Best-effort inductive logic programming via fine-grained cost-based hypothesis generation The inspire system at the inductive logic programming competition

We describe the Inspire system which participated in the first competition on inductive logic programming (ILP). Inspire is based on answer set programming (ASP). The distinguishing feature of Inspire is an ASP encoding for hypothesis space generation: given a set of facts representing the mode bias...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 107; číslo 7; s. 1141 - 1169
Hlavní autoři: Schüller, Peter, Benz, Mishal
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2018
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We describe the Inspire system which participated in the first competition on inductive logic programming (ILP). Inspire is based on answer set programming (ASP). The distinguishing feature of Inspire is an ASP encoding for hypothesis space generation: given a set of facts representing the mode bias, and a set of cost configuration parameters, each answer set of this encoding represents a single rule that is considered for finding a hypothesis that entails the given examples. Compared with state-of-the-art methods that use the length of the rule body as a metric for rule complexity, our approach permits a much more fine-grained specification of the shape of hypothesis candidate rules. The Inspire system iteratively increases the rule cost limit and thereby increases the search space until it finds a suitable hypothesis. The system searches for a hypothesis that entails a single example at a time, utilizing an ASP encoding derived from the encoding used in XHAIL. We perform experiments with the development and test set of the ILP competition. For comparison we also adapted the ILASP system to process competition instances. Experimental results show that the cost parameters for the hypothesis search space are an important factor for finding hypotheses to competition instances within tight resource bounds.
AbstractList We describe the Inspire system which participated in the first competition on inductive logic programming (ILP). Inspire is based on answer set programming (ASP). The distinguishing feature of Inspire is an ASP encoding for hypothesis space generation: given a set of facts representing the mode bias, and a set of cost configuration parameters, each answer set of this encoding represents a single rule that is considered for finding a hypothesis that entails the given examples. Compared with state-of-the-art methods that use the length of the rule body as a metric for rule complexity, our approach permits a much more fine-grained specification of the shape of hypothesis candidate rules. The Inspire system iteratively increases the rule cost limit and thereby increases the search space until it finds a suitable hypothesis. The system searches for a hypothesis that entails a single example at a time, utilizing an ASP encoding derived from the encoding used in XHAIL. We perform experiments with the development and test set of the ILP competition. For comparison we also adapted the ILASP system to process competition instances. Experimental results show that the cost parameters for the hypothesis search space are an important factor for finding hypotheses to competition instances within tight resource bounds.
Author Schüller, Peter
Benz, Mishal
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0002-1837-126X
  surname: Schüller
  fullname: Schüller, Peter
  email: ps@kr.tuwien.ac.at
  organization: Institut für Logic and Computation, Technische Universität Wien, Faculty of Engineering, Marmara University
– sequence: 2
  givenname: Mishal
  surname: Benz
  fullname: Benz, Mishal
  organization: Karlsruhe Institute of Technology, Faculty of Engineering and Natural Science, Sabanci University
BookMark eNp9kM9OAjEQxhuDiYA-gLd9gWpnl7a7RyX-S0i86MFTU7bTpQRa0hYS3t4injx4mW_yZX6TmW9CRj54JOQW2B0wJu8TsK6bUQYt5ZK1tL4gY-CyoYwLPiJj1racCqj5FZmktGaM1aIVY_L1iClTtDbEXDlv9n12B6w2YXB9tYthiHq7dX6oDk5X1nmkxSliqj4UcKlTaVfHXcgrTC5VA3qMOrvgr8ml1ZuEN786JZ_PTx_zV7p4f3mbPyxo3zQilyqZ0MbYrhNLCygMMtDFELYWspmh5tgbAOhakKCFkVo3qGG2ZMhN1zRTIs97-xhSimhV7_LPBblculHA1CkhdU5IlYTUKSFVFxL-kLvotjoe_2XqM5PKrB8wqnXYR18e_Af6BrErfUA
CitedBy_id crossref_primary_10_1007_s10994_021_06105_4
crossref_primary_10_1007_s10994_021_06013_7
crossref_primary_10_1007_s10994_020_05934_z
crossref_primary_10_1017_S1471068418000248
crossref_primary_10_1007_s10994_023_06358_1
crossref_primary_10_1145_3571200
crossref_primary_10_1016_j_procs_2020_08_046
crossref_primary_10_1145_3686806
crossref_primary_10_1007_s10994_021_06089_1
crossref_primary_10_1007_s10994_024_06636_6
Cites_doi 10.1007/BF03037227
10.1007/s10994-015-5512-1
10.1023/A:1007676901476
10.1007/978-3-642-31951-8_12
10.1016/0743-1066(94)90035-3
10.1007/s10994-013-5358-3
10.1016/B978-0-934613-40-8.50006-3
10.1145/2043174.2043195
10.1145/2736282
10.1007/978-3-319-11558-0_22
10.1007/978-3-642-20895-9_39
10.1007/s10994-011-5259-2
10.1007/s10994-014-5471-y
10.1016/j.artint.2012.04.001
10.1017/S1471068416000351
10.1017/S1471068411000305
10.1017/CBO9781139342124
10.1016/j.jal.2008.10.007
10.1017/S1471068415000198
10.1007/s10994-009-5113-y
10.1016/j.artint.2013.01.002
10.1007/978-3-642-55481-0
10.1038/nature14539
10.1007/3-540-44797-0_16
10.1016/j.artint.2010.04.002
10.2200/S00457ED1V01Y201211AIM019
10.1093/logcom/2.6.719
10.1016/j.eswa.2017.06.013
10.1609/aaai.v30i1.10354
10.1007/3-540-56602-3_129
10.1007/978-3-319-23708-4_2
10.1007/s10994-008-5079-1
ContentType Journal Article
Copyright The Author(s) 2018
Copyright_xml – notice: The Author(s) 2018
DBID AAYXX
CITATION
DOI 10.1007/s10994-018-5708-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1169
ExternalDocumentID 10_1007_s10994_018_5708_2
GrantInformation_xml – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
  grantid: 114E777
  funderid: http://dx.doi.org/10.13039/501100004410
– fundername: Austrian Science Fund
  grantid: P27730
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: Ôsterreichische Forschungsförderungsgesellschaft
  grantid: 861263
  funderid: http://dx.doi.org/10.13039/501100004955
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c336t-c3706addf996bf1e6de01aadd6f26734ea5ecd11198171a6d7aa3ea14b0e5d933
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435533300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 18 21:36:18 EST 2025
Sat Nov 29 01:43:27 EST 2025
Fri Feb 21 02:28:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Best-effort
Hypothesis generation
Rule complexity
Inductive logic programming
Answer set programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-c3706addf996bf1e6de01aadd6f26734ea5ecd11198171a6d7aa3ea14b0e5d933
ORCID 0000-0002-1837-126X
PageCount 29
ParticipantIDs crossref_citationtrail_10_1007_s10994_018_5708_2
crossref_primary_10_1007_s10994_018_5708_2
springer_journals_10_1007_s10994_018_5708_2
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2018
Publisher Springer US
Publisher_xml – name: Springer US
References Lifschitz, V. (2008). What is answer set programming? In AAAI conference on artificial intelligence (pp. 1594–1597).
CorapiDRussoADe VosMPadgetJSatohKNormative design using inductive learningTheory and Practice of Logic Programming2011114–5783799281935010.1017/S14710684110003051222.68054
DietterichTGDomingosPGetoorLMuggletonSTadepalliPStructured machine learning: The next ten yearsMachine Learning200873132310.1007/s10994-008-5079-1
CorapiDRussoALupuEMuggletonSHTamaddoni-NezhadALisiFAInductive logic programming in answer set programmingInductive logic programming2012BerlinSpringer919710.1007/978-3-642-31951-8_12
SakamaCInoueKBrave induction: A logical framework for learning from incomplete informationMachine Learning20097633510.1007/s10994-009-5113-y
Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In: International conference on logic programming (ICLP), technical communications, (pp. 54–63).
Muggleton, S. (1987). Duce, an oracle-based approach to constructive induction. In International joint conference on artificial intelligence (IJCAI) (pp. 287–292).
Andres, B., Kaufmann, B., Matheis, O., & Schaub, T. (2012). Unsatisfiability-based optimization in clasp. In International conference on logic programming (ICLP), technical communications (pp. 212–221).
AthakraviDAlrajehDBrodaKRussoASatohKDavisJRamonJInductive learning using constraint-driven biasInductive logic programming2015ChamSpringer163210.1007/978-3-319-23708-4_2
KazmiMSchüllerPSaygnYImproving scalability of inductive logic programming via pruning and best-effort optimisationExpert Systems with Applications20178729130310.1016/j.eswa.2017.06.013
Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012a). Answer set solving in practice. Morgan Claypool.
MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic datalog: Predicate invention revisitedMachine Learning201510014973337214710.1007/s10994-014-5471-y1346.68119
GulwaniSHernández-OralloJKitzelmannEMuggletonSHSchmidUZornBInductive programming meets the real worldCommunications of the ACM20155811909910.1145/2736282
BaralCKnowledge representation, reasoning, and declarative problem solving2004CambridgeCambridge University Press1192.68666
Muggleton, S., & Buntine, W. (1992). Machine invention of first-order predicates by inverting resolution. In Proceedings of the fifth international conference on machine learning (pp. 339–352).
Law, M., Russo, A., Cussens, J., & Broda, K. (2016b). The 2016 competition on inductive logic programming. Retrieved March 29, 2017, http://ilp16.doc.ic.ac.uk/competition.
Alviano, M., Dodaro, C., Marques-Silva, J., & Ricca, F. (2015). Optimum stable model search: Algorithms and implementation. Journal of Logic and Computation, article number exv061.
Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In J. Minker (Ed.), Foundations of deductive databases and logic programming (pp. 89–148). Morgan Kaufmann.
GelfondMKahlYKnowledge representation, reasoning, and the design of intelligent agents: The answer-set programming approach2014CambridgeCambridge University Press10.1017/CBO9781139342124
MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning20149412549314440610.1007/s10994-013-5358-31319.68121
MuggletonSDe RaedtLPooleDBratkoIFlachPInoueKSrinivasanAILP turns 20: Biography and future challengesMachine Learning2012861323289066210.1007/s10994-011-5259-21243.68014
MuggletonSInverse entailment and ProgolNew generation computing1995133–424528610.1007/BF03037227
GebserMKaufmannBSchaubTConflict-driven answer set solving: From theory to practiceArtificial Intelligence2012187–1885289291753810.1016/j.artint.2012.04.0011251.68060
Law, M., Russo, A., & Broda, K. (2017). Inductive learning of answer set programs v3.1.0 user manual. Tech. rep., Imperial College of Science, Technology and Medicine, Department of Computing.
KatzourisNArtikisAPaliourasGIncremental learning of event definitions with inductive logic programmingMachine Learning20151002–3555585338398210.1007/s10994-015-5512-11341.68159
LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
Athakravi, D., Corapi, D., Broda, K., & Russo, A. (2014). Learning through hypothesis refinement using answer set programming. In G. Zaverucha, V. Santos Costa, & A. Paes (Eds.), Inductive logic programming (pp. 31–46). Berlin: Springer.
FaberWPfeiferGLeoneNSemantics and complexity of recursive aggregates in answer set programmingArtificial Intelligence20111751278298275235410.1016/j.artint.2010.04.0021216.68263
LawMRussoABrodaKLearning weak constraints in answer set programmingTheory and Practice of Logic Programming2015154–5511525340683510.1017/S14710684150001981379.68073
Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., et al. (2012). ASP-Core-2 input language format. Tech. rep., ASP Standardization Working Group.
ClocksinWFMellishCSProgramming in PROLOG2003BerlinSpringer10.1007/978-3-642-55481-01029.68031
Law, M., Russo, A., & Broda, K. (2014). Inductive learning of answer set programs. In European conference on logics in artificial intelligence (JELIA) (pp. 311–325).
MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming199419629679127993610.1016/0743-1066(94)90035-30816.68043
CravenMRelational learning with statistical predicate inventionMachine Learning2001439711910.1023/A:10076769014760988.68818
Otero, R. P. (2001). Induction of stable models. In Conference on inductive logic programming (pp. 193–205).
BrewkaGEiterTTruszczynskiMAnswer set programming at a glanceCommunications of the ACM201154129210310.1145/2043174.2043195
AnsóteguiCBonetMLLevyJSAT-based MaxSAT algorithmsArtificial Intelligence201319677105302419310.1016/j.artint.2013.01.0021270.68265
Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In International conference and symposium on logic programming (ICLP/SLP) (pp. 1070–1080).
Flach, P. A. (1993). Predicate invention in inductive data engineering. In European conference on machine learning (EMCL) (pp. 83–94).
BleiDMNgAYJordanMILatent Dirichlet allocationJournal of Machine Learning2003399310221112.68379
LawMRussoABrodaKIterative learning of answer set programs from context dependent examplesTheory and Practice of Logic Programming2016165–6834848356935210.1017/S14710684160003511379.68074
RayONonmonotonic abductive inductive learningJournal of Applied Logic20097329340252893010.1016/j.jal.2008.10.0071179.68125
Mitra, A., & Baral, C. (2016). Addressing a question answering challenge by combining statistical methods with inductive rule learning and reasoning. In D. Schuurmans & M. P. Wellman (Eds.), Association for the advancement of artificial intelligence (pp. 2779–2785). AAAI Press.
Gebser, M., Kaminski, R., König, A., & Schaub, T. (2011). Advances in gringo series 3. In International conference on logic programming and non-monotonic reasoning (LPNMR) (pp. 345–351).
KakasACKowalskiRAToniFAbductive logic programmingJournal of Logic and Computation199226719770121897410.1093/logcom/2.6.7190778.68081
M Kazmi (5708_CR27) 2017; 87
5708_CR20
5708_CR43
TG Dietterich (5708_CR16) 2008; 73
WF Clocksin (5708_CR11) 2003
5708_CR23
M Craven (5708_CR15) 2001; 43
5708_CR28
N Katzouris (5708_CR26) 2015; 100
M Gebser (5708_CR21) 2012; 187–188
C Ansótegui (5708_CR3) 2013; 196
D Athakravi (5708_CR5) 2015
S Muggleton (5708_CR37) 1995; 13
M Gelfond (5708_CR22) 2014
SH Muggleton (5708_CR41) 2014; 94
S Muggleton (5708_CR40) 2012; 86
D Corapi (5708_CR14) 2012
AC Kakas (5708_CR25) 1992; 2
S Muggleton (5708_CR39) 1994; 19
5708_CR31
O Ray (5708_CR44) 2009; 7
5708_CR10
5708_CR32
5708_CR34
5708_CR13
5708_CR35
5708_CR36
5708_CR38
5708_CR18
C Sakama (5708_CR45) 2009; 76
5708_CR6
W Faber (5708_CR17) 2011; 175
5708_CR19
5708_CR4
5708_CR2
5708_CR1
S Gulwani (5708_CR24) 2015; 58
C Baral (5708_CR7) 2004
M Law (5708_CR29) 2015; 15
M Law (5708_CR30) 2016; 16
G Brewka (5708_CR9) 2011; 54
SH Muggleton (5708_CR42) 2015; 100
Y LeCun (5708_CR33) 2015; 521
DM Blei (5708_CR8) 2003; 3
D Corapi (5708_CR12) 2011; 11
References_xml – reference: MuggletonSHLinDPahlaviNTamaddoni-NezhadAMeta-interpretive learning: Application to grammatical inferenceMachine Learning20149412549314440610.1007/s10994-013-5358-31319.68121
– reference: Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012a). Answer set solving in practice. Morgan Claypool.
– reference: LawMRussoABrodaKLearning weak constraints in answer set programmingTheory and Practice of Logic Programming2015154–5511525340683510.1017/S14710684150001981379.68073
– reference: Muggleton, S., & Buntine, W. (1992). Machine invention of first-order predicates by inverting resolution. In Proceedings of the fifth international conference on machine learning (pp. 339–352).
– reference: GulwaniSHernández-OralloJKitzelmannEMuggletonSHSchmidUZornBInductive programming meets the real worldCommunications of the ACM20155811909910.1145/2736282
– reference: BaralCKnowledge representation, reasoning, and declarative problem solving2004CambridgeCambridge University Press1192.68666
– reference: BrewkaGEiterTTruszczynskiMAnswer set programming at a glanceCommunications of the ACM201154129210310.1145/2043174.2043195
– reference: LawMRussoABrodaKIterative learning of answer set programs from context dependent examplesTheory and Practice of Logic Programming2016165–6834848356935210.1017/S14710684160003511379.68074
– reference: Law, M., Russo, A., & Broda, K. (2014). Inductive learning of answer set programs. In European conference on logics in artificial intelligence (JELIA) (pp. 311–325).
– reference: MuggletonSHLinDTamaddoni-NezhadAMeta-interpretive learning of higher-order dyadic datalog: Predicate invention revisitedMachine Learning201510014973337214710.1007/s10994-014-5471-y1346.68119
– reference: FaberWPfeiferGLeoneNSemantics and complexity of recursive aggregates in answer set programmingArtificial Intelligence20111751278298275235410.1016/j.artint.2010.04.0021216.68263
– reference: SakamaCInoueKBrave induction: A logical framework for learning from incomplete informationMachine Learning20097633510.1007/s10994-009-5113-y
– reference: MuggletonSDe RaedtLPooleDBratkoIFlachPInoueKSrinivasanAILP turns 20: Biography and future challengesMachine Learning2012861323289066210.1007/s10994-011-5259-21243.68014
– reference: Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In: International conference on logic programming (ICLP), technical communications, (pp. 54–63).
– reference: Lifschitz, V. (2008). What is answer set programming? In AAAI conference on artificial intelligence (pp. 1594–1597).
– reference: GelfondMKahlYKnowledge representation, reasoning, and the design of intelligent agents: The answer-set programming approach2014CambridgeCambridge University Press10.1017/CBO9781139342124
– reference: Law, M., Russo, A., Cussens, J., & Broda, K. (2016b). The 2016 competition on inductive logic programming. Retrieved March 29, 2017, http://ilp16.doc.ic.ac.uk/competition.
– reference: Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In J. Minker (Ed.), Foundations of deductive databases and logic programming (pp. 89–148). Morgan Kaufmann.
– reference: CorapiDRussoALupuEMuggletonSHTamaddoni-NezhadALisiFAInductive logic programming in answer set programmingInductive logic programming2012BerlinSpringer919710.1007/978-3-642-31951-8_12
– reference: KakasACKowalskiRAToniFAbductive logic programmingJournal of Logic and Computation199226719770121897410.1093/logcom/2.6.7190778.68081
– reference: Andres, B., Kaufmann, B., Matheis, O., & Schaub, T. (2012). Unsatisfiability-based optimization in clasp. In International conference on logic programming (ICLP), technical communications (pp. 212–221).
– reference: Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In International conference and symposium on logic programming (ICLP/SLP) (pp. 1070–1080).
– reference: Otero, R. P. (2001). Induction of stable models. In Conference on inductive logic programming (pp. 193–205).
– reference: BleiDMNgAYJordanMILatent Dirichlet allocationJournal of Machine Learning2003399310221112.68379
– reference: GebserMKaufmannBSchaubTConflict-driven answer set solving: From theory to practiceArtificial Intelligence2012187–1885289291753810.1016/j.artint.2012.04.0011251.68060
– reference: Law, M., Russo, A., & Broda, K. (2017). Inductive learning of answer set programs v3.1.0 user manual. Tech. rep., Imperial College of Science, Technology and Medicine, Department of Computing.
– reference: Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., et al. (2012). ASP-Core-2 input language format. Tech. rep., ASP Standardization Working Group.
– reference: MuggletonSInverse entailment and ProgolNew generation computing1995133–424528610.1007/BF03037227
– reference: MuggletonSDe RaedtLInductive logic programming: Theory and methodsThe Journal of Logic Programming199419629679127993610.1016/0743-1066(94)90035-30816.68043
– reference: Mitra, A., & Baral, C. (2016). Addressing a question answering challenge by combining statistical methods with inductive rule learning and reasoning. In D. Schuurmans & M. P. Wellman (Eds.), Association for the advancement of artificial intelligence (pp. 2779–2785). AAAI Press.
– reference: Flach, P. A. (1993). Predicate invention in inductive data engineering. In European conference on machine learning (EMCL) (pp. 83–94).
– reference: Gebser, M., Kaminski, R., König, A., & Schaub, T. (2011). Advances in gringo series 3. In International conference on logic programming and non-monotonic reasoning (LPNMR) (pp. 345–351).
– reference: Alviano, M., Dodaro, C., Marques-Silva, J., & Ricca, F. (2015). Optimum stable model search: Algorithms and implementation. Journal of Logic and Computation, article number exv061.
– reference: CorapiDRussoADe VosMPadgetJSatohKNormative design using inductive learningTheory and Practice of Logic Programming2011114–5783799281935010.1017/S14710684110003051222.68054
– reference: ClocksinWFMellishCSProgramming in PROLOG2003BerlinSpringer10.1007/978-3-642-55481-01029.68031
– reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
– reference: KatzourisNArtikisAPaliourasGIncremental learning of event definitions with inductive logic programmingMachine Learning20151002–3555585338398210.1007/s10994-015-5512-11341.68159
– reference: CravenMRelational learning with statistical predicate inventionMachine Learning2001439711910.1023/A:10076769014760988.68818
– reference: AnsóteguiCBonetMLLevyJSAT-based MaxSAT algorithmsArtificial Intelligence201319677105302419310.1016/j.artint.2013.01.0021270.68265
– reference: Muggleton, S. (1987). Duce, an oracle-based approach to constructive induction. In International joint conference on artificial intelligence (IJCAI) (pp. 287–292).
– reference: DietterichTGDomingosPGetoorLMuggletonSTadepalliPStructured machine learning: The next ten yearsMachine Learning200873132310.1007/s10994-008-5079-1
– reference: RayONonmonotonic abductive inductive learningJournal of Applied Logic20097329340252893010.1016/j.jal.2008.10.0071179.68125
– reference: KazmiMSchüllerPSaygnYImproving scalability of inductive logic programming via pruning and best-effort optimisationExpert Systems with Applications20178729130310.1016/j.eswa.2017.06.013
– reference: AthakraviDAlrajehDBrodaKRussoASatohKDavisJRamonJInductive learning using constraint-driven biasInductive logic programming2015ChamSpringer163210.1007/978-3-319-23708-4_2
– reference: Athakravi, D., Corapi, D., Broda, K., & Russo, A. (2014). Learning through hypothesis refinement using answer set programming. In G. Zaverucha, V. Santos Costa, & A. Paes (Eds.), Inductive logic programming (pp. 31–46). Berlin: Springer.
– volume: 13
  start-page: 245
  issue: 3–4
  year: 1995
  ident: 5708_CR37
  publication-title: New generation computing
  doi: 10.1007/BF03037227
– ident: 5708_CR34
– ident: 5708_CR32
– volume: 100
  start-page: 555
  issue: 2–3
  year: 2015
  ident: 5708_CR26
  publication-title: Machine Learning
  doi: 10.1007/s10994-015-5512-1
– volume: 43
  start-page: 97
  year: 2001
  ident: 5708_CR15
  publication-title: Machine Learning
  doi: 10.1023/A:1007676901476
– start-page: 91
  volume-title: Inductive logic programming
  year: 2012
  ident: 5708_CR14
  doi: 10.1007/978-3-642-31951-8_12
– volume: 19
  start-page: 629
  year: 1994
  ident: 5708_CR39
  publication-title: The Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– volume: 94
  start-page: 25
  issue: 1
  year: 2014
  ident: 5708_CR41
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5358-3
– ident: 5708_CR4
  doi: 10.1016/B978-0-934613-40-8.50006-3
– volume: 54
  start-page: 92
  issue: 12
  year: 2011
  ident: 5708_CR9
  publication-title: Communications of the ACM
  doi: 10.1145/2043174.2043195
– volume: 58
  start-page: 90
  issue: 11
  year: 2015
  ident: 5708_CR24
  publication-title: Communications of the ACM
  doi: 10.1145/2736282
– ident: 5708_CR28
  doi: 10.1007/978-3-319-11558-0_22
– ident: 5708_CR20
  doi: 10.1007/978-3-642-20895-9_39
– volume: 86
  start-page: 3
  issue: 1
  year: 2012
  ident: 5708_CR40
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5259-2
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  ident: 5708_CR42
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– volume: 187–188
  start-page: 52
  year: 2012
  ident: 5708_CR21
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2012.04.001
– volume: 16
  start-page: 834
  issue: 5–6
  year: 2016
  ident: 5708_CR30
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068416000351
– ident: 5708_CR13
– ident: 5708_CR36
– volume: 11
  start-page: 783
  issue: 4–5
  year: 2011
  ident: 5708_CR12
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068411000305
– ident: 5708_CR38
– ident: 5708_CR1
– volume-title: Knowledge representation, reasoning, and the design of intelligent agents: The answer-set programming approach
  year: 2014
  ident: 5708_CR22
  doi: 10.1017/CBO9781139342124
– ident: 5708_CR10
– volume: 7
  start-page: 329
  year: 2009
  ident: 5708_CR44
  publication-title: Journal of Applied Logic
  doi: 10.1016/j.jal.2008.10.007
– ident: 5708_CR31
– volume: 15
  start-page: 511
  issue: 4–5
  year: 2015
  ident: 5708_CR29
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068415000198
– volume: 76
  start-page: 3
  year: 2009
  ident: 5708_CR45
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5113-y
– volume: 196
  start-page: 77
  year: 2013
  ident: 5708_CR3
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2013.01.002
– volume-title: Programming in PROLOG
  year: 2003
  ident: 5708_CR11
  doi: 10.1007/978-3-642-55481-0
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 5708_CR33
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 5708_CR43
  doi: 10.1007/3-540-44797-0_16
– volume: 175
  start-page: 278
  issue: 1
  year: 2011
  ident: 5708_CR17
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2010.04.002
– volume-title: Knowledge representation, reasoning, and declarative problem solving
  year: 2004
  ident: 5708_CR7
– ident: 5708_CR19
  doi: 10.2200/S00457ED1V01Y201211AIM019
– ident: 5708_CR23
– volume: 3
  start-page: 993
  year: 2003
  ident: 5708_CR8
  publication-title: Journal of Machine Learning
– volume: 2
  start-page: 719
  issue: 6
  year: 1992
  ident: 5708_CR25
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/2.6.719
– volume: 87
  start-page: 291
  year: 2017
  ident: 5708_CR27
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.06.013
– ident: 5708_CR35
  doi: 10.1609/aaai.v30i1.10354
– ident: 5708_CR6
– ident: 5708_CR18
  doi: 10.1007/3-540-56602-3_129
– start-page: 16
  volume-title: Inductive logic programming
  year: 2015
  ident: 5708_CR5
  doi: 10.1007/978-3-319-23708-4_2
– volume: 73
  start-page: 3
  issue: 1
  year: 2008
  ident: 5708_CR16
  publication-title: Machine Learning
  doi: 10.1007/s10994-008-5079-1
– ident: 5708_CR2
SSID ssj0002686
Score 2.3845432
Snippet We describe the Inspire system which participated in the first competition on inductive logic programming (ILP). Inspire is based on answer set programming...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1141
SubjectTerms Artificial Intelligence
Computer Science
Control
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Special Issue of the Inductive Logic Programming (ILP) 2016
Subtitle The inspire system at the inductive logic programming competition
Title Best-effort inductive logic programming via fine-grained cost-based hypothesis generation
URI https://link.springer.com/article/10.1007/s10994-018-5708-2
Volume 107
WOSCitedRecordID wos000435533300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWJ9sQdPykKem-SoYvEgRXxRT2GftaBtadKC_97ZbVItqKCXHMLuJszsfDPDvABOIq6kQKeaWteLRlyjzPmC0cQTwojM0yl33fVvkk4n7Xaz26qOu6iz3euQpEPqL8Vuro2tn9I48ZC9y7CC2i610nh3_zSH34C58Y4oPTG16rsOZX53xKIyWoyEOgXTbv7r1zZgvbInyfnsAmzCkh5sQbOe1UAq0d2G5wuEf6oN2qglQT984nCOOOQjVZLWG36TTPucGDQ9ac8Oj9CKyCFutMpOkZf3kS3YKvoF6bl21ZarO_DYvnq4vKbVWAUqw5CV-Ew8hrBm0NURxtdMac_n-IKZgCVhpHmspUIMRNomPmcq4TzU3I-Ep2OVheEuNAbDgd4DgtZhKCMeS4ZuiYyZyFQUm9QwmdlZMaYFXk3fXFY9x-3oi9f8s1uyJV2OpMst6fKgBafzLaNZw43fFp_VDMkr2St-Xr3_p9UHsBZYjrrU3ENolOOJPoJVOS37xfjY3bkPCg_SOw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CnqxPrE-9-BJWchzkxxVLBVrEa1ST2GftaBtadKC_97ZbVItqKCXHMLuJszsfDPDvBA6CZgUHJxqYlwvEjAFMudySiKHc80TR8XMdtdvRq1W3Okkd0Udd1Zmu5chSYvUX4rdbBtbNyZh5AB7F9FSAArL5PHdPzzN4NejdrwjSE9IjPouQ5nfHTGvjOYjoVbB1Kv_-rV1tFbYk_h8egE20ILqb6JqOasBF6K7hZ4vAP6J0mCj5hj88LHFOWyRDxdJWm_wTTzpMazB9CRdMzxCSSwGsNEoO4lf3oemYCvrZbhr21Ubrm6jx_pV-7JBirEKRPg-zeEZORRgTYOrw7WrqFSOy-AF1R6N_ECxUAkJGJjEbuQyKiPGfMXcgDsqlInv76BKf9BXuwiDdeiLgIWCglsiQsoTGYQ61lQkZlaMriGnpG8qip7jZvTFa_rZLdmQLgXSpYZ0qVdDp7Mtw2nDjd8Wn5UMSQvZy35evfen1cdopdG-babN69bNPlr1DHdtmu4BquSjsTpEy2KS97LRkb1_H-4z1R8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB60inixrljXOXhShmadJEe3olhKwYV6CrPWgralSQv-e99Mk2pBBfGSQ5iZhPfmbbyZ70PoJGBScCiqiSm9SMAU2JzLKYkczjVPHBUzi67fjFqtuNNJ2gXPaVaedi9bktM7DQalqZ_Xh1LXv1x8s5C2bkzCyAFVL6KlwHAGmXL9_mnmij1qqR7BkkJiQnnZ1vxuifnANN8VtcGmUf33b66jtSLPxOfTjbGBFlR_E1VLDgdcmPQWer6AsECUhtw1x1Cfj63_w9Yj4uLw1ht8H096DGtISUnXkEooicUAJpogKPHL-9Bc5Mp6Ge5aGGuj7W302Lh-uLwhBd0CEb5Pc3hGDgV3p6EE4tpVVCrHZfCCao9GfqBYqIQE35jEbuQyKiPGfMXcgDsqlInv76BKf9BXuwhD1uiLgIWCQrkiQsoTGYQ61lQkhkNG15BTyjoVBRa5ocR4TT9RlI3oUhBdakSXejV0OpsynAJx_Db4rFROWthk9vPovT-NPkYr7atG2rxt3e2jVc8o157ePUCVfDRWh2hZTPJeNjqyW_EDAkfeAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best-effort+inductive+logic+programming+via+fine-grained+cost-based+hypothesis+generation&rft.jtitle=Machine+learning&rft.au=Sch%C3%BCller%2C+Peter&rft.au=Benz%2C+Mishal&rft.date=2018-07-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=107&rft.issue=7&rft.spage=1141&rft.epage=1169&rft_id=info:doi/10.1007%2Fs10994-018-5708-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_018_5708_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon