A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations
Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inne...
Uloženo v:
| Vydáno v: | International journal of heat and mass transfer Ročník 51; číslo 7-8; s. 1888 - 1906 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier
01.04.2008
|
| Témata: | |
| ISSN: | 0017-9310 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on the finite volume method for different Rayleigh numbers varying over the range of 103-106. The study goes further to investigate the effect of the inner cylinder location on the heat transfer and fluid flow. The location of the inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of the cell strongly depend on the Rayleigh number and the position of the inner circular cylinder. The changes in heat transfer quantities have also been presented. |
|---|---|
| AbstractList | Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on the finite volume method for different Rayleigh numbers varying over the range of 103-106. The study goes further to investigate the effect of the inner cylinder location on the heat transfer and fluid flow. The location of the inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of the cell strongly depend on the Rayleigh number and the position of the inner circular cylinder. The changes in heat transfer quantities have also been presented. |
| Author | Lee, D.S. Kim, B.S. Yoon, H.S. Ha, M.Y. |
| Author_xml | – sequence: 1 givenname: B.S. surname: Kim fullname: Kim, B.S. – sequence: 2 givenname: D.S. surname: Lee fullname: Lee, D.S. – sequence: 3 givenname: M.Y. surname: Ha fullname: Ha, M.Y. – sequence: 4 givenname: H.S. surname: Yoon fullname: Yoon, H.S. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20187882$$DView record in Pascal Francis |
| BookMark | eNqNUT1PXDEQdEGkwMF_cJOI5l7s53fvowtCQCIh0UBtbfbWwiefDV6_Q_fv4wPSkIbK69HszO7OiTiKKZIQ51o1Wun-x6bxm0eCsgXmkiGyo9y0Sg2N6htlzJE4VkoPy8lo9VWcMG8OX9X1x2J3IeO8pewRguQyr_cyORmhzLkCmOKOsPgUpY8SJD_PkElSxJB4rtWLL48VR59xDpAl7oOPa8oSilx7V-egWOSOcnk1CAnhoMan4ouDwHT2_i7Ew_XV_eWv5e3dze_Li9slGtOXJa6ccsPguhYmTWPbqcmssV-50Y2DHlujtJpGxM7pFvtpgB66TlfsT2v0ZMgsxPc33aecnmfiYreekUKASGlma9pVq2pDJX57JwLXSV29Inq2T9lvIe9tJY3DWA0X4vqNhzkxZ3IWfXndqR7eB6uVPURiN_b_SOwhEqt6WyOpQj8_CP3z-rTEX4Cooy4 |
| CODEN | IJHMAK |
| CitedBy_id | crossref_primary_10_1016_j_ijthermalsci_2015_08_011 crossref_primary_10_1016_j_ijthermalsci_2016_06_004 crossref_primary_10_1108_EC_06_2017_0202 crossref_primary_10_1007_s10973_020_09411_6 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_041 crossref_primary_10_1016_j_advengsoft_2009_09_013 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_046 crossref_primary_10_1016_j_rinp_2025_108291 crossref_primary_10_1016_j_est_2019_02_008 crossref_primary_10_1080_10407782_2012_631379 crossref_primary_10_1080_01932691_2021_1931292 crossref_primary_10_1007_s40032_022_00875_z crossref_primary_10_1007_s43153_022_00251_5 crossref_primary_10_1080_01457632_2016_1255078 crossref_primary_10_1108_HFF_03_2021_0220 crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_011 crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_097 crossref_primary_10_1016_j_jcp_2019_02_016 crossref_primary_10_1016_j_ijheatmasstransfer_2012_08_012 crossref_primary_10_1080_10407790_2014_955779 crossref_primary_10_1007_s12206_024_1150_5 crossref_primary_10_1088_1742_6596_501_1_012022 crossref_primary_10_1016_j_icheatmasstransfer_2013_05_008 crossref_primary_10_1016_j_icheatmasstransfer_2017_10_015 crossref_primary_10_1007_s12206_018_0623_9 crossref_primary_10_1016_j_ijthermalsci_2011_08_021 crossref_primary_10_1080_17455030_2023_2172476 crossref_primary_10_1007_s00231_021_03145_3 crossref_primary_10_1080_15567036_2020_1856235 crossref_primary_10_1016_j_heliyon_2020_e05568 crossref_primary_10_1063_5_0118137 crossref_primary_10_1007_s41939_024_00653_7 crossref_primary_10_1080_10407782_2014_894398 crossref_primary_10_4028_www_scientific_net_AMM_789_790_282 crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_011 crossref_primary_10_1007_s42452_020_2250_1 crossref_primary_10_1016_j_egypro_2017_11_294 crossref_primary_10_1016_j_icheatmasstransfer_2024_107563 crossref_primary_10_1108_HFF_12_2011_0272 crossref_primary_10_1016_j_compfluid_2018_11_017 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_141 crossref_primary_10_1016_j_ijheatmasstransfer_2013_06_031 crossref_primary_10_1016_j_icheatmasstransfer_2017_05_015 crossref_primary_10_1016_j_icheatmasstransfer_2012_07_026 crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_073 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_139 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_137 crossref_primary_10_1140_epjp_i2017_11330_3 crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_096 crossref_primary_10_1080_17455030_2022_2087117 crossref_primary_10_1016_j_enconman_2011_08_006 crossref_primary_10_1016_j_ijthermalsci_2021_106885 crossref_primary_10_1016_j_icheatmasstransfer_2015_01_006 crossref_primary_10_3390_en18040950 crossref_primary_10_1016_j_ijheatmasstransfer_2008_07_020 crossref_primary_10_1016_j_physleta_2018_04_006 crossref_primary_10_1016_j_camwa_2019_01_002 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_003 crossref_primary_10_1080_01457632_2015_1042343 crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_085 crossref_primary_10_1016_j_matpr_2023_04_642 crossref_primary_10_1038_s41598_022_13196_z crossref_primary_10_1007_s40997_022_00556_3 crossref_primary_10_1063_5_0270687 crossref_primary_10_1016_j_cep_2017_07_001 crossref_primary_10_1016_j_icheatmasstransfer_2021_105856 crossref_primary_10_1016_j_engappai_2024_109128 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_140 crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_080 crossref_primary_10_1016_j_jrras_2025_101698 crossref_primary_10_1016_j_ijheatmasstransfer_2009_09_023 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_166 crossref_primary_10_1002_zamm_202300281 crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_081 crossref_primary_10_3389_fphy_2022_929463 crossref_primary_10_1080_01457632_2015_1044416 crossref_primary_10_1016_j_icheatmasstransfer_2010_12_006 crossref_primary_10_1007_s11771_017_3416_x crossref_primary_10_1016_j_ijheatmasstransfer_2013_10_011 crossref_primary_10_1016_j_cma_2018_09_042 crossref_primary_10_1080_10407782_2013_831679 crossref_primary_10_1007_s10973_022_11509_y crossref_primary_10_1080_01457632_2017_1338856 crossref_primary_10_3390_en14030559 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124613 crossref_primary_10_1007_s10973_019_08575_0 crossref_primary_10_1016_j_ijheatmasstransfer_2009_12_027 crossref_primary_10_1016_j_ijheatmasstransfer_2015_12_044 crossref_primary_10_1140_epjp_s13360_024_05210_2 crossref_primary_10_1016_j_est_2022_106076 crossref_primary_10_1016_j_compfluid_2018_04_027 crossref_primary_10_1016_j_powtec_2013_12_054 crossref_primary_10_1016_j_icheatmasstransfer_2017_08_018 crossref_primary_10_1016_j_jtice_2024_105850 crossref_primary_10_1016_j_heliyon_2020_e05752 crossref_primary_10_1007_s40032_021_00667_x crossref_primary_10_1016_j_cjph_2024_07_012 crossref_primary_10_1016_j_cnsns_2025_108614 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_015 crossref_primary_10_1016_j_csite_2024_104911 crossref_primary_10_1016_j_egypro_2014_06_066 crossref_primary_10_1016_j_jtice_2021_06_021 crossref_primary_10_1080_10407782_2015_1069673 crossref_primary_10_1007_s10973_020_09906_2 crossref_primary_10_1016_j_ijthermalsci_2013_05_004 crossref_primary_10_1007_s10973_019_09216_2 crossref_primary_10_1080_10618562_2023_2229250 crossref_primary_10_1016_j_icheatmasstransfer_2022_106029 crossref_primary_10_1016_j_ijheatmasstransfer_2013_07_029 crossref_primary_10_1140_epjp_s13360_025_05979_w crossref_primary_10_1016_j_csite_2025_106262 crossref_primary_10_1088_1402_4896_ad4c1b crossref_primary_10_1016_j_cplett_2016_12_045 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_013 crossref_primary_10_1088_1742_6596_1478_1_012028 crossref_primary_10_1016_j_ijheatmasstransfer_2013_07_023 crossref_primary_10_1016_j_ijthermalsci_2020_106570 crossref_primary_10_1140_epjp_i2017_11498_4 crossref_primary_10_1016_j_est_2024_115113 crossref_primary_10_1080_10407782_2014_994414 crossref_primary_10_1038_s41598_021_02046_z crossref_primary_10_1007_s12206_021_0341_6 crossref_primary_10_1177_09544089221115271 crossref_primary_10_1007_s10973_020_09419_y crossref_primary_10_1016_j_icheatmasstransfer_2020_105024 crossref_primary_10_1177_1687814015622899 crossref_primary_10_1002_nme_6923 crossref_primary_10_1080_01457632_2016_1151296 crossref_primary_10_1007_s10973_018_7901_8 crossref_primary_10_1016_j_ijthermalsci_2013_01_009 crossref_primary_10_3390_math11081849 crossref_primary_10_1007_s13369_020_04485_8 crossref_primary_10_1080_10407782_2012_707058 crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_079 crossref_primary_10_1016_j_ijmultiphaseflow_2011_12_002 crossref_primary_10_1016_j_ijmecsci_2022_107704 crossref_primary_10_1016_j_euromechflu_2025_204330 crossref_primary_10_1016_j_compfluid_2011_12_006 crossref_primary_10_1016_j_ijheatfluidflow_2024_109715 crossref_primary_10_1016_j_tsep_2021_101099 crossref_primary_10_1088_1572_9494_ac1a6b crossref_primary_10_1515_ijnsns_2020_0138 crossref_primary_10_1016_j_compfluid_2023_106112 crossref_primary_10_1515_revce_2019_0076 crossref_primary_10_1002_htj_23044 crossref_primary_10_1007_s10973_024_13750_z crossref_primary_10_1016_j_camwa_2024_06_015 crossref_primary_10_1016_j_icheatmasstransfer_2021_105533 crossref_primary_10_1016_j_ijheatmasstransfer_2009_01_026 crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_041 crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_078 crossref_primary_10_1016_j_molliq_2018_12_104 crossref_primary_10_1016_j_ijmecsci_2019_105080 crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_070 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_016 crossref_primary_10_1080_01457632_2015_1060761 crossref_primary_10_1002_htj_22762 crossref_primary_10_1108_HFF_01_2015_0007 crossref_primary_10_1016_j_icheatmasstransfer_2020_104951 crossref_primary_10_1016_j_ijmultiphaseflow_2016_11_007 crossref_primary_10_1177_00368504211020965 crossref_primary_10_1088_1402_4896_ac0fd3 crossref_primary_10_1088_1402_4896_ac3118 crossref_primary_10_1016_j_icheatmasstransfer_2010_05_016 crossref_primary_10_1016_j_jcp_2012_11_050 crossref_primary_10_1016_j_ijthermalsci_2013_06_005 crossref_primary_10_1007_s12206_021_0943_z crossref_primary_10_1080_10407782_2023_2226823 crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_044 crossref_primary_10_1016_j_jtice_2016_09_024 crossref_primary_10_1016_j_molliq_2024_124728 crossref_primary_10_1142_S0129183126500014 crossref_primary_10_1016_j_ijheatmasstransfer_2014_11_044 crossref_primary_10_1002_zamm_202000285 crossref_primary_10_1007_s12206_015_0246_3 crossref_primary_10_1016_j_icheatmasstransfer_2024_107271 crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_133 crossref_primary_10_1002_htj_23265 crossref_primary_10_1007_s10973_021_10829_9 crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_132 crossref_primary_10_1615_JPorMedia_2022043412 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_026 crossref_primary_10_1177_16878132221119906 crossref_primary_10_1016_j_icheatmasstransfer_2021_105250 crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_007 crossref_primary_10_1007_s40430_025_05566_1 crossref_primary_10_1016_j_icheatmasstransfer_2011_07_012 crossref_primary_10_2298_TSCI240314193A crossref_primary_10_1155_2017_1726519 crossref_primary_10_1088_1742_6596_745_3_032024 crossref_primary_10_1016_j_applthermaleng_2011_08_018 crossref_primary_10_1016_j_ijheatmasstransfer_2010_07_043 crossref_primary_10_1007_s00231_012_1083_x crossref_primary_10_1007_s10973_021_10641_5 crossref_primary_10_1515_ijnsns_2021_0073 crossref_primary_10_1007_s10973_025_14090_2 crossref_primary_10_1007_s12206_015_0952_x crossref_primary_10_1016_j_ijthermalsci_2016_08_003 crossref_primary_10_1016_j_ijheatfluidflow_2016_06_002 crossref_primary_10_1016_j_compfluid_2012_08_012 crossref_primary_10_1063_5_0011282 crossref_primary_10_1002_htj_21776 crossref_primary_10_1016_j_est_2024_111750 crossref_primary_10_1016_j_icheatmasstransfer_2024_108250 crossref_primary_10_1016_j_ijheatmasstransfer_2012_07_051 crossref_primary_10_1080_10407782_2012_709438 crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_004 crossref_primary_10_1080_10407782_2024_2334003 crossref_primary_10_1007_s13369_020_05133_x crossref_primary_10_1016_j_ijmecsci_2022_107792 crossref_primary_10_1007_s12206_012_1201_1 crossref_primary_10_1007_s13369_019_03956_x crossref_primary_10_1007_s10973_019_08340_3 crossref_primary_10_1016_j_ijheatmasstransfer_2009_03_048 crossref_primary_10_1016_j_jmmm_2023_171037 crossref_primary_10_1080_10407782_2023_2243380 crossref_primary_10_1016_j_apm_2019_02_012 crossref_primary_10_1016_j_icheatmasstransfer_2022_106037 crossref_primary_10_1016_j_icheatmasstransfer_2025_108976 crossref_primary_10_1080_01430750_2019_1614996 crossref_primary_10_1007_s13369_023_07678_z crossref_primary_10_1016_j_compfluid_2018_08_029 crossref_primary_10_1016_j_jtice_2016_10_050 crossref_primary_10_1080_10407782_2011_636720 crossref_primary_10_1080_10407782_2013_857880 crossref_primary_10_1080_10407782_2022_2091383 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_080 crossref_primary_10_1007_s10665_023_10279_2 crossref_primary_10_1016_j_expthermflusci_2012_06_009 crossref_primary_10_1016_j_icheatmasstransfer_2014_01_005 crossref_primary_10_1002_htj_23245 crossref_primary_10_1016_j_csite_2025_105947 crossref_primary_10_1038_s41598_018_33079_6 crossref_primary_10_1016_j_icheatmasstransfer_2022_106288 crossref_primary_10_1016_j_est_2022_106028 crossref_primary_10_1016_j_enganabound_2025_106443 crossref_primary_10_1016_j_heliyon_2025_e42637 crossref_primary_10_1016_j_icheatmasstransfer_2025_108604 crossref_primary_10_1007_s10973_020_10499_z crossref_primary_10_1140_epjp_s13360_021_02035_1 crossref_primary_10_1016_j_ijheatmasstransfer_2012_09_010 crossref_primary_10_1007_s00231_018_2303_9 crossref_primary_10_1016_j_cma_2018_04_023 crossref_primary_10_30657_pea_2024_30_46 crossref_primary_10_1016_j_matpr_2022_01_207 crossref_primary_10_1016_j_molliq_2018_01_130 crossref_primary_10_1007_s10973_024_13550_5 crossref_primary_10_1017_jfm_2022_568 crossref_primary_10_1007_s13369_021_06495_6 crossref_primary_10_1002_num_22971 crossref_primary_10_1016_j_icheatmasstransfer_2022_106292 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_034 crossref_primary_10_1016_j_icheatmasstransfer_2020_104510 crossref_primary_10_1007_s10973_019_09054_2 crossref_primary_10_1631_jzus_A1400120 crossref_primary_10_1016_j_ijheatfluidflow_2013_05_013 crossref_primary_10_1088_1742_6596_1988_1_012012 crossref_primary_10_3390_en14102788 crossref_primary_10_1016_j_matdes_2017_02_039 crossref_primary_10_1615_JPorMedia_2024050696 crossref_primary_10_1063_1_5100892 crossref_primary_10_1016_j_ijheatmasstransfer_2013_06_059 crossref_primary_10_1016_j_cma_2017_03_024 crossref_primary_10_1016_j_csite_2025_106772 crossref_primary_10_1007_s12206_014_1123_1 crossref_primary_10_1016_j_icheatmasstransfer_2018_08_016 crossref_primary_10_1002_zamm_202000002 crossref_primary_10_1016_j_icheatmasstransfer_2012_06_001 crossref_primary_10_1080_10407782_2013_846607 crossref_primary_10_1038_s41598_018_37964_y crossref_primary_10_1016_j_molliq_2018_01_145 crossref_primary_10_1080_14484846_2024_2362988 crossref_primary_10_1038_s41598_019_57062_x crossref_primary_10_1051_matecconf_20163801012 crossref_primary_10_1007_s12206_020_0639_9 crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_002 crossref_primary_10_1016_j_rser_2014_07_008 crossref_primary_10_1139_cjp_2019_0055 crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_048 crossref_primary_10_1080_10407782_2019_1673107 crossref_primary_10_1016_j_powtec_2015_02_042 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_101 crossref_primary_10_1007_s00162_022_00632_z crossref_primary_10_1080_10407782_2018_1507887 crossref_primary_10_1016_j_csite_2025_106665 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125710 crossref_primary_10_1080_10407782_2024_2324081 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_006 crossref_primary_10_1016_j_ijheatmasstransfer_2012_07_005 crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_089 crossref_primary_10_1080_10407782_2010_508435 crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_086 crossref_primary_10_1155_2012_161484 crossref_primary_10_1371_journal_pone_0251744 crossref_primary_10_1088_1755_1315_463_1_012044 crossref_primary_10_1016_j_molliq_2018_06_083 crossref_primary_10_1155_2021_4276894 crossref_primary_10_3390_en14216952 crossref_primary_10_1108_09615531311289141 crossref_primary_10_1016_j_cma_2018_05_015 crossref_primary_10_1080_10407790_2019_1685838 crossref_primary_10_1007_s13369_021_05952_6 crossref_primary_10_1016_j_physa_2019_124028 crossref_primary_10_1108_HFF_08_2023_0466 crossref_primary_10_1016_j_icheatmasstransfer_2024_107525 crossref_primary_10_1016_j_csite_2024_105065 crossref_primary_10_1016_j_molliq_2019_01_128 crossref_primary_10_1016_j_jcp_2013_04_044 crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_071 crossref_primary_10_1016_j_applthermaleng_2020_115989 crossref_primary_10_1007_s10973_019_08012_2 crossref_primary_10_3390_en16104055 crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_119 crossref_primary_10_1016_j_ijheatmasstransfer_2014_10_065 crossref_primary_10_1515_phys_2022_0189 crossref_primary_10_1016_j_applthermaleng_2024_123643 crossref_primary_10_1080_10407782_2013_836019 crossref_primary_10_1007_s41939_025_01000_0 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119550 crossref_primary_10_1016_j_jtice_2021_04_033 crossref_primary_10_1063_5_0279235 crossref_primary_10_1177_18479804211034296 crossref_primary_10_1007_s12206_020_0738_7 crossref_primary_10_1108_EC_01_2017_0008 crossref_primary_10_3390_math10081222 crossref_primary_10_1016_j_ijmecsci_2018_07_044 crossref_primary_10_1016_j_ijmecsci_2019_105240 crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_089 crossref_primary_10_1016_j_molliq_2016_12_024 crossref_primary_10_1002_mma_9480 crossref_primary_10_3390_en14092584 crossref_primary_10_1016_j_icheatmasstransfer_2012_06_016 crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_020 crossref_primary_10_1080_01496395_2025_2483804 crossref_primary_10_1016_j_icheatmasstransfer_2019_104350 crossref_primary_10_1016_j_molliq_2018_09_016 crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_030 crossref_primary_10_1016_j_ijheatmasstransfer_2016_02_055 crossref_primary_10_1016_j_ijheatmasstransfer_2016_02_054 crossref_primary_10_1088_1742_6596_655_1_012055 crossref_primary_10_1016_j_jcp_2009_12_002 crossref_primary_10_1016_j_ijmecsci_2021_106701 crossref_primary_10_1007_s10973_021_10762_x crossref_primary_10_1080_10407782_2021_1959824 crossref_primary_10_1080_10407790_2024_2310063 |
| Cites_doi | 10.1006/jcph.2001.6778 10.1016/S0017-9310(00)00357-4 10.1002/fld.226 10.1080/10407789208944864 10.1016/j.ijheatmasstransfer.2006.04.020 10.1016/S0045-7825(96)01109-7 10.1016/S0735-1933(00)00117-2 10.1007/BF02990875 10.1016/0017-9310(92)90075-4 10.1063/1.1694837 10.1080/10407780590889545 10.1016/j.ijheatmasstransfer.2005.06.045 10.1080/104077800457430 10.1016/S0017-9310(98)00266-X 10.1016/S0017-9310(00)00063-6 10.1006/jcph.1994.1146 10.1080/10407789408956018 10.1016/j.ijthermalsci.2006.03.010 10.3795/KSME-B.2005.29.4.441 10.1080/104077802317221393 10.1016/S0017-9310(96)00371-7 10.1063/1.1497168 10.1016/0142-727X(89)90009-X 10.1016/0021-9991(85)90148-2 10.2514/3.820 10.1016/j.ijheatmasstransfer.2005.02.026 |
| ContentType | Journal Article |
| Copyright | 2008 INIST-CNRS |
| Copyright_xml | – notice: 2008 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2007.06.033 |
| DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EndPage | 1906 |
| ExternalDocumentID | 20187882 10_1016_j_ijheatmasstransfer_2007_06_033 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO AAYXX ABDMP ABDPE ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACIWK ACKIV ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- ~HD AFXIZ AGCQF AGRNS BNPGV IQODW RIG SSH 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c336t-c5f0f77f42a91e824093dc65f8f87182301098cc4f12c697a6a441109b23193e3 |
| ISICitedReferencesCount | 467 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000254725900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Sun Sep 28 08:26:23 EDT 2025 Mon Jul 21 09:11:10 EDT 2025 Tue Nov 18 22:32:57 EST 2025 Sat Nov 29 03:56:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7-8 |
| Keywords | Temperature distribution Streamlines Nusselt number Digital simulation Boundary conditions Natural convection Immersed boundary method Cavity flow Finite volume methods Circular cylinder Modelling Square section Mesh generation Heat transfer |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c336t-c5f0f77f42a91e824093dc65f8f87182301098cc4f12c697a6a441109b23193e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 32520110 |
| PQPubID | 23500 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_32520110 pascalfrancis_primary_20187882 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2007_06_033 crossref_primary_10_1016_j_ijheatmasstransfer_2007_06_033 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-04-01 |
| PublicationDateYYYYMMDD | 2008-04-01 |
| PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2008 |
| Publisher | Elsevier |
| Publisher_xml | – name: Elsevier |
| References | Ding (10.1016/j.ijheatmasstransfer.2007.06.033_bib4) 2005; 47 Lacroix (10.1016/j.ijheatmasstransfer.2007.06.033_bib1) 1992; 21 Hyun (10.1016/j.ijheatmasstransfer.2007.06.033_bib10) 1989; 10 Ghaddar (10.1016/j.ijheatmasstransfer.2007.06.033_bib18) 1992; 35 Lee (10.1016/j.ijheatmasstransfer.2007.06.033_bib8) 2005; 29 Cesini (10.1016/j.ijheatmasstransfer.2007.06.033_bib19) 1999; 42 Kim (10.1016/j.ijheatmasstransfer.2007.06.033_bib23) 1985; 59 Ha (10.1016/j.ijheatmasstransfer.2007.06.033_bib6) 2002; 41 Lee (10.1016/j.ijheatmasstransfer.2007.06.033_bib9) 2004; 16 Ha (10.1016/j.ijheatmasstransfer.2007.06.033_bib15) 2000; 43 Shu (10.1016/j.ijheatmasstransfer.2007.06.033_bib22) 2000; 44 Jami (10.1016/j.ijheatmasstransfer.2007.06.033_bib14) 2007; 46 Kim (10.1016/j.ijheatmasstransfer.2007.06.033_bib25) 2001; 171 Ha (10.1016/j.ijheatmasstransfer.2007.06.033_bib5) 2002; 14 McBain (10.1016/j.ijheatmasstransfer.2007.06.033_bib13) 1997; 40 Wright (10.1016/j.ijheatmasstransfer.2007.06.033_bib12) 2006; 49 Misra (10.1016/j.ijheatmasstransfer.2007.06.033_bib11) 1997; 141 Moukalled (10.1016/j.ijheatmasstransfer.2007.06.033_bib20) 1996; 10 Zang (10.1016/j.ijheatmasstransfer.2007.06.033_bib24) 1994; 114 Lee (10.1016/j.ijheatmasstransfer.2007.06.033_bib7) 2005; 48 Kim (10.1016/j.ijheatmasstransfer.2007.06.033_bib26) 2004; 18 Kumar De (10.1016/j.ijheatmasstransfer.2007.06.033_bib17) 2006; 49 Shu (10.1016/j.ijheatmasstransfer.2007.06.033_bib21) 2002; 38 Ghaddar (10.1016/j.ijheatmasstransfer.2007.06.033_bib2) 1994; 26 Saha (10.1016/j.ijheatmasstransfer.2007.06.033_bib3) 2000; 38 Asan (10.1016/j.ijheatmasstransfer.2007.06.033_bib16) 2000; 27 |
| References_xml | – volume: 171 start-page: 132 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib25 article-title: An immersed-boundary finite volume method for simulations of flow in complex geometries publication-title: J. Comp. Phys. doi: 10.1006/jcph.2001.6778 – volume: 44 start-page: 3321 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib22 article-title: Numerical study of natural convection in an eccentric annulus between a square outer cylinder and a circular inner cylinder using DQ method publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(00)00357-4 – volume: 38 start-page: 429 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib21 article-title: Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.226 – volume: 21 start-page: 37 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib1 article-title: Natural convection heat transfer around two heated horizontal cylinders inside a rectangular cavity cooled from above publication-title: Numer. Heat Transfer Part A doi: 10.1080/10407789208944864 – volume: 49 start-page: 4608 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib17 article-title: A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.04.020 – volume: 141 start-page: 205 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib11 article-title: Finite element analysis of conjugate natural convection in a square enclosure with a conducting vertical wall publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01109-7 – volume: 27 start-page: 367 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib16 article-title: Natural convection in an annulus between two isothermal concentric square ducts publication-title: Int. Comm. Heat Mass Transfer doi: 10.1016/S0735-1933(00)00117-2 – volume: 18 start-page: 1026 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib26 article-title: An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries publication-title: KSME Int. J. doi: 10.1007/BF02990875 – volume: 35 start-page: 2327 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib18 article-title: Natural convection heat transfer between a uniformly heated cylindrical element and its rectangular enclosure publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(92)90075-4 – volume: 16 start-page: 1273 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib9 article-title: Natural convection in a horizontal layer of fluid with a periodic array of square cylinders in the interior publication-title: Phys. Fluids doi: 10.1063/1.1694837 – volume: 47 start-page: 291 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib4 article-title: Simulation of a natural convection in eccentric annuli between a square outer cylinder and a circular inner cylinder using a local MQ–DQ method publication-title: Numer. Heat Transfer Part A doi: 10.1080/10407780590889545 – volume: 49 start-page: 889 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib12 article-title: Flow visualization of natural convection in a tall, air-filled vertical cavity publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.06.045 – volume: 38 start-page: 795 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib3 article-title: Unsteady free convection in a vertical channel with a built-in heated square cylinder publication-title: Numer. Heat Transfer Part A doi: 10.1080/104077800457430 – volume: 42 start-page: 1801 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib19 article-title: Natural convection from a horizontal cylinder in a rectangular cavity publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(98)00266-X – volume: 43 start-page: 4229 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib15 article-title: A numerical study on there-dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat-generating cubic conducting body publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(00)00063-6 – volume: 114 start-page: 18 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib24 article-title: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates publication-title: J. Comp. Phys. doi: 10.1006/jcph.1994.1146 – volume: 26 start-page: 701 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib2 article-title: Natural convection over a rotating cylindrical heat source in a rectangular enclosure publication-title: Numer. Heat Transfer Part A doi: 10.1080/10407789408956018 – volume: 46 start-page: 38 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib14 article-title: Lattice Boltzmann method applied to the laminar natural convection in an enclosure with a heat-generating cylinder conducting body publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2006.03.010 – volume: 29 start-page: 441 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib8 article-title: Numerical simulation of natural convection in horizontal enclosure with heat-generating conducting body publication-title: KSME. J doi: 10.3795/KSME-B.2005.29.4.441 – volume: 41 start-page: 183 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib6 article-title: Two-dimensional and unsteady natural convection in a horizontal enclosure with a square body publication-title: Numer. Heat Transfer Part A doi: 10.1080/104077802317221393 – volume: 40 start-page: 3005 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib13 article-title: Natural convection with unsaturated humid air in vertical cavities publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(96)00371-7 – volume: 14 start-page: 3189 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib5 article-title: Unsteady fluid flow and temperature fields in a horizontal enclosure with an adiabatic body publication-title: Phys. Fluids doi: 10.1063/1.1497168 – volume: 10 start-page: 146 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib10 article-title: Numerical solutions for transient natural convection in a square cavity with different sidewall temperatures publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(89)90009-X – volume: 59 start-page: 308 year: 1985 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib23 article-title: Application of a fractional step method to incompressible Navier–Stokes equations publication-title: J. Comp. Phys. doi: 10.1016/0021-9991(85)90148-2 – volume: 10 start-page: 524 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib20 article-title: Natural convection in the annulus between concentric horizontal circular and square cylinders publication-title: J. Thermophys. Heat Transfer doi: 10.2514/3.820 – volume: 48 start-page: 3308 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2007.06.033_bib7 article-title: A numerical study of natural convection in a horizontal enclosure with a conducting body publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.02.026 |
| SSID | ssj0017046 |
| Score | 2.4560676 |
| Snippet | Numerical calculations are carried out for natural convection induced by a temperature difference between a cold outer square enclosure and a hot inner... |
| SourceID | proquest pascalfrancis crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 1888 |
| SubjectTerms | Computational methods in fluid dynamics Convection and heat transfer Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Turbulent flows, convection, and heat transfer |
| Title | A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations |
| URI | https://www.proquest.com/docview/32520110 |
| Volume | 51 |
| WOSCitedRecordID | wos000254725900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017046 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLiAkhHgsojwWHxBCqrJK4jzsEyrQVUFL4dCVyily3FhqVdJuX1r-Er-SmdhOWi0C9sAlqqzUjTNfx-Px5_kIecWFDsCymAILtBclMvdyf6xhzaOYhPC5iApZiU2kgwEfjcTXVuunOwuznaVlyS8vxeK_mhrawNh4dPYa5q47hQb4DEaHK5gdrv9k-G6n3JhtmJkpHltxNaSpr1GRzJUjOMrO6mKD1C94_tkcc4X2rFtHTZaGoKp-zLCg4hIPPToxlXWnEnHGH8CpsEn5TRtafJNl3KlNgY6_2q34DiE7qlNAzNywg62w87smG2tZQh-aln4V637ufGu8laEN9O09LoHBd3gv1inDRCmYZbdapxwHO-BLPb7jYwNuhADtfA0RTfLbucCkJaYnkymODgfmxmUrVyYnvinCsV-Ge_AlOz0_O8uGvdHw9eLCQ4Uy3Mm3ci03yGGYxgI86GH3Y2_0qd6zSn1zLMwN5zZ507AJ__wQe0HR3YVcgQW1EVa5EiNUgc_wPrlnVyy0a5D2gLSK8iG5VTGH1eoR2XZpjTda4Y3ONbV4ow3e6KSkkhq80RpvFPEG7Q5v1OGNyjWt8UYd3miNtyNyftobvu97VszDU4wla0_F2tdpqqNQiqDgEEgKNlZJrLmGNTtu9wa-4EpFOghVIlKZSIjUoS2HFYhgBXtMDsp5WTwhlKlA-mIcaoxNtUqFL4NxHrCY8yKKRN4mb93bzJStdI-CK7PMURqn2VV7oCBrmiHLk7E2EXUPC1P15RrfPd4zYN1BiPqXsKBtk5fOohn4ctygk2Ux36wyFsZVPP70r3c8I3eav9JzcrBebooX5Kbarier5bFF5i_88cey |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+of+natural+convection+in+a+square+enclosure+with+a+circular+cylinder+at+different+vertical+locations&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Kim%2C+B+S&rft.au=Lee%2C+D+S&rft.au=Ha%2C+M+Y&rft.au=Yoon%2C+H+S&rft.date=2008-04-01&rft.issn=0017-9310&rft.volume=51&rft.issue=7-8&rft.spage=1888&rft.epage=1906&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2007.06.033&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |