A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms
Electrocardiography is the most common tool to diagnose cardiovascular diseases. Annotation, segmentation and rhythm classification of ECGs are challenging tasks, especially in the presence of atrial fibrillation and other arrhythmias. Our aim is to increase the accuracy of heart rhythm estimation b...
Uložené v:
| Vydané v: | Physiological measurement Ročník 39; číslo 10; s. 104005 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
24.10.2018
|
| ISSN: | 1361-6579, 1361-6579 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electrocardiography is the most common tool to diagnose cardiovascular diseases. Annotation, segmentation and rhythm classification of ECGs are challenging tasks, especially in the presence of atrial fibrillation and other arrhythmias. Our aim is to increase the accuracy of heart rhythm estimation by the use of extreme gradient boosting trees and the development of a deep convolutional neural network for ECG segmentation.
We trained a convolutional neural network with waveforms from PhysioNet databases to annotate QRS complexes, P waves, T waves, noise and interbeat ECG segments that characterize the essences of normal and irregular heart beats. We evaluated true positive rates, positive predictive values and mean absolute differences of our annotation based on reference annotations of the QT and MIT-BIH P-wave database. Moreover, we compared the results with standard QRS detectors and Ecgpuwave. Extreme gradient boosting trees were used to determine the heart rhythm based on hand-crafted features. More precisely, a noise estimation function was used in combination with heart rate and interval data. Furthermore we defined particular features based on ECG morphology, appearance of P waves and detection of irregular beats. We examined the feature importance and identified key features for normal sinus rhythm, atrial fibrillation, alternative rhythm and noisy recordings. The classification performance was evaluated externally using F
scores by applying the algorithm to the hidden test set provided by the PhysioNet/CinC Challenge 2017.
The true positive rate of the convolutional neural network in detection of manually revised R peaks in the QT database was [Formula: see text] and the positive predictive value was [Formula: see text]. The detection of P and T waves reached a true positive rate of [Formula: see text] and [Formula: see text] respectively, given a 50 ms tolerance when comparing the reference to the test annotation set. The rhythm classification performance reached an overall F
score of 0.82 when applying the algorithm to the hidden test set.
We achieved a shared rank #9 in the post-challenge phase of the PhysioNet/CinC Challenge 2017. |
|---|---|
| AbstractList | Electrocardiography is the most common tool to diagnose cardiovascular diseases. Annotation, segmentation and rhythm classification of ECGs are challenging tasks, especially in the presence of atrial fibrillation and other arrhythmias. Our aim is to increase the accuracy of heart rhythm estimation by the use of extreme gradient boosting trees and the development of a deep convolutional neural network for ECG segmentation.OBJECTIVEElectrocardiography is the most common tool to diagnose cardiovascular diseases. Annotation, segmentation and rhythm classification of ECGs are challenging tasks, especially in the presence of atrial fibrillation and other arrhythmias. Our aim is to increase the accuracy of heart rhythm estimation by the use of extreme gradient boosting trees and the development of a deep convolutional neural network for ECG segmentation.We trained a convolutional neural network with waveforms from PhysioNet databases to annotate QRS complexes, P waves, T waves, noise and interbeat ECG segments that characterize the essences of normal and irregular heart beats. We evaluated true positive rates, positive predictive values and mean absolute differences of our annotation based on reference annotations of the QT and MIT-BIH P-wave database. Moreover, we compared the results with standard QRS detectors and Ecgpuwave. Extreme gradient boosting trees were used to determine the heart rhythm based on hand-crafted features. More precisely, a noise estimation function was used in combination with heart rate and interval data. Furthermore we defined particular features based on ECG morphology, appearance of P waves and detection of irregular beats. We examined the feature importance and identified key features for normal sinus rhythm, atrial fibrillation, alternative rhythm and noisy recordings. The classification performance was evaluated externally using F 1 scores by applying the algorithm to the hidden test set provided by the PhysioNet/CinC Challenge 2017.APPROACHWe trained a convolutional neural network with waveforms from PhysioNet databases to annotate QRS complexes, P waves, T waves, noise and interbeat ECG segments that characterize the essences of normal and irregular heart beats. We evaluated true positive rates, positive predictive values and mean absolute differences of our annotation based on reference annotations of the QT and MIT-BIH P-wave database. Moreover, we compared the results with standard QRS detectors and Ecgpuwave. Extreme gradient boosting trees were used to determine the heart rhythm based on hand-crafted features. More precisely, a noise estimation function was used in combination with heart rate and interval data. Furthermore we defined particular features based on ECG morphology, appearance of P waves and detection of irregular beats. We examined the feature importance and identified key features for normal sinus rhythm, atrial fibrillation, alternative rhythm and noisy recordings. The classification performance was evaluated externally using F 1 scores by applying the algorithm to the hidden test set provided by the PhysioNet/CinC Challenge 2017.The true positive rate of the convolutional neural network in detection of manually revised R peaks in the QT database was [Formula: see text] and the positive predictive value was [Formula: see text]. The detection of P and T waves reached a true positive rate of [Formula: see text] and [Formula: see text] respectively, given a 50 ms tolerance when comparing the reference to the test annotation set. The rhythm classification performance reached an overall F 1 score of 0.82 when applying the algorithm to the hidden test set.MAIN RESULTSThe true positive rate of the convolutional neural network in detection of manually revised R peaks in the QT database was [Formula: see text] and the positive predictive value was [Formula: see text]. The detection of P and T waves reached a true positive rate of [Formula: see text] and [Formula: see text] respectively, given a 50 ms tolerance when comparing the reference to the test annotation set. The rhythm classification performance reached an overall F 1 score of 0.82 when applying the algorithm to the hidden test set.We achieved a shared rank #9 in the post-challenge phase of the PhysioNet/CinC Challenge 2017.SIGNIFICANCEWe achieved a shared rank #9 in the post-challenge phase of the PhysioNet/CinC Challenge 2017. Electrocardiography is the most common tool to diagnose cardiovascular diseases. Annotation, segmentation and rhythm classification of ECGs are challenging tasks, especially in the presence of atrial fibrillation and other arrhythmias. Our aim is to increase the accuracy of heart rhythm estimation by the use of extreme gradient boosting trees and the development of a deep convolutional neural network for ECG segmentation. We trained a convolutional neural network with waveforms from PhysioNet databases to annotate QRS complexes, P waves, T waves, noise and interbeat ECG segments that characterize the essences of normal and irregular heart beats. We evaluated true positive rates, positive predictive values and mean absolute differences of our annotation based on reference annotations of the QT and MIT-BIH P-wave database. Moreover, we compared the results with standard QRS detectors and Ecgpuwave. Extreme gradient boosting trees were used to determine the heart rhythm based on hand-crafted features. More precisely, a noise estimation function was used in combination with heart rate and interval data. Furthermore we defined particular features based on ECG morphology, appearance of P waves and detection of irregular beats. We examined the feature importance and identified key features for normal sinus rhythm, atrial fibrillation, alternative rhythm and noisy recordings. The classification performance was evaluated externally using F scores by applying the algorithm to the hidden test set provided by the PhysioNet/CinC Challenge 2017. The true positive rate of the convolutional neural network in detection of manually revised R peaks in the QT database was [Formula: see text] and the positive predictive value was [Formula: see text]. The detection of P and T waves reached a true positive rate of [Formula: see text] and [Formula: see text] respectively, given a 50 ms tolerance when comparing the reference to the test annotation set. The rhythm classification performance reached an overall F score of 0.82 when applying the algorithm to the hidden test set. We achieved a shared rank #9 in the post-challenge phase of the PhysioNet/CinC Challenge 2017. |
| Author | Vollmer, Marcus Sodmann, Philipp Nath, Neetika Kaderali, Lars |
| Author_xml | – sequence: 1 givenname: Philipp surname: Sodmann fullname: Sodmann, Philipp organization: Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany. DZHK (German Center for Cardiological Research), partner site Greifswald, Greifswald, Germany – sequence: 2 givenname: Marcus surname: Vollmer fullname: Vollmer, Marcus – sequence: 3 givenname: Neetika surname: Nath fullname: Nath, Neetika – sequence: 4 givenname: Lars surname: Kaderali fullname: Kaderali, Lars |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30235165$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkL1PwzAUxC1URGlhZ0IeWUL9kbjOWFWlIFVigTl6tZ_VQGIXOwH1v6e0BXHLnd799IYbkYEPHgm54eyeM60nXCqeqWJaTgBQsvyMXP6dBv_ykIxSemOMcy2KCzKUTMiCq-KS2Bk1wX-Gpu_q4KGhHvt4sO4rxHfqQqSL-ZKC96GDH4ZCot0G6RpSnQ69aSCl2tXm2AdHDURbg6Fxs-s2bboi5w6ahNcnH5PXh8XL_DFbPS-f5rNVZqRUXWaskqUrnGKIUq9BGwalcaDyqdMCtJASp8pK5WRe6txiYdFZoUBbFMiYGJO7499tDB89pq5q62SwacBj6FMl-F5FPi3VHr09of26RVttY91C3FW_y4hvR7xpFw |
| CitedBy_id | crossref_primary_10_1109_TIM_2022_3224535 crossref_primary_10_3389_fcvm_2024_1341786 crossref_primary_10_1007_s41870_023_01241_7 crossref_primary_10_1038_s41598_022_18664_0 crossref_primary_10_1016_j_bspc_2020_101874 crossref_primary_10_3390_s22166071 crossref_primary_10_1109_ACCESS_2022_3181727 crossref_primary_10_1142_S0218126625300053 crossref_primary_10_1016_j_compbiomed_2020_103801 crossref_primary_10_1016_j_compbiomed_2022_106511 crossref_primary_10_1016_j_bspc_2022_104106 crossref_primary_10_1093_cvr_cvab169 crossref_primary_10_1161_JAHA_119_013924 crossref_primary_10_1016_j_ins_2022_01_030 crossref_primary_10_3390_s23167204 crossref_primary_10_1109_JSEN_2022_3162691 crossref_primary_10_1016_j_jelectrocard_2019_12_009 crossref_primary_10_3390_electronics11234021 crossref_primary_10_1080_17434440_2022_2115887 crossref_primary_10_1016_j_compbiomed_2022_105331 crossref_primary_10_1038_s41598_020_79512_7 crossref_primary_10_3390_s21206848 crossref_primary_10_1088_1361_6579_ac72f5 crossref_primary_10_1109_ACCESS_2023_3288700 crossref_primary_10_1016_j_eswa_2025_127955 crossref_primary_10_1088_2057_1976_ac2b4e crossref_primary_10_1088_1361_6579_ac08e6 crossref_primary_10_1136_jim_2021_002278 crossref_primary_10_1016_j_cmpb_2020_105740 crossref_primary_10_3390_bioengineering10050552 crossref_primary_10_1016_j_imu_2020_100507 crossref_primary_10_1016_j_compbiomed_2022_105445 crossref_primary_10_1109_ACCESS_2025_3567093 crossref_primary_10_3390_s22062329 crossref_primary_10_1155_2021_9926769 crossref_primary_10_3389_fneur_2022_943816 crossref_primary_10_1016_j_bspc_2020_102194 crossref_primary_10_4018_IJACI_300796 crossref_primary_10_1007_s00034_021_01889_1 crossref_primary_10_1016_j_cmpb_2019_02_005 crossref_primary_10_1109_JBHI_2023_3308856 crossref_primary_10_3390_s20247307 crossref_primary_10_1016_j_bbe_2021_04_015 crossref_primary_10_1007_s00521_021_06005_7 crossref_primary_10_1007_s10916_019_1511_2 crossref_primary_10_1155_2022_9592970 crossref_primary_10_1007_s42979_023_01970_3 crossref_primary_10_1016_j_measurement_2023_113205 crossref_primary_10_1088_1361_6579_ab15a2 crossref_primary_10_3390_metabo13121204 crossref_primary_10_1007_s11042_022_13821_z crossref_primary_10_1038_s41746_022_00709_3 crossref_primary_10_1109_ACCESS_2021_3092631 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1088/1361-6579/aae304 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Engineering Physics |
| EISSN | 1361-6579 |
| ExternalDocumentID | 30235165 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NPM NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 UCJ W28 XPP ZMT 7X8 ADEQX AEINN |
| ID | FETCH-LOGICAL-c336t-cd639f5f60ee38ba8c0a9cfa647f82a8233e76d36f34984de5defd26a8de2e002 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448419800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-6579 |
| IngestDate | Thu Oct 02 05:04:40 EDT 2025 Wed Feb 19 02:36:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-cd639f5f60ee38ba8c0a9cfa647f82a8233e76d36f34984de5defd26a8de2e002 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| PMID | 30235165 |
| PQID | 2111154796 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2111154796 pubmed_primary_30235165 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-24 |
| PublicationDateYYYYMMDD | 2018-10-24 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physiological measurement |
| PublicationTitleAlternate | Physiol Meas |
| PublicationYear | 2018 |
| SSID | ssj0011825 |
| Score | 2.455672 |
| Snippet | Electrocardiography is the most common tool to diagnose cardiovascular diseases. Annotation, segmentation and rhythm classification of ECGs are challenging... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 104005 |
| Title | A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30235165 https://www.proquest.com/docview/2111154796 |
| Volume | 39 |
| WOSCitedRecordID | wos000448419800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH6oU9GDP-av-YsIXsu6pE3Tk4yx6WVjB4XdRvaSsB1s5zoF_3uTtHNeBMFLCw0tJf3y8jXfl_cA7hPEFueog9hM7A8KRRFInIQBdSl-UIacKuGLTSSDgRiN0mG14FZUtspVTPSBWuXo1sib1I3tOEpS_jB_C1zVKKeuViU0NqHGLJVxqE5GaxXBcue43HfVchaPtJIp7cBqfl9rSqmZL9P2C8H0E03v8L-veAQHFcUk7RITx7Chszrs_0g8WIfdfiWp12HHe0CxOAHVJs6DXmHRPsHluvQn7xQnlt6SbueRyCzLSwGfyIJYAknsVDgrfDs6Mu7cR2V7bgh6CCJZTD-X09fiFF563efOU1AVYQiQMb4MUFkOY2LDQ62ZmEiBoUzRSB4lRlApKGM64Ypxw6JURErHShtFuRRKU23j7RlsZXmmL4BoSjGSJknThEUTbVIZc2YDHCoUaELdgLtVv44tyJ1yITOdvxfjdc824Lz8OON5mY1j7KoexS0eX_7h7ivYo277QsgDGl1Dzdghrm9gGz-Ws2Jx69Fjj4Nh_wsF6dA3 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network+for+ECG+annotation+as+the+basis+for+classification+of+cardiac+rhythms&rft.jtitle=Physiological+measurement&rft.au=Sodmann%2C+Philipp&rft.au=Vollmer%2C+Marcus&rft.au=Nath%2C+Neetika&rft.au=Kaderali%2C+Lars&rft.date=2018-10-24&rft.issn=1361-6579&rft.eissn=1361-6579&rft.volume=39&rft.issue=10&rft.spage=104005&rft_id=info:doi/10.1088%2F1361-6579%2Faae304&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6579&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6579&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6579&client=summon |