_primary_10_1109_TPDS_2025_3578522
crossref_primary_10_3390_network4020007
crossref_primary_10_1109_JIOT_2024_3407584
crossref_primary_10_1109_TCYB_2021_3139076
crossref_primary_10_1109_TVT_2024_3369942
crossref_primary_10_3390_math12162479
crossref_primary_10_1109_TITS_2023_3273167
crossref_primary_10_1587_transfun_2024DMP0010
crossref_primary_10_1109_JIOT_2021_3085429
crossref_primary_10_1145_3546872
crossref_primary_10_1109_JSAC_2020_3036948
crossref_primary_10_1016_j_ins_2023_119717
crossref_primary_10_1186_s12879_024_10230_5
crossref_primary_10_1007_s11227_025_07593_0
crossref_primary_10_1016_j_inffus_2023_101824
crossref_primary_10_1016_j_future_2022_08_004
crossref_primary_10_1109_JIOT_2021_3131258
crossref_primary_10_1109_TIFS_2022_3214717
crossref_primary_10_1016_j_jnca_2022_103486
crossref_primary_10_1007_s11227_023_05378_x
crossref_primary_10_1109_TII_2023_3342897
crossref_primary_10_1109_TIFS_2022_3140687
crossref_primary_10_1109_IOTM_001_2300075
crossref_primary_10_3390_electronics13040671
crossref_primary_10_1109_ACCESS_2021_3124020
crossref_primary_10_1109_ACCESS_2022_3154826
crossref_primary_10_1109_TDSC_2021_3128679
crossref_primary_10_1109_TKDE_2025_3580796
crossref_primary_10_1007_s10462_023_10550_z
crossref_primary_10_1109_TMC_2024_3443862
crossref_primary_10_1109_ACCESS_2023_3277858
crossref_primary_10_1145_3550289
crossref_primary_10_1109_ACCESS_2023_3310400
crossref_primary_10_1145_3544837
crossref_primary_10_1109_JIOT_2024_3409610
crossref_primary_10_1109_TNSE_2024_3352734
crossref_primary_10_3390_electronics12224633
crossref_primary_10_1148_ryai_240637
crossref_primary_10_1109_JIOT_2024_3396217
crossref_primary_10_1016_j_knosys_2024_111511
crossref_primary_10_1016_j_comnet_2021_108671
crossref_primary_10_1109_TSC_2022_3195179
crossref_primary_10_1109_TWC_2020_3038407
crossref_primary_10_3390_app14062345
crossref_primary_10_1016_j_hcc_2025_100302
crossref_primary_10_1109_TMC_2023_3332034
crossref_primary_10_1016_j_comnet_2021_108661
crossref_primary_10_1109_TIFS_2023_3258255
crossref_primary_10_1016_j_cels_2021_10_003
crossref_primary_10_1109_JIOT_2023_3347552
crossref_primary_10_1109_ACCESS_2024_3523909
crossref_primary_10_1109_TIFS_2025_3593938
crossref_primary_10_1109_JIOT_2021_3132363
crossref_primary_10_1109_TCSVT_2021_3105723
crossref_primary_10_1145_3633202
crossref_primary_10_1016_j_comnet_2024_110358
crossref_primary_10_1109_ACCESS_2025_3573933
crossref_primary_10_32604_cmes_2024_048932
crossref_primary_10_3390_electronics14163237
crossref_primary_10_1109_JIOT_2024_3417003
crossref_primary_10_1016_j_csi_2023_103827
crossref_primary_10_1145_3766066
crossref_primary_10_1016_j_eswa_2024_124724
crossref_primary_10_1109_ACCESS_2024_3520665
crossref_primary_10_3390_machines11060636
crossref_primary_10_1109_TII_2021_3105492
crossref_primary_10_1080_17517575_2022_2101025
crossref_primary_10_1109_TIFS_2023_3271268
crossref_primary_10_1109_TPDS_2022_3206480
crossref_primary_10_1109_TIFS_2024_3402993
crossref_primary_10_1038_s41746_024_01272_9
crossref_primary_10_1109_TPAMI_2023_3332428
crossref_primary_10_1016_j_knosys_2023_110347
crossref_primary_10_1109_TIFS_2024_3472531
crossref_primary_10_1016_j_csbj_2024_10_037
crossref_primary_10_1002_mp_16964
crossref_primary_10_1109_TNSM_2024_3525338
crossref_primary_10_1109_TKDE_2024_3430819
crossref_primary_10_1007_s00586_024_08172_2
crossref_primary_10_1016_j_adhoc_2023_103262
crossref_primary_10_1016_j_jisa_2021_102949
crossref_primary_10_1109_TCCN_2024_3519355
crossref_primary_10_1109_MCI_2024_3363971
crossref_primary_10_1007_s12652_022_04367_x
crossref_primary_10_1016_j_csi_2025_104019
crossref_primary_10_1016_j_gfs_2021_100493
crossref_primary_10_1002_int_22993
crossref_primary_10_1016_j_jspi_2024_106186
crossref_primary_10_1109_TIFS_2025_3530676
crossref_primary_10_3390_electronics12040870
crossref_primary_10_1007_s11390_024_2635_5
crossref_primary_10_1109_TMC_2025_3533090
crossref_primary_10_1177_30504554251340238
crossref_primary_10_1109_LWC_2022_3181509
crossref_primary_10_1109_TIFS_2020_3043139
crossref_primary_10_1109_ACCESS_2024_3360691
crossref_primary_10_1109_TVT_2024_3524834
crossref_primary_10_1109_TIFS_2022_3196274
crossref_primary_10_1007_s00521_025_11420_1
crossref_primary_10_1016_j_future_2024_107637
crossref_primary_10_1109_ACCESS_2021_3118642
crossref_primary_10_1007_s10586_024_04845_1
crossref_primary_10_1109_TKDE_2024_3372708
crossref_primary_10_3390_electronics14010177
crossref_primary_10_1016_j_ipm_2022_103061
crossref_primary_10_1145_3656344
crossref_primary_10_1016_j_neucom_2024_127663
crossref_primary_10_1109_TC_2023_3239542
crossref_primary_10_1016_j_semradonc_2022_06_009
crossref_primary_10_3390_fi16100374
crossref_primary_10_3390_app12168239
crossref_primary_10_1145_3606017
crossref_primary_10_1007_s10994_023_06332_x
crossref_primary_10_1109_ACCESS_2024_3448470
crossref_primary_10_3390_bdcc6040127
crossref_primary_10_1007_s00259_022_06053_8
crossref_primary_10_1109_TCSS_2023_3322824
crossref_primary_10_1016_j_cmpb_2023_107845
crossref_primary_10_3390_electronics13214187
crossref_primary_10_1109_ACCESS_2025_3576135
crossref_primary_10_1007_s11042_021_11751_w
crossref_primary_10_1016_j_knosys_2024_111534
crossref_primary_10_1109_TMC_2024_3477616
crossref_primary_10_1109_TIFS_2024_3515797
crossref_primary_10_1002_int_22727
crossref_primary_10_1016_j_comnet_2025_111555
crossref_primary_10_1109_TIFS_2024_3515793
crossref_primary_10_1177_10692509241301588
crossref_primary_10_1109_TPDS_2021_3127712
crossref_primary_10_3390_electronics13122276
crossref_primary_10_1109_ACCESS_2025_3593953
crossref_primary_10_1007_s00607_024_01257_2
crossref_primary_10_3390_healthcare11152199
crossref_primary_10_1038_s41598_025_16158_3
crossref_primary_10_3390_app12105174
crossref_primary_10_1109_ACCESS_2025_3554138
crossref_primary_10_3390_jmse13010032
crossref_primary_10_1016_j_segan_2025_101784
crossref_primary_10_1109_JIOT_2023_3237806
crossref_primary_10_1109_TIFS_2024_3420135
crossref_primary_10_1109_ACCESS_2021_3074221
crossref_primary_10_1109_TPDS_2024_3354713
crossref_primary_10_1109_TPDS_2021_3138848
crossref_primary_10_3390_electronics12040842
crossref_primary_10_1109_TWC_2023_3245621
crossref_primary_10_1109_TBDATA_2025_3534622
crossref_primary_10_1109_TIFS_2025_3577498
crossref_primary_10_3390_sym14020195
crossref_primary_10_3390_electronics12102287
crossref_primary_10_1016_j_ejor_2023_12_013
crossref_primary_10_1109_TNSE_2022_3185327
crossref_primary_10_1109_TII_2022_3161517
crossref_primary_10_1109_TNSE_2025_3546777
crossref_primary_10_3390_math10244766
crossref_primary_10_1007_s10489_024_06209_z
crossref_primary_10_1109_TBDATA_2022_3205705
crossref_primary_10_1016_j_imu_2024_101547
crossref_primary_10_1145_3560486
crossref_primary_10_1016_j_trc_2024_104743
crossref_primary_10_1145_3560485
crossref_primary_10_1109_TVT_2023_3287221
crossref_primary_10_3390_su132011459
crossref_primary_10_1109_TIFS_2023_3309095
crossref_primary_10_1016_j_neucom_2025_130579
crossref_primary_10_1109_TMC_2023_3268323
crossref_primary_10_1109_MNET_134_2200619
crossref_primary_10_1007_s10207_024_00813_3
crossref_primary_10_1016_j_knosys_2024_112208
crossref_primary_10_1109_JIOT_2023_3292232
crossref_primary_10_1109_TCE_2023_3320122
crossref_primary_10_1109_TNSM_2024_3399534
crossref_primary_10_1016_j_cmpb_2025_108870
crossref_primary_10_1109_TGCN_2024_3373886
crossref_primary_10_1109_JIOT_2024_3360094
crossref_primary_10_1016_j_sysconle_2025_106147
crossref_primary_10_1007_s11227_024_06845_9
crossref_primary_10_1016_j_neucom_2024_128317
crossref_primary_10_1016_j_im_2024_103922
crossref_primary_10_1016_j_comnet_2024_110510
crossref_primary_10_1063_5_0293257
crossref_primary_10_1109_TMC_2025_3553501
crossref_primary_10_1016_j_jisa_2025_104039
crossref_primary_10_1145_3501296
crossref_primary_10_1016_j_artmed_2024_103024
crossref_primary_10_1109_TAI_2024_3389611
crossref_primary_10_3390_aerospace12010041
crossref_primary_10_1109_TDSC_2024_3429503
crossref_primary_10_1109_TIFS_2025_3580231
crossref_primary_10_1016_j_dcan_2024_03_004
crossref_primary_10_1109_TDSC_2023_3321565
crossref_primary_10_1002_ett_4757
crossref_primary_10_1109_TCE_2024_3499959
crossref_primary_10_1109_ACCESS_2024_3458911
crossref_primary_10_3390_electronics12132951
crossref_primary_10_1109_TMC_2025_3531919
crossref_primary_10_1109_ACCESS_2024_3378126
crossref_primary_10_1109_ACCESS_2025_3560211
crossref_primary_10_3390_electronics14112263
crossref_primary_10_1109_TDSC_2023_3274119
crossref_primary_10_1109_JIOT_2022_3172114
crossref_primary_10_1109_JIOT_2023_3329363
crossref_primary_10_1016_j_future_2023_07_033
crossref_primary_10_1016_j_eswa_2025_129063
crossref_primary_10_1016_j_neunet_2025_107199
crossref_primary_10_1016_j_fmre_2024_01_011
crossref_primary_10_1016_j_cose_2025_104473
crossref_primary_10_1007_s10586_024_05061_7
crossref_primary_10_1016_j_compeleceng_2023_108986
crossref_primary_10_1109_TIFS_2024_3357288
crossref_primary_10_1007_s41666_023_00132_7
crossref_primary_10_1109_JIOT_2024_3405855
crossref_primary_10_1016_j_jpdc_2024_104976
crossref_primary_10_1109_TMC_2024_3398801
crossref_primary_10_3390_electronics14020361
crossref_primary_10_1016_j_comnet_2024_110321
crossref_primary_10_1016_j_sysarc_2025_103364
crossref_primary_10_32604_cmc_2023_039487
crossref_primary_10_1109_TMC_2025_3561791
crossref_primary_10_1016_j_comnet_2024_110560
crossref_primary_10_1145_3665220
crossref_primary_10_1016_j_inffus_2023_102029
crossref_primary_10_1016_j_rser_2023_114091
crossref_primary_10_1007_s10462_023_10563_8
crossref_primary_10_1016_j_sysarc_2022_102418
crossref_primary_10_3390_fi17060233
crossref_primary_10_3390_ani11102981
crossref_primary_10_1016_j_comcom_2025_108053
crossref_primary_10_1007_s10489_022_03435_1
crossref_primary_10_1016_j_future_2025_108140
crossref_primary_10_1109_TVCG_2022_3209347
crossref_primary_10_1016_j_comnet_2024_110798
crossref_primary_10_1016_j_comnet_2025_111705
crossref_primary_10_1016_j_iot_2023_100966
crossref_primary_10_1016_j_future_2023_06_010
crossref_primary_10_1109_JBHI_2023_3306425
crossref_primary_10_1109_TIM_2025_3568978
crossref_primary_10_1088_1742_6596_2138_1_012010
crossref_primary_10_1007_s11276_022_03109_3
crossref_primary_10_1109_JIOT_2022_3143842
crossref_primary_10_1109_JIOT_2024_3521609
crossref_primary_10_3390_app15031261
crossref_primary_10_1109_TETC_2024_3356068
crossref_primary_10_1186_s42400_021_00105_6
crossref_primary_10_1109_TII_2022_3145010
crossref_primary_10_1109_JIOT_2025_3576225
crossref_primary_10_1109_JETCAS_2023_3293253
crossref_primary_10_1109_ACCESS_2022_3208715
crossref_primary_10_3390_electronics13173423
crossref_primary_10_1109_TNSE_2021_3100096
crossref_primary_10_1016_j_dsp_2023_104353
crossref_primary_10_1109_COMST_2024_3430368
crossref_primary_10_1016_j_future_2023_05_002
crossref_primary_10_3390_s25072197
crossref_primary_10_1109_TAI_2024_3363670
crossref_primary_10_1007_s10489_024_05521_y
crossref_primary_10_1007_s10489_024_05589_6
crossref_primary_10_1093_database_baaf016
crossref_primary_10_1109_JIOT_2023_3282899
Cites_doi 10.1109/ICASSP40776.2020.9053740
10.1109/TCOMM.2019.2944169
10.1109/JSAC.2019.2933890
10.1109/TPDS.2019.2899097
10.1109/TMC.2018.2853746
10.1145/1065167.1065184
10.1109/5.726791
10.1145/2976749.2978318
10.1109/INFOCOM.2019.8737464
10.1109/MNET.2019.1800286
10.1109/ICC.2019.8761267
10.1109/MNET.001.1800510
10.1145/2660267.2660348
10.1109/CDC.2012.6426626
10.1145/2810103.2813677
10.1561/0400000042
10.1109/INFOCOM.2019.8737416
10.1145/2810103.2813687
10.1109/ICDE.2019.00063
10.1109/JSAC.2019.2904348
10.1145/3298981
10.1109/JIOT.2019.2907245
10.1109/COMST.2018.2844341
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2020.2988575
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 3469
ExternalDocumentID 10_1109_TIFS_2020_2988575
9069945
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program
  grantid: 2018YFB1004800
– fundername: Princeton Center for Statistics and Machine Learning under a Data X Grant
– fundername: U.S. National Science Foundation
  grantid: CCF-1908308
  funderid: 10.13039/100000001
– fundername: National Natural Science Foundation of China
  grantid: 61872184; 61727802
  funderid: 10.13039/501100001809
– fundername: SUTD Growth Plan Grant for AI
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-cf659bda33ad50a89874eab747bb86acd1fa82b6f79fa3f3cb3db680a5e7f13f3
IEDL.DBID RIE
ISICitedReferencesCount 1497
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545212900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-6013
IngestDate Mon Jun 30 04:49:36 EDT 2025
Sat Nov 29 03:49:40 EST 2025
Tue Nov 18 22:37:10 EST 2025
Wed Aug 27 02:14:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-cf659bda33ad50a89874eab747bb86acd1fa82b6f79fa3f3cb3db680a5e7f13f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/11343/251362
PQID 2414533724
PQPubID 85506
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TIFS_2020_2988575
crossref_primary_10_1109_TIFS_2020_2988575
ieee_primary_9069945
proquest_journals_2414533724
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
xiangru (ref17) 2015
ref12
ref37
ref15
ref36
ref14
ref10
brendan mcmahan (ref6) 2016
ref2
ref1
ref16
mohammad (ref8) 2019
ref24
ma (ref23) 2019
ref26
ref25
ref20
ref22
ref21
nesterov (ref38) 2014
brendan mcmahan (ref32) 2017
wu (ref30) 2019
ref28
ref27
lian (ref18) 2017
ref29
ref9
ref4
ref3
li (ref31) 2019
kone?ný (ref7) 2016
li (ref11) 2019
ref5
geyer (ref34) 2017
ryffel (ref33) 2018
li (ref19) 2018
truex (ref35) 2018
References_xml – ident: ref15
  doi: 10.1109/ICASSP40776.2020.9053740
– year: 2019
  ident: ref11
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: arXiv 1908 07873
– ident: ref13
  doi: 10.1109/TCOMM.2019.2944169
– ident: ref3
  doi: 10.1109/JSAC.2019.2933890
– year: 2019
  ident: ref31
  article-title: Differentially private meta-learning
  publication-title: arXiv 1909 05830
– ident: ref28
  doi: 10.1109/TPDS.2019.2899097
– ident: ref1
  doi: 10.1109/TMC.2018.2853746
– year: 2017
  ident: ref32
  article-title: Learning differentially private recurrent language models
  publication-title: arXiv 1710 06963
– ident: ref25
  doi: 10.1145/1065167.1065184
– start-page: 5336
  year: 2017
  ident: ref18
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
  publication-title: Proc ACM NIPS
– ident: ref37
  doi: 10.1109/5.726791
– ident: ref29
  doi: 10.1145/2976749.2978318
– year: 2019
  ident: ref23
  article-title: On safeguarding privacy and security in the framework of federated learning
  publication-title: arXiv 1909 06512
– ident: ref12
  doi: 10.1109/INFOCOM.2019.8737464
– ident: ref9
  doi: 10.1109/MNET.2019.1800286
– year: 2016
  ident: ref6
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: arXiv 1602 05629
– ident: ref14
  doi: 10.1109/ICC.2019.8761267
– ident: ref4
  doi: 10.1109/MNET.001.1800510
– ident: ref26
  doi: 10.1145/2660267.2660348
– start-page: 2737
  year: 2015
  ident: ref17
  article-title: Asynchronous parallel stochastic gradient for nonconvex optimization
  publication-title: Proc ACM NIPS
– year: 2019
  ident: ref8
  article-title: Adaptive task allocation for asynchronous federated mobile edge learning
  publication-title: arXiv 1905 01656
– ident: ref16
  doi: 10.1109/CDC.2012.6426626
– ident: ref36
  doi: 10.1145/2810103.2813677
– year: 2014
  ident: ref38
  publication-title: Introductory Lectures on Convex Optimization A Basic Course
– year: 2018
  ident: ref19
  article-title: Federated optimization in heterogeneous networks
  publication-title: arXiv 1812 06127
– year: 2017
  ident: ref34
  article-title: Differentially private federated learning: A client level perspective
  publication-title: arXiv 1712 07557
– year: 2018
  ident: ref35
  article-title: A hybrid approach to privacy-preserving federated learning
  publication-title: arXiv 1812 03224
– ident: ref24
  doi: 10.1561/0400000042
– year: 2018
  ident: ref33
  article-title: A generic framework for privacy preserving deep learning
  publication-title: arXiv 1811 04017
– ident: ref22
  doi: 10.1109/INFOCOM.2019.8737416
– ident: ref21
  doi: 10.1145/2810103.2813687
– year: 2019
  ident: ref30
  article-title: The value of collaboration in convex machine learning with differential privacy
  publication-title: arXiv 1906 09679
– year: 2016
  ident: ref7
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: arXiv 1610 05492
– ident: ref27
  doi: 10.1109/ICDE.2019.00063
– ident: ref20
  doi: 10.1109/JSAC.2019.2904348
– ident: ref10
  doi: 10.1145/3298981
– ident: ref2
  doi: 10.1109/JIOT.2019.2907245
– ident: ref5
  doi: 10.1109/COMST.2018.2844341
SSID ssj0044168
Score 2.7173688
Snippet Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients' private data from being exposed to...
Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving clients’ private data from being exposed to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3454
SubjectTerms Agglomeration
Algorithms
Analytical models
Artificial neural networks
client selection
Clients
Computer simulation
Convergence
convergence performance
differential privacy
Distributed databases
Federated learning
information leakage
Levels
Machine learning
Mathematical models
Parameters
Privacy
Scheduling
Servers
Tradeoffs
Training
Title Federated Learning With Differential Privacy: Algorithms and Performance Analysis
URI https://ieeexplore.ieee.org/document/9069945
https://www.proquest.com/docview/2414533724
Volume 15
WOSCitedRecordID wos000545212900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6013
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWE2bJmm8ibroRVZU9Fby1IV1V3ZXwX9v0qarogjeSpsppV8nM5N0vg9gTzijNRMksQU2SW6FSZTIScIJ1VxiGVL8SmyCX10VDw-iMwUHk14Ya23185k9DIfVXr4Z6NewVHYkMBMip9MwzTmre7WaWddH9brtjVKW-CKDxB3MFIuj28v2ja8EM3yYiSIoUn6LQZWoyo-ZuAov7cX_PdgSLMQ0Ep3UuC_DlO2vwGIj0YCix67A_Be-wVW4bgfqCJ9dGhR5VR_RfXf8hM6iTIp39x7qDLtvUr8fo5Pe42DoLz-PkOwb1PnsMUANl8ka3LXPb08vkqipkGhC2DjRjlGhjCREGhqgKHhupfJFhVIFk9qkThaZYo4LJ4kjWhGjWIEltdyl_sQ6zPQHfbsBiFqChXRUEmzyzBLprLM8TVUqpPCGLcDNWy51JBwPuhe9sio8sCgDMGUApozAtGB_YvJSs238NXg1IDEZGEFowXYDZRn9cVT6PCX3iS3P8s3frbZgLty7XlzZhpnx8NXuwKx-G3dHw93qU_sANRfSng
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgsT2sELLtLIBfuAJkdWJ7STmrQKqVoyqiCL6FvlnqdS1U39J--9nJ04BgZB4ixKfEuXL-e7s3PcBvOZWK5VyEpkc64gariPJKYkywlQmsPApfik2kY1G-XTKx0fw9tALY4wpfz4zV_6w3MvXK7XzS2VdjlPOKXsADxmlCa66tep518X1qvGNsTRyZQYJe5gx5t3JsP_V1YIJvkp47jUpf4tCpazKH3NxGWD6zf97tCdwGhJJ1KuQfwpHZtmCZi3SgILPtuDkF8bBNnzpe_IIl19qFJhVZ-j7fPsDfQhCKc7hF2i8nu-FunuHeovZau0u32yQWGo0_tllgGo2k2fwrf9x8n4QBVWFSBGSbiNlU8alFoQIzTwYeUaNkK6skDJPhdKxFXkiU5txK4glShIt0xwLZjIbuxNn0FiuluYcEDMEc2GZIFjTxBBhjTVZHMuYC-4MO4Drt1yoQDnulS8WRVl6YF54YAoPTBGA6cCbg8ltxbfxr8Ftj8RhYAChA5c1lEXwyE3hMhXqUtssoc__bvUKHg8mn6-L6-Ho0wUc-_tUSy2X0Niud-YFPFL77Xyzfll-dvdQ69Xl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+With+Differential+Privacy%3A+Algorithms+and+Performance+Analysis&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Wei%2C+Kang&rft.au=Li%2C+Jun&rft.au=Ding%2C+Ming&rft.au=Ma%2C+Chuan&rft.date=2020&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=15&rft.spage=3454&rft.epage=3469&rft_id=info:doi/10.1109%2FTIFS.2020.2988575&rft.externalDocID=9069945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon