A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations

Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inne...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 51; no. 7-8; pp. 1888 - 1906
Main Authors: Kim, B.S., Lee, D.S., Ha, M.Y., Yoon, H.S.
Format: Journal Article
Language:English
Published: Oxford Elsevier 01.04.2008
Subjects:
ISSN:0017-9310
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on the finite volume method for different Rayleigh numbers varying over the range of 103-106. The study goes further to investigate the effect of the inner cylinder location on the heat transfer and fluid flow. The location of the inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of the cell strongly depend on the Rayleigh number and the position of the inner circular cylinder. The changes in heat transfer quantities have also been presented.
AbstractList Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on the finite volume method for different Rayleigh numbers varying over the range of 103-106. The study goes further to investigate the effect of the inner cylinder location on the heat transfer and fluid flow. The location of the inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of the cell strongly depend on the Rayleigh number and the position of the inner circular cylinder. The changes in heat transfer quantities have also been presented.
Author Lee, D.S.
Kim, B.S.
Yoon, H.S.
Ha, M.Y.
Author_xml – sequence: 1
  givenname: B.S.
  surname: Kim
  fullname: Kim, B.S.
– sequence: 2
  givenname: D.S.
  surname: Lee
  fullname: Lee, D.S.
– sequence: 3
  givenname: M.Y.
  surname: Ha
  fullname: Ha, M.Y.
– sequence: 4
  givenname: H.S.
  surname: Yoon
  fullname: Yoon, H.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20187882$$DView record in Pascal Francis
BookMark eNqNUT1PXDEQdEGkwMF_cJOI5l7s53fvowtCQCIh0UBtbfbWwiefDV6_Q_fv4wPSkIbK69HszO7OiTiKKZIQ51o1Wun-x6bxm0eCsgXmkiGyo9y0Sg2N6htlzJE4VkoPy8lo9VWcMG8OX9X1x2J3IeO8pewRguQyr_cyORmhzLkCmOKOsPgUpY8SJD_PkElSxJB4rtWLL48VR59xDpAl7oOPa8oSilx7V-egWOSOcnk1CAnhoMan4ouDwHT2_i7Ew_XV_eWv5e3dze_Li9slGtOXJa6ccsPguhYmTWPbqcmssV-50Y2DHlujtJpGxM7pFvtpgB66TlfsT2v0ZMgsxPc33aecnmfiYreekUKASGlma9pVq2pDJX57JwLXSV29Inq2T9lvIe9tJY3DWA0X4vqNhzkxZ3IWfXndqR7eB6uVPURiN_b_SOwhEqt6WyOpQj8_CP3z-rTEX4Cooy4
CODEN IJHMAK
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2015_08_011
crossref_primary_10_1016_j_ijthermalsci_2016_06_004
crossref_primary_10_1108_EC_06_2017_0202
crossref_primary_10_1007_s10973_020_09411_6
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_041
crossref_primary_10_1016_j_advengsoft_2009_09_013
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_046
crossref_primary_10_1016_j_rinp_2025_108291
crossref_primary_10_1016_j_est_2019_02_008
crossref_primary_10_1080_10407782_2012_631379
crossref_primary_10_1080_01932691_2021_1931292
crossref_primary_10_1007_s40032_022_00875_z
crossref_primary_10_1007_s43153_022_00251_5
crossref_primary_10_1080_01457632_2016_1255078
crossref_primary_10_1108_HFF_03_2021_0220
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_011
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_097
crossref_primary_10_1016_j_jcp_2019_02_016
crossref_primary_10_1016_j_ijheatmasstransfer_2012_08_012
crossref_primary_10_1080_10407790_2014_955779
crossref_primary_10_1007_s12206_024_1150_5
crossref_primary_10_1088_1742_6596_501_1_012022
crossref_primary_10_1016_j_icheatmasstransfer_2013_05_008
crossref_primary_10_1016_j_icheatmasstransfer_2017_10_015
crossref_primary_10_1007_s12206_018_0623_9
crossref_primary_10_1016_j_ijthermalsci_2011_08_021
crossref_primary_10_1080_17455030_2023_2172476
crossref_primary_10_1007_s00231_021_03145_3
crossref_primary_10_1080_15567036_2020_1856235
crossref_primary_10_1016_j_heliyon_2020_e05568
crossref_primary_10_1063_5_0118137
crossref_primary_10_1007_s41939_024_00653_7
crossref_primary_10_1080_10407782_2014_894398
crossref_primary_10_4028_www_scientific_net_AMM_789_790_282
crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_011
crossref_primary_10_1007_s42452_020_2250_1
crossref_primary_10_1016_j_egypro_2017_11_294
crossref_primary_10_1016_j_icheatmasstransfer_2024_107563
crossref_primary_10_1108_HFF_12_2011_0272
crossref_primary_10_1016_j_compfluid_2018_11_017
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_141
crossref_primary_10_1016_j_ijheatmasstransfer_2013_06_031
crossref_primary_10_1016_j_icheatmasstransfer_2017_05_015
crossref_primary_10_1016_j_icheatmasstransfer_2012_07_026
crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_073
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_139
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_137
crossref_primary_10_1140_epjp_i2017_11330_3
crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_096
crossref_primary_10_1080_17455030_2022_2087117
crossref_primary_10_1016_j_enconman_2011_08_006
crossref_primary_10_1016_j_ijthermalsci_2021_106885
crossref_primary_10_1016_j_icheatmasstransfer_2015_01_006
crossref_primary_10_3390_en18040950
crossref_primary_10_1016_j_ijheatmasstransfer_2008_07_020
crossref_primary_10_1016_j_physleta_2018_04_006
crossref_primary_10_1016_j_camwa_2019_01_002
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_003
crossref_primary_10_1080_01457632_2015_1042343
crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_085
crossref_primary_10_1016_j_matpr_2023_04_642
crossref_primary_10_1038_s41598_022_13196_z
crossref_primary_10_1007_s40997_022_00556_3
crossref_primary_10_1063_5_0270687
crossref_primary_10_1016_j_cep_2017_07_001
crossref_primary_10_1016_j_icheatmasstransfer_2021_105856
crossref_primary_10_1016_j_engappai_2024_109128
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_140
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_080
crossref_primary_10_1016_j_jrras_2025_101698
crossref_primary_10_1016_j_ijheatmasstransfer_2009_09_023
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_166
crossref_primary_10_1002_zamm_202300281
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_081
crossref_primary_10_3389_fphy_2022_929463
crossref_primary_10_1080_01457632_2015_1044416
crossref_primary_10_1016_j_icheatmasstransfer_2010_12_006
crossref_primary_10_1007_s11771_017_3416_x
crossref_primary_10_1016_j_ijheatmasstransfer_2013_10_011
crossref_primary_10_1016_j_cma_2018_09_042
crossref_primary_10_1080_10407782_2013_831679
crossref_primary_10_1007_s10973_022_11509_y
crossref_primary_10_1080_01457632_2017_1338856
crossref_primary_10_3390_en14030559
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124613
crossref_primary_10_1007_s10973_019_08575_0
crossref_primary_10_1016_j_ijheatmasstransfer_2009_12_027
crossref_primary_10_1016_j_ijheatmasstransfer_2015_12_044
crossref_primary_10_1140_epjp_s13360_024_05210_2
crossref_primary_10_1016_j_est_2022_106076
crossref_primary_10_1016_j_compfluid_2018_04_027
crossref_primary_10_1016_j_powtec_2013_12_054
crossref_primary_10_1016_j_icheatmasstransfer_2017_08_018
crossref_primary_10_1016_j_jtice_2024_105850
crossref_primary_10_1016_j_heliyon_2020_e05752
crossref_primary_10_1007_s40032_021_00667_x
crossref_primary_10_1016_j_cjph_2024_07_012
crossref_primary_10_1016_j_cnsns_2025_108614
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_015
crossref_primary_10_1016_j_csite_2024_104911
crossref_primary_10_1016_j_egypro_2014_06_066
crossref_primary_10_1016_j_jtice_2021_06_021
crossref_primary_10_1080_10407782_2015_1069673
crossref_primary_10_1007_s10973_020_09906_2
crossref_primary_10_1016_j_ijthermalsci_2013_05_004
crossref_primary_10_1007_s10973_019_09216_2
crossref_primary_10_1080_10618562_2023_2229250
crossref_primary_10_1016_j_icheatmasstransfer_2022_106029
crossref_primary_10_1016_j_ijheatmasstransfer_2013_07_029
crossref_primary_10_1140_epjp_s13360_025_05979_w
crossref_primary_10_1016_j_csite_2025_106262
crossref_primary_10_1088_1402_4896_ad4c1b
crossref_primary_10_1016_j_cplett_2016_12_045
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_013
crossref_primary_10_1088_1742_6596_1478_1_012028
crossref_primary_10_1016_j_ijheatmasstransfer_2013_07_023
crossref_primary_10_1016_j_ijthermalsci_2020_106570
crossref_primary_10_1140_epjp_i2017_11498_4
crossref_primary_10_1016_j_est_2024_115113
crossref_primary_10_1080_10407782_2014_994414
crossref_primary_10_1038_s41598_021_02046_z
crossref_primary_10_1007_s12206_021_0341_6
crossref_primary_10_1177_09544089221115271
crossref_primary_10_1007_s10973_020_09419_y
crossref_primary_10_1016_j_icheatmasstransfer_2020_105024
crossref_primary_10_1177_1687814015622899
crossref_primary_10_1002_nme_6923
crossref_primary_10_1080_01457632_2016_1151296
crossref_primary_10_1007_s10973_018_7901_8
crossref_primary_10_1016_j_ijthermalsci_2013_01_009
crossref_primary_10_3390_math11081849
crossref_primary_10_1007_s13369_020_04485_8
crossref_primary_10_1080_10407782_2012_707058
crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_079
crossref_primary_10_1016_j_ijmultiphaseflow_2011_12_002
crossref_primary_10_1016_j_ijmecsci_2022_107704
crossref_primary_10_1016_j_euromechflu_2025_204330
crossref_primary_10_1016_j_compfluid_2011_12_006
crossref_primary_10_1016_j_ijheatfluidflow_2024_109715
crossref_primary_10_1016_j_tsep_2021_101099
crossref_primary_10_1088_1572_9494_ac1a6b
crossref_primary_10_1515_ijnsns_2020_0138
crossref_primary_10_1016_j_compfluid_2023_106112
crossref_primary_10_1515_revce_2019_0076
crossref_primary_10_1002_htj_23044
crossref_primary_10_1007_s10973_024_13750_z
crossref_primary_10_1016_j_camwa_2024_06_015
crossref_primary_10_1016_j_icheatmasstransfer_2021_105533
crossref_primary_10_1016_j_ijheatmasstransfer_2009_01_026
crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_041
crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_078
crossref_primary_10_1016_j_molliq_2018_12_104
crossref_primary_10_1016_j_ijmecsci_2019_105080
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_070
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_016
crossref_primary_10_1080_01457632_2015_1060761
crossref_primary_10_1002_htj_22762
crossref_primary_10_1108_HFF_01_2015_0007
crossref_primary_10_1016_j_icheatmasstransfer_2020_104951
crossref_primary_10_1016_j_ijmultiphaseflow_2016_11_007
crossref_primary_10_1177_00368504211020965
crossref_primary_10_1088_1402_4896_ac0fd3
crossref_primary_10_1088_1402_4896_ac3118
crossref_primary_10_1016_j_icheatmasstransfer_2010_05_016
crossref_primary_10_1016_j_jcp_2012_11_050
crossref_primary_10_1016_j_ijthermalsci_2013_06_005
crossref_primary_10_1007_s12206_021_0943_z
crossref_primary_10_1080_10407782_2023_2226823
crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_044
crossref_primary_10_1016_j_jtice_2016_09_024
crossref_primary_10_1016_j_molliq_2024_124728
crossref_primary_10_1142_S0129183126500014
crossref_primary_10_1016_j_ijheatmasstransfer_2014_11_044
crossref_primary_10_1002_zamm_202000285
crossref_primary_10_1007_s12206_015_0246_3
crossref_primary_10_1016_j_icheatmasstransfer_2024_107271
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_133
crossref_primary_10_1002_htj_23265
crossref_primary_10_1007_s10973_021_10829_9
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_132
crossref_primary_10_1615_JPorMedia_2022043412
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_026
crossref_primary_10_1177_16878132221119906
crossref_primary_10_1016_j_icheatmasstransfer_2021_105250
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_007
crossref_primary_10_1007_s40430_025_05566_1
crossref_primary_10_1016_j_icheatmasstransfer_2011_07_012
crossref_primary_10_2298_TSCI240314193A
crossref_primary_10_1155_2017_1726519
crossref_primary_10_1088_1742_6596_745_3_032024
crossref_primary_10_1016_j_applthermaleng_2011_08_018
crossref_primary_10_1016_j_ijheatmasstransfer_2010_07_043
crossref_primary_10_1007_s00231_012_1083_x
crossref_primary_10_1007_s10973_021_10641_5
crossref_primary_10_1515_ijnsns_2021_0073
crossref_primary_10_1007_s10973_025_14090_2
crossref_primary_10_1007_s12206_015_0952_x
crossref_primary_10_1016_j_ijthermalsci_2016_08_003
crossref_primary_10_1016_j_ijheatfluidflow_2016_06_002
crossref_primary_10_1016_j_compfluid_2012_08_012
crossref_primary_10_1063_5_0011282
crossref_primary_10_1002_htj_21776
crossref_primary_10_1016_j_est_2024_111750
crossref_primary_10_1016_j_icheatmasstransfer_2024_108250
crossref_primary_10_1016_j_ijheatmasstransfer_2012_07_051
crossref_primary_10_1080_10407782_2012_709438
crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_004
crossref_primary_10_1080_10407782_2024_2334003
crossref_primary_10_1007_s13369_020_05133_x
crossref_primary_10_1016_j_ijmecsci_2022_107792
crossref_primary_10_1007_s12206_012_1201_1
crossref_primary_10_1007_s13369_019_03956_x
crossref_primary_10_1007_s10973_019_08340_3
crossref_primary_10_1016_j_ijheatmasstransfer_2009_03_048
crossref_primary_10_1016_j_jmmm_2023_171037
crossref_primary_10_1080_10407782_2023_2243380
crossref_primary_10_1016_j_apm_2019_02_012
crossref_primary_10_1016_j_icheatmasstransfer_2022_106037
crossref_primary_10_1016_j_icheatmasstransfer_2025_108976
crossref_primary_10_1080_01430750_2019_1614996
crossref_primary_10_1007_s13369_023_07678_z
crossref_primary_10_1016_j_compfluid_2018_08_029
crossref_primary_10_1016_j_jtice_2016_10_050
crossref_primary_10_1080_10407782_2011_636720
crossref_primary_10_1080_10407782_2013_857880
crossref_primary_10_1080_10407782_2022_2091383
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_080
crossref_primary_10_1007_s10665_023_10279_2
crossref_primary_10_1016_j_expthermflusci_2012_06_009
crossref_primary_10_1016_j_icheatmasstransfer_2014_01_005
crossref_primary_10_1002_htj_23245
crossref_primary_10_1016_j_csite_2025_105947
crossref_primary_10_1038_s41598_018_33079_6
crossref_primary_10_1016_j_icheatmasstransfer_2022_106288
crossref_primary_10_1016_j_est_2022_106028
crossref_primary_10_1016_j_enganabound_2025_106443
crossref_primary_10_1016_j_heliyon_2025_e42637
crossref_primary_10_1016_j_icheatmasstransfer_2025_108604
crossref_primary_10_1007_s10973_020_10499_z
crossref_primary_10_1140_epjp_s13360_021_02035_1
crossref_primary_10_1016_j_ijheatmasstransfer_2012_09_010
crossref_primary_10_1007_s00231_018_2303_9
crossref_primary_10_1016_j_cma_2018_04_023
crossref_primary_10_30657_pea_2024_30_46
crossref_primary_10_1016_j_matpr_2022_01_207
crossref_primary_10_1016_j_molliq_2018_01_130
crossref_primary_10_1007_s10973_024_13550_5
crossref_primary_10_1017_jfm_2022_568
crossref_primary_10_1007_s13369_021_06495_6
crossref_primary_10_1002_num_22971
crossref_primary_10_1016_j_icheatmasstransfer_2022_106292
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_034
crossref_primary_10_1016_j_icheatmasstransfer_2020_104510
crossref_primary_10_1007_s10973_019_09054_2
crossref_primary_10_1631_jzus_A1400120
crossref_primary_10_1016_j_ijheatfluidflow_2013_05_013
crossref_primary_10_1088_1742_6596_1988_1_012012
crossref_primary_10_3390_en14102788
crossref_primary_10_1016_j_matdes_2017_02_039
crossref_primary_10_1615_JPorMedia_2024050696
crossref_primary_10_1063_1_5100892
crossref_primary_10_1016_j_ijheatmasstransfer_2013_06_059
crossref_primary_10_1016_j_cma_2017_03_024
crossref_primary_10_1016_j_csite_2025_106772
crossref_primary_10_1007_s12206_014_1123_1
crossref_primary_10_1016_j_icheatmasstransfer_2018_08_016
crossref_primary_10_1002_zamm_202000002
crossref_primary_10_1016_j_icheatmasstransfer_2012_06_001
crossref_primary_10_1080_10407782_2013_846607
crossref_primary_10_1038_s41598_018_37964_y
crossref_primary_10_1016_j_molliq_2018_01_145
crossref_primary_10_1080_14484846_2024_2362988
crossref_primary_10_1038_s41598_019_57062_x
crossref_primary_10_1051_matecconf_20163801012
crossref_primary_10_1007_s12206_020_0639_9
crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_002
crossref_primary_10_1016_j_rser_2014_07_008
crossref_primary_10_1139_cjp_2019_0055
crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_048
crossref_primary_10_1080_10407782_2019_1673107
crossref_primary_10_1016_j_powtec_2015_02_042
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_101
crossref_primary_10_1007_s00162_022_00632_z
crossref_primary_10_1080_10407782_2018_1507887
crossref_primary_10_1016_j_csite_2025_106665
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125710
crossref_primary_10_1080_10407782_2024_2324081
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_006
crossref_primary_10_1016_j_ijheatmasstransfer_2012_07_005
crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_089
crossref_primary_10_1080_10407782_2010_508435
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_086
crossref_primary_10_1155_2012_161484
crossref_primary_10_1371_journal_pone_0251744
crossref_primary_10_1088_1755_1315_463_1_012044
crossref_primary_10_1016_j_molliq_2018_06_083
crossref_primary_10_1155_2021_4276894
crossref_primary_10_3390_en14216952
crossref_primary_10_1108_09615531311289141
crossref_primary_10_1016_j_cma_2018_05_015
crossref_primary_10_1080_10407790_2019_1685838
crossref_primary_10_1007_s13369_021_05952_6
crossref_primary_10_1016_j_physa_2019_124028
crossref_primary_10_1108_HFF_08_2023_0466
crossref_primary_10_1016_j_icheatmasstransfer_2024_107525
crossref_primary_10_1016_j_csite_2024_105065
crossref_primary_10_1016_j_molliq_2019_01_128
crossref_primary_10_1016_j_jcp_2013_04_044
crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_071
crossref_primary_10_1016_j_applthermaleng_2020_115989
crossref_primary_10_1007_s10973_019_08012_2
crossref_primary_10_3390_en16104055
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_119
crossref_primary_10_1016_j_ijheatmasstransfer_2014_10_065
crossref_primary_10_1515_phys_2022_0189
crossref_primary_10_1016_j_applthermaleng_2024_123643
crossref_primary_10_1080_10407782_2013_836019
crossref_primary_10_1007_s41939_025_01000_0
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119550
crossref_primary_10_1016_j_jtice_2021_04_033
crossref_primary_10_1063_5_0279235
crossref_primary_10_1177_18479804211034296
crossref_primary_10_1007_s12206_020_0738_7
crossref_primary_10_1108_EC_01_2017_0008
crossref_primary_10_3390_math10081222
crossref_primary_10_1016_j_ijmecsci_2018_07_044
crossref_primary_10_1016_j_ijmecsci_2019_105240
crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_089
crossref_primary_10_1016_j_molliq_2016_12_024
crossref_primary_10_1002_mma_9480
crossref_primary_10_3390_en14092584
crossref_primary_10_1016_j_icheatmasstransfer_2012_06_016
crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_020
crossref_primary_10_1080_01496395_2025_2483804
crossref_primary_10_1016_j_icheatmasstransfer_2019_104350
crossref_primary_10_1016_j_molliq_2018_09_016
crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_030
crossref_primary_10_1016_j_ijheatmasstransfer_2016_02_055
crossref_primary_10_1016_j_ijheatmasstransfer_2016_02_054
crossref_primary_10_1088_1742_6596_655_1_012055
crossref_primary_10_1016_j_jcp_2009_12_002
crossref_primary_10_1016_j_ijmecsci_2021_106701
crossref_primary_10_1007_s10973_021_10762_x
crossref_primary_10_1080_10407782_2021_1959824
crossref_primary_10_1080_10407790_2024_2310063
Cites_doi 10.1006/jcph.2001.6778
10.1016/S0017-9310(00)00357-4
10.1002/fld.226
10.1080/10407789208944864
10.1016/j.ijheatmasstransfer.2006.04.020
10.1016/S0045-7825(96)01109-7
10.1016/S0735-1933(00)00117-2
10.1007/BF02990875
10.1016/0017-9310(92)90075-4
10.1063/1.1694837
10.1080/10407780590889545
10.1016/j.ijheatmasstransfer.2005.06.045
10.1080/104077800457430
10.1016/S0017-9310(98)00266-X
10.1016/S0017-9310(00)00063-6
10.1006/jcph.1994.1146
10.1080/10407789408956018
10.1016/j.ijthermalsci.2006.03.010
10.3795/KSME-B.2005.29.4.441
10.1080/104077802317221393
10.1016/S0017-9310(96)00371-7
10.1063/1.1497168
10.1016/0142-727X(89)90009-X
10.1016/0021-9991(85)90148-2
10.2514/3.820
10.1016/j.ijheatmasstransfer.2005.02.026
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2007.06.033
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 1906
ExternalDocumentID 20187882
10_1016_j_ijheatmasstransfer_2007_06_033
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABDMP
ABDPE
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
RIG
SSH
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c336t-c5f0f77f42a91e824093dc65f8f87182301098cc4f12c697a6a441109b23193e3
ISICitedReferencesCount 467
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000254725900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Sun Sep 28 08:26:23 EDT 2025
Mon Jul 21 09:11:10 EDT 2025
Tue Nov 18 22:32:57 EST 2025
Sat Nov 29 03:56:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords Temperature distribution
Streamlines
Nusselt number
Digital simulation
Boundary conditions
Natural convection
Immersed boundary method
Cavity flow
Finite volume methods
Circular cylinder
Modelling
Square section
Mesh generation
Heat transfer
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-c5f0f77f42a91e824093dc65f8f87182301098cc4f12c697a6a441109b23193e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 32520110
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_32520110
pascalfrancis_primary_20187882
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2007_06_033
crossref_primary_10_1016_j_ijheatmasstransfer_2007_06_033
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2008
Publisher Elsevier
Publisher_xml – name: Elsevier
References Ding (10.1016/j.ijheatmasstransfer.2007.06.033_bib4) 2005; 47
Lacroix (10.1016/j.ijheatmasstransfer.2007.06.033_bib1) 1992; 21
Hyun (10.1016/j.ijheatmasstransfer.2007.06.033_bib10) 1989; 10
Ghaddar (10.1016/j.ijheatmasstransfer.2007.06.033_bib18) 1992; 35
Lee (10.1016/j.ijheatmasstransfer.2007.06.033_bib8) 2005; 29
Cesini (10.1016/j.ijheatmasstransfer.2007.06.033_bib19) 1999; 42
Kim (10.1016/j.ijheatmasstransfer.2007.06.033_bib23) 1985; 59
Ha (10.1016/j.ijheatmasstransfer.2007.06.033_bib6) 2002; 41
Lee (10.1016/j.ijheatmasstransfer.2007.06.033_bib9) 2004; 16
Ha (10.1016/j.ijheatmasstransfer.2007.06.033_bib15) 2000; 43
Shu (10.1016/j.ijheatmasstransfer.2007.06.033_bib22) 2000; 44
Jami (10.1016/j.ijheatmasstransfer.2007.06.033_bib14) 2007; 46
Kim (10.1016/j.ijheatmasstransfer.2007.06.033_bib25) 2001; 171
Ha (10.1016/j.ijheatmasstransfer.2007.06.033_bib5) 2002; 14
McBain (10.1016/j.ijheatmasstransfer.2007.06.033_bib13) 1997; 40
Wright (10.1016/j.ijheatmasstransfer.2007.06.033_bib12) 2006; 49
Misra (10.1016/j.ijheatmasstransfer.2007.06.033_bib11) 1997; 141
Moukalled (10.1016/j.ijheatmasstransfer.2007.06.033_bib20) 1996; 10
Zang (10.1016/j.ijheatmasstransfer.2007.06.033_bib24) 1994; 114
Lee (10.1016/j.ijheatmasstransfer.2007.06.033_bib7) 2005; 48
Kim (10.1016/j.ijheatmasstransfer.2007.06.033_bib26) 2004; 18
Kumar De (10.1016/j.ijheatmasstransfer.2007.06.033_bib17) 2006; 49
Shu (10.1016/j.ijheatmasstransfer.2007.06.033_bib21) 2002; 38
Ghaddar (10.1016/j.ijheatmasstransfer.2007.06.033_bib2) 1994; 26
Saha (10.1016/j.ijheatmasstransfer.2007.06.033_bib3) 2000; 38
Asan (10.1016/j.ijheatmasstransfer.2007.06.033_bib16) 2000; 27
References_xml – volume: 171
  start-page: 132
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib25
  article-title: An immersed-boundary finite volume method for simulations of flow in complex geometries
  publication-title: J. Comp. Phys.
  doi: 10.1006/jcph.2001.6778
– volume: 44
  start-page: 3321
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib22
  article-title: Numerical study of natural convection in an eccentric annulus between a square outer cylinder and a circular inner cylinder using DQ method
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(00)00357-4
– volume: 38
  start-page: 429
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib21
  article-title: Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.226
– volume: 21
  start-page: 37
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib1
  article-title: Natural convection heat transfer around two heated horizontal cylinders inside a rectangular cavity cooled from above
  publication-title: Numer. Heat Transfer Part A
  doi: 10.1080/10407789208944864
– volume: 49
  start-page: 4608
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib17
  article-title: A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.04.020
– volume: 141
  start-page: 205
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib11
  article-title: Finite element analysis of conjugate natural convection in a square enclosure with a conducting vertical wall
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01109-7
– volume: 27
  start-page: 367
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib16
  article-title: Natural convection in an annulus between two isothermal concentric square ducts
  publication-title: Int. Comm. Heat Mass Transfer
  doi: 10.1016/S0735-1933(00)00117-2
– volume: 18
  start-page: 1026
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib26
  article-title: An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries
  publication-title: KSME Int. J.
  doi: 10.1007/BF02990875
– volume: 35
  start-page: 2327
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib18
  article-title: Natural convection heat transfer between a uniformly heated cylindrical element and its rectangular enclosure
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(92)90075-4
– volume: 16
  start-page: 1273
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib9
  article-title: Natural convection in a horizontal layer of fluid with a periodic array of square cylinders in the interior
  publication-title: Phys. Fluids
  doi: 10.1063/1.1694837
– volume: 47
  start-page: 291
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib4
  article-title: Simulation of a natural convection in eccentric annuli between a square outer cylinder and a circular inner cylinder using a local MQ–DQ method
  publication-title: Numer. Heat Transfer Part A
  doi: 10.1080/10407780590889545
– volume: 49
  start-page: 889
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib12
  article-title: Flow visualization of natural convection in a tall, air-filled vertical cavity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.06.045
– volume: 38
  start-page: 795
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib3
  article-title: Unsteady free convection in a vertical channel with a built-in heated square cylinder
  publication-title: Numer. Heat Transfer Part A
  doi: 10.1080/104077800457430
– volume: 42
  start-page: 1801
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib19
  article-title: Natural convection from a horizontal cylinder in a rectangular cavity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(98)00266-X
– volume: 43
  start-page: 4229
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib15
  article-title: A numerical study on there-dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat-generating cubic conducting body
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(00)00063-6
– volume: 114
  start-page: 18
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib24
  article-title: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates
  publication-title: J. Comp. Phys.
  doi: 10.1006/jcph.1994.1146
– volume: 26
  start-page: 701
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib2
  article-title: Natural convection over a rotating cylindrical heat source in a rectangular enclosure
  publication-title: Numer. Heat Transfer Part A
  doi: 10.1080/10407789408956018
– volume: 46
  start-page: 38
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib14
  article-title: Lattice Boltzmann method applied to the laminar natural convection in an enclosure with a heat-generating cylinder conducting body
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2006.03.010
– volume: 29
  start-page: 441
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib8
  article-title: Numerical simulation of natural convection in horizontal enclosure with heat-generating conducting body
  publication-title: KSME. J
  doi: 10.3795/KSME-B.2005.29.4.441
– volume: 41
  start-page: 183
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib6
  article-title: Two-dimensional and unsteady natural convection in a horizontal enclosure with a square body
  publication-title: Numer. Heat Transfer Part A
  doi: 10.1080/104077802317221393
– volume: 40
  start-page: 3005
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib13
  article-title: Natural convection with unsaturated humid air in vertical cavities
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(96)00371-7
– volume: 14
  start-page: 3189
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib5
  article-title: Unsteady fluid flow and temperature fields in a horizontal enclosure with an adiabatic body
  publication-title: Phys. Fluids
  doi: 10.1063/1.1497168
– volume: 10
  start-page: 146
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib10
  article-title: Numerical solutions for transient natural convection in a square cavity with different sidewall temperatures
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(89)90009-X
– volume: 59
  start-page: 308
  year: 1985
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib23
  article-title: Application of a fractional step method to incompressible Navier–Stokes equations
  publication-title: J. Comp. Phys.
  doi: 10.1016/0021-9991(85)90148-2
– volume: 10
  start-page: 524
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib20
  article-title: Natural convection in the annulus between concentric horizontal circular and square cylinders
  publication-title: J. Thermophys. Heat Transfer
  doi: 10.2514/3.820
– volume: 48
  start-page: 3308
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib7
  article-title: A numerical study of natural convection in a horizontal enclosure with a conducting body
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.02.026
SSID ssj0017046
Score 2.4560676
Snippet Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1888
SubjectTerms Computational methods in fluid dynamics
Convection and heat transfer
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Turbulent flows, convection, and heat transfer
Title A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations
URI https://www.proquest.com/docview/32520110
Volume 51
WOSCitedRecordID wos000254725900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017046
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKLiAkhPhYRPlYfEAIqcqqiZPYPqECXRW0FA5dqZwi14mlViHtNmm1_CV-JePYTlotAvbAJaqs1I0zr-Px-HkeQq-iMMhimkoPpp6ZFyoeeiwDg0gmYD1CJFEkrcUm6HjMplP-tdP56c7CbHNaFOzykq_-q6mhDYytj85ew9xNp9AAn8HocAWzw_WfDD_oFRuzDZOb4rE1V0OY-ho1yVw6gqPolRcbTf2C58-XOldoz7r15HxtCKryR64LKq71oUcnplL1ahFn_QN6KmxTfouWFt9mGXdqU2jHX-9WfIeQXatTQMzcsoOtsPO7NhtrWUIf2pZRHet-7n1rvZWhDYzsPS6BwXZ4L9Ypw0TJiWW3Wqcc-Tvgox7b8bE-M0KAdr6GiCb-7Vxg0hKLk_lCj04PzI3LVq6MT_qmCMd-Ge7xl-T0_OwsmQynk9erC08rlOmdfCvXcgMdBjTi4EEPBx-H00_NnhXtm2Nhbji30ZuWTfjnh9gLiu6uRAkWVEZY5UqMUAc-k_vonl2x4IFB2gPUyYqH6FbNHJblI7Qd4AZvuMYbXips8YZbvOF5gQU2eMMN3rDGG7Q7vGGHNywq3OANO7zhBm9H6Px0OHk_8qyYhycJiStPRqqvKFVhILifMQgkOUllHCmmYM2ut3v9PmdShsoPZMypiAVE6tA2gxUIJxl5jA6KZZE9QTgQLGRhlvqxgFculFABoSQVwUzKOBRhF711bzORttK9FlzJE0dpXCRX7aEFWWmiWZ6EdBFveliZqi_X-O7xngGbDgKtfwkL2i566SyagC_XG3SiyJabMiFBVMfjT_96xzN0p_0rPUcH1XqTvUA35baal-tji8xfCTHIIA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+of+natural+convection+in+a+square+enclosure+with+a+circular+cylinder+at+different+vertical+locations&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Kim%2C+B+S&rft.au=Lee%2C+D+S&rft.au=Ha%2C+M+Y&rft.au=Yoon%2C+H+S&rft.date=2008-04-01&rft.issn=0017-9310&rft.volume=51&rft.issue=7-8&rft.spage=1888&rft.epage=1906&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2007.06.033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon