Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks

•Free-breathing motion compensation aimed at image-guided radiotherapy.•Novel framework with multi-scale feature extraction and spatial transformation for in-plane motion prediction and future frame generation.•Prediction of the next k deformations from a given input image sequence.•Validation on di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical image analysis Ročník 64; s. 101754
Hlavní autoři: Romaguera, Liset Vázquez, Plantefève, Rosalie, Romero, Francisco Perdigón, Hébert, François, Carrier, Jean-François, Kadoury, Samuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2020
Témata:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Free-breathing motion compensation aimed at image-guided radiotherapy.•Novel framework with multi-scale feature extraction and spatial transformation for in-plane motion prediction and future frame generation.•Prediction of the next k deformations from a given input image sequence.•Validation on different imaging modalities: MRI, US and CT. [Display omitted] External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion constitutes a major limitation during the intervention. It may stray the pre-defined target and trajectories determined during planning from the actual anatomy. We propose a novel framework to predict the in-plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages feature representations at multiple scales. It simultaneously learns to map dense deformations between consecutive images from a given input sequence and to extrapolate them through time. Subsequently, several cascade-arranged spatial transformers use the predicted deformation fields to generate a future image sequence. We propose the use of a composite loss function which minimizes the difference between ground-truth and predicted images while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised manner, thus it does not require additional information beyond image data. Moreover, no pre-processing steps such as segmentation or registration are needed. We report results on 85 different cases (healthy subjects and patients) belonging to multiples datasets across different imaging modalities. Experiments were aimed at investigating the importance of the proposed multi-scale architecture design and the effect of increasing the number of predicted frames on the overall accuracy of the model. The proposed model was able to predict vessel positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74) mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results show the strong potential of the model by achieving accurate matching between the predicted and target images on several imaging modalities.
AbstractList •Free-breathing motion compensation aimed at image-guided radiotherapy.•Novel framework with multi-scale feature extraction and spatial transformation for in-plane motion prediction and future frame generation.•Prediction of the next k deformations from a given input image sequence.•Validation on different imaging modalities: MRI, US and CT. [Display omitted] External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion constitutes a major limitation during the intervention. It may stray the pre-defined target and trajectories determined during planning from the actual anatomy. We propose a novel framework to predict the in-plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages feature representations at multiple scales. It simultaneously learns to map dense deformations between consecutive images from a given input sequence and to extrapolate them through time. Subsequently, several cascade-arranged spatial transformers use the predicted deformation fields to generate a future image sequence. We propose the use of a composite loss function which minimizes the difference between ground-truth and predicted images while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised manner, thus it does not require additional information beyond image data. Moreover, no pre-processing steps such as segmentation or registration are needed. We report results on 85 different cases (healthy subjects and patients) belonging to multiples datasets across different imaging modalities. Experiments were aimed at investigating the importance of the proposed multi-scale architecture design and the effect of increasing the number of predicted frames on the overall accuracy of the model. The proposed model was able to predict vessel positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74) mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results show the strong potential of the model by achieving accurate matching between the predicted and target images on several imaging modalities.
External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion constitutes a major limitation during the intervention. It may stray the pre-defined target and trajectories determined during planning from the actual anatomy. We propose a novel framework to predict the in-plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages feature representations at multiple scales. It simultaneously learns to map dense deformations between consecutive images from a given input sequence and to extrapolate them through time. Subsequently, several cascade-arranged spatial transformers use the predicted deformation fields to generate a future image sequence. We propose the use of a composite loss function which minimizes the difference between ground-truth and predicted images while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised manner, thus it does not require additional information beyond image data. Moreover, no pre-processing steps such as segmentation or registration are needed. We report results on 85 different cases (healthy subjects and patients) belonging to multiples datasets across different imaging modalities. Experiments were aimed at investigating the importance of the proposed multi-scale architecture design and the effect of increasing the number of predicted frames on the overall accuracy of the model. The proposed model was able to predict vessel positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74) mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results show the strong potential of the model by achieving accurate matching between the predicted and target images on several imaging modalities.External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion constitutes a major limitation during the intervention. It may stray the pre-defined target and trajectories determined during planning from the actual anatomy. We propose a novel framework to predict the in-plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages feature representations at multiple scales. It simultaneously learns to map dense deformations between consecutive images from a given input sequence and to extrapolate them through time. Subsequently, several cascade-arranged spatial transformers use the predicted deformation fields to generate a future image sequence. We propose the use of a composite loss function which minimizes the difference between ground-truth and predicted images while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised manner, thus it does not require additional information beyond image data. Moreover, no pre-processing steps such as segmentation or registration are needed. We report results on 85 different cases (healthy subjects and patients) belonging to multiples datasets across different imaging modalities. Experiments were aimed at investigating the importance of the proposed multi-scale architecture design and the effect of increasing the number of predicted frames on the overall accuracy of the model. The proposed model was able to predict vessel positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74) mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results show the strong potential of the model by achieving accurate matching between the predicted and target images on several imaging modalities.
ArticleNumber 101754
Author Hébert, François
Carrier, Jean-François
Kadoury, Samuel
Romaguera, Liset Vázquez
Plantefève, Rosalie
Romero, Francisco Perdigón
Author_xml – sequence: 1
  givenname: Liset Vázquez
  orcidid: 0000-0001-9731-6789
  surname: Romaguera
  fullname: Romaguera, Liset Vázquez
  email: liset.vazquez@polymtl.ca
  organization: École Polytechnique de Montréal, Montréal, Canada
– sequence: 2
  givenname: Rosalie
  surname: Plantefève
  fullname: Plantefève, Rosalie
  organization: Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
– sequence: 3
  givenname: Francisco Perdigón
  surname: Romero
  fullname: Romero, Francisco Perdigón
  organization: École Polytechnique de Montréal, Montréal, Canada
– sequence: 4
  givenname: François
  surname: Hébert
  fullname: Hébert, François
  organization: Elekta Ltd., Montréal, Canada
– sequence: 5
  givenname: Jean-François
  surname: Carrier
  fullname: Carrier, Jean-François
  organization: Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
– sequence: 6
  givenname: Samuel
  orcidid: 0000-0002-3048-4291
  surname: Kadoury
  fullname: Kadoury, Samuel
  organization: École Polytechnique de Montréal, Montréal, Canada
BookMark eNqFkD1vFDEQhi0UpHzxC9K4pNnDXu_auwUFiiAgRYKC1JbXHic-9uxl7DsU8efx3iEKCqjGH_OM5n0uyVlMEQi54WzDGZdvtpsduGA2LWuPL6rvXpALLiRvhq4VZ3_OvD8nlzlvGWOq69gF-fkFK2lLSJEmT0NsltlEoAkfTaQOfMKdOf66PYb4SD0CNBOCKU_rFY0LqTwBmuWZHoKhLmSLYRdipQ5A81KrmWlBE_M6DJBGKD8SfsvX5KU3c4ZXv-sVefjw_uvtx-b-892n23f3jRVClmbyomsHkNAp73o1qF5ZA62YPFd-HMZJtW5Uk3NOeAmj9NL5fgDjQVjJWy-uyOvT3AXT9z3kond1SZjXoGmfddtx1QkmFa-t46nVYsoZwWsbyjF_DRBmzZleheutPgrXq3B9El5Z8Re7VBEGn_9DvT1RUA0cAqDONkC0tRHBFu1S-Cf_C8MZoWY
CitedBy_id crossref_primary_10_1088_1361_6560_acf10e
crossref_primary_10_1002_nme_6943
crossref_primary_10_1016_j_radonc_2023_109555
crossref_primary_10_1038_s41571_022_00631_3
crossref_primary_10_1016_j_engfailanal_2021_105488
crossref_primary_10_1016_j_radonc_2023_109970
crossref_primary_10_1088_1361_6560_acb484
crossref_primary_10_1016_j_intonc_2025_06_006
crossref_primary_10_1016_j_bspc_2024_106923
crossref_primary_10_1002_mp_14927
crossref_primary_10_1002_acm2_14155
crossref_primary_10_1088_1361_6560_acc71d
crossref_primary_10_1088_1361_6560_ad611b
crossref_primary_10_1016_j_cmpb_2022_106908
crossref_primary_10_1016_j_media_2021_102250
crossref_primary_10_1109_JBHI_2022_3191978
crossref_primary_10_1109_TMI_2023_3234046
crossref_primary_10_1111_1754_9485_13285
crossref_primary_10_1186_s13014_024_02532_4
crossref_primary_10_1007_s11548_021_02425_x
crossref_primary_10_1088_1361_6560_aca873
crossref_primary_10_3748_wjg_v27_i40_6825
crossref_primary_10_1088_1361_6560_abf1b8
crossref_primary_10_1007_s00066_024_02277_9
crossref_primary_10_1016_j_media_2021_102260
crossref_primary_10_1007_s40766_025_00073_4
crossref_primary_10_1186_s13014_025_02676_x
crossref_primary_10_1002_mp_17609
Cites_doi 10.1002/mp.12243
10.1016/j.meddos.2008.02.004
10.1088/1361-6560/aaa20b
10.1088/1361-6560/aa5e96
10.1016/j.cmpb.2009.09.002
10.1016/j.molonc.2012.01.007
10.1109/TMI.2005.856751
10.1002/mp.12731
10.1088/1361-6560/aafcec
10.1016/j.ejmp.2017.01.009
10.1088/1361-6560/aa9517
10.1007/s11548-016-1405-4
10.1016/j.media.2014.03.006
10.1088/0031-9155/60/18/7165
10.1002/rcs.1793
10.1088/1361-6560/aa9c22
10.1016/j.media.2012.09.005
10.1088/1361-6560/aaebcf
10.1088/0031-9155/55/1/018
10.1088/0031-9155/61/14/5335
10.1111/1754-9485.12713
10.1016/j.media.2017.12.008
10.1088/1361-6560/ab33e5
10.1109/42.796284
10.1088/0031-9155/54/7/001
10.1118/1.2349696
10.1007/s11548-019-01941-1
10.1016/j.radonc.2004.01.011
10.1118/1.1485055
10.1088/0031-9155/56/18/015
10.1109/TMI.2014.2363611
10.1088/0031-9155/61/2/872
10.1046/j.1540-8167.2000.01183.x
10.1016/S0360-3016(01)01516-4
10.1016/j.ijrobp.2019.06.434
10.1186/s40349-017-0106-y
10.1016/j.ejca.2019.07.021
10.1007/978-3-030-39074-7_19
10.1118/1.2804576
10.1118/1.4873682
10.1088/1361-6560/ab13fa
10.1088/0031-9155/60/14/5571
10.1109/TMI.2019.2897538
10.1109/ACCESS.2018.2869780
10.1109/TBME.2018.2885233
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier B.V.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier B.V.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.media.2020.101754
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10_1016_j_media_2020_101754
S1361841520301183
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7X8
ID FETCH-LOGICAL-c336t-bf3428e6e47fd578757cae23bf17f989b72d97bddd3f6e96f6df58eafe3c612f3
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551766800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Sun Nov 09 10:10:11 EST 2025
Sat Nov 29 07:05:38 EST 2025
Tue Nov 18 22:37:56 EST 2025
Fri Feb 23 02:47:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
LSTM
Motion prediction
Lungs
Liver
41A10
65D05
65D17
Radiotherapy
41A05
Free-breathing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-bf3428e6e47fd578757cae23bf17f989b72d97bddd3f6e96f6df58eafe3c612f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3048-4291
0000-0001-9731-6789
PQID 2417430671
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2417430671
crossref_citationtrail_10_1016_j_media_2020_101754
crossref_primary_10_1016_j_media_2020_101754
elsevier_sciencedirect_doi_10_1016_j_media_2020_101754
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Medical image analysis
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Luo, Ren, Wang, Sun, Pan, Liu, Pang, Lin (bib0035) 2018
Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib0058) 1999; 18
Byeon, Wang, Kumar Srivastava, Koumoutsakos (bib0009) 2018
Blackall, Penney, King, Hawkes (bib0006) 2005; 24
Diodato, Cafarelli, Schiappacasse, Tognarelli, Ciuti, Menciassi (bib0016) 2018; 63
Jaderberg, Simonyan, Zisserman (bib0024) 2015
Elsayed, N., Maida, A. S., Bayoumi, M., 2018. Reduced-gate convolutional lstm using predictive coding for spatiotemporal prediction. arXiv preprint arXiv:1810.07251.
Mathieu, M., Couprie, C., LeCun, Y., 2015. Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440.
Azizmohammadi, Martin, Miro, Duong (bib0004) 2019
Tanner, Eppenhof, Gelderblom, Szekely (bib0068) 2014
Seregni, Paganelli, Kipritidis, Baroni, Riboldi (bib0062) 2017; 123
Rohé, Sermesant, Pennec (bib0055) 2018; 45
Castillo, Castillo, Guerra, Johnson, McPhail, Garg, Guerrero (bib0011) 2009; 54
Raaymakers, Jürgenliemk-Schulz, Bol, Glitzner, Kotte, Van Asselen, De Boer, Bluemink, Hackett, Moerland (bib0053) 2017; 62
Seregni, Paganelli, Lee, Greer, Baroni, Keall, Riboldi (bib0063) 2016; 61
Li, Fang, Yang, Wang, Lu, Yang (bib0029) 2018
Yao, Tang, Wei, Zheng, Li (bib0080) 2019; 33
Alahi, Goel, Ramanathan, Robicquet, Fei-Fei, Savarese (bib0002) 2016
Vondrick, Pirsiavash, Torralba (bib0073) 2016
Schuldt, Laptev, Caputo (bib0060) 2004; 3
Wei, H., Yin, X., Lin, P., 2018. Novel video prediction for large-scale scene using optical flow. arXiv preprint arXiv:1805.12243.
Yaromina, Krause, Baumann (bib0081) 2012; 6
.
Preiswerk, De Luca, Arnold, Celicanin, Petrusca, Tanner, Bieri, Salomir, Cattin (bib0051) 2014; 18
Modat, Ridgway, Taylor, Lehmann, Barnes, Hawkes, Fox, Ourselin (bib0041) 2010; 98
Nguyen, Moseley, Dawson, Jaffray, Brock (bib0043) 2008
Paganelli, Lee, Greer, Baroni, Riboldi, Keall (bib0046) 2015; 60
Fuerst, Mansi, Carnis, Sälzle, Zhang, Declerck, Boettger, Bayouth, Navab, Kamen (bib0019) 2014; 34
Lorton, Guillemin, Möri, Crowe, Boudabbous, Terraz, Becker, Cattin, Salomir, Gui (bib0032) 2018; 66
Zhao, Zhang, Zhu, Wu, Wang, Xu (bib0085) 2019
Samei, Tanner, Székely (bib0059) 2012
Wang, Liang, Zhu, Xie (bib0075) 2018; 6
McClelland, Hawkes, Schaeffter, King (bib0038) 2013; 17
Denton (bib0015) 2017
Brock, Hollister, Dawson, Balter (bib0008) 2002; 29
Wölfelschneider, Seregni, Fassi, Ziegler, Baroni, Fietkau, Riboldi, Bert (bib0078) 2017; 44
Noorda, Bartels, Viergever, Pluim (bib0044) 2017; 62
Sutskever, Vinyals, Le (bib0067) 2014
Zhang, Pevsner, Hertanto, Hu, Rosenzweig, Ling, Mageras (bib0084) 2007; 34
Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H., 2017. Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033.
Wang, Y., Gao, Z., Long, M., Wang, J., Yu, P. S., 2018b. Predrnn++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. arXiv preprint arXiv:1804.06300.
Ozhasoglu, Saw, Chen, Burton, Komanduri, Yue, Huq, Heron (bib0045) 2008; 33
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0005) 2019
Romaguera, Olofsson, Plantefève, Lugez, De Guise, Kadoury (bib0056) 2019; 14
Zachiu, de Senneville, Dmitriev, Moonen, Ries (bib0083) 2017; 5
Srivastava, Mansimov, Salakhudinov (bib0065) 2015
Hall, Paulson, van der Heide, Fuller, Raaymakers, Lagendijk, Li, Jaffray, Dawson, Erickson (bib0022) 2019; 122
Park, Farah, Shea, Tryggestad, Hales, Lee (bib0050) 2018; 63
De Groot, Bootsma, VAN DER VELDE, Schalij (bib0014) 2000; 11
Lin, Shi, Wang, Chan, Tang, Ji (bib0031) 2019; 64
Lotter, W., Kreiman, G., Cox, D., 2016. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.
Dalca, Balakrishnan, Guttag, Sabuncu (bib0013) 2018
Xingjian, Chen, Wang, Yeung, Wong, Woo (bib0079) 2015
Stemkens, Tijssen, De Senneville, Lagendijk, Van Den Berg (bib0066) 2016; 61
Tanner, Zur, French, Samei, Strehlow, Sat, McLeod, Houston, Kozerke, Székely (bib0069) 2016; 11
He, Zhang, Ren, Sun (bib0023) 2016
Luca, Benz, Kondo (bib0034) 2015; 60
Yun, Rathee, Fallone (bib0082) 2019; 105
Negoro, Nagata, Aoki, Mizowaki, Araki, Takayama, Kokubo, Yano, Koga, Sasai (bib0042) 2001; 50
Qin, Bai, Schlemper, Petersen, Piechnik, Neubauer, Rueckert (bib0052) 2018
Mechalakos, Yorke, Mageras, Hertanto, Jackson, Obcemea, Rosenzweig, Ling (bib0039) 2004; 71
Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S., 2014. Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604.
Li, Lewis, Jia, Zhao, Liu, Wuenschel, Lamb, Yang, Low, Jiang (bib0028) 2011; 56
Paganelli, Whelan, Peroni, Summers, Fast, van de Lindt, McClelland, Eiben, Keall, Lomax (bib0049) 2018; 63
Ge, O’Brien, Shieh, Booth, Keall (bib0021) 2014; 41
Teo, Ahmed, Kawalec, Alayoubi, Bruce, Lyn, Pistorius (bib0070) 2018; 45
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
Paganelli, Lee, Kipritidis, Whelan, Greer, Baroni, Riboldi, Keall (bib0047) 2018; 62
Bradski (bib0007) 2000
Seo, Koizumi, Mitsuishi, Sugita (bib0061) 2017; 13
Liang, Lee, Dai, Xing (bib0030) 2017
Luo, Peng, Huang, Alahi, Fei-Fei (bib0036) 2017
Chollet, F., et al., 2015. Keras.
Rueckert, D., Schnabel, J. A., 2019. Model-based and data-driven strategies in medical image computing. arXiv preprint arXiv:1909.10391.
von Siebenthal, Székely, Lomax, Cattin (bib0064) 2007
Krebs, J., Mansi, T., Ayache, N., Delingette, H., 2019. Probabilistic motion modeling from medical image sequences: application to cardiac cine-mri. arXiv preprint arXiv:1907.13524.
Paganelli, Portoso, Garau, Meschini, Via, Buizza, Keall, Riboldi, Baroni (bib0048) 2019; 64
Arnold, Preiswerk, Fasel, Salomir, Scheffler, Cattin (bib0003) 2011
Klüter (bib0026) 2019
Garau, Via, Meschini, Lee, Keall, Riboldi, Baroni, Paganelli (bib0020) 2019
Fayad, Buerger, Tsoumpas, Cheze-Le-Rest, Visvikis (bib0018) 2012
Meschini, Seregni, Pella, Ciocca, Fossati, Valvo, Riboldi, Baroni (bib0040) 2017; 34
Keall, Mageras, Balter, Emery, Forster, Jiang, Kapatoes, Low, Murphy, Murray (bib0025) 2006; 33
Walker, Gupta, Hebert (bib0074) 2015
Urschel, Kresl, Luketich, Papiez, Schulz, Timmerman (bib0071) 2007
Castillo, Castillo, Martinez, Shenoy, Guerrero (bib0010) 2009; 55
Byeon (10.1016/j.media.2020.101754_bib0009) 2018
Paganelli (10.1016/j.media.2020.101754_bib0048) 2019; 64
Meschini (10.1016/j.media.2020.101754_bib0040) 2017; 34
10.1016/j.media.2020.101754_bib0001
Negoro (10.1016/j.media.2020.101754_bib0042) 2001; 50
Liang (10.1016/j.media.2020.101754_bib0030) 2017
Luo (10.1016/j.media.2020.101754_bib0036) 2017
De Groot (10.1016/j.media.2020.101754_bib0014) 2000; 11
Paganelli (10.1016/j.media.2020.101754_bib0046) 2015; 60
Raaymakers (10.1016/j.media.2020.101754_bib0053) 2017; 62
Ge (10.1016/j.media.2020.101754_bib0021) 2014; 41
Azizmohammadi (10.1016/j.media.2020.101754_bib0004) 2019
Ozhasoglu (10.1016/j.media.2020.101754_bib0045) 2008; 33
Zachiu (10.1016/j.media.2020.101754_bib0083) 2017; 5
Mechalakos (10.1016/j.media.2020.101754_bib0039) 2004; 71
Qin (10.1016/j.media.2020.101754_bib0052) 2018
Zhang (10.1016/j.media.2020.101754_bib0084) 2007; 34
Rohé (10.1016/j.media.2020.101754_bib0055) 2018; 45
Fayad (10.1016/j.media.2020.101754_bib0018) 2012
Yun (10.1016/j.media.2020.101754_bib0082) 2019; 105
10.1016/j.media.2020.101754_bib0072
Wölfelschneider (10.1016/j.media.2020.101754_bib0078) 2017; 44
Park (10.1016/j.media.2020.101754_bib0050) 2018; 63
Diodato (10.1016/j.media.2020.101754_bib0016) 2018; 63
Jaderberg (10.1016/j.media.2020.101754_bib0024) 2015
Seregni (10.1016/j.media.2020.101754_bib0063) 2016; 61
Sutskever (10.1016/j.media.2020.101754_bib0067) 2014
10.1016/j.media.2020.101754_bib0076
10.1016/j.media.2020.101754_bib0033
10.1016/j.media.2020.101754_bib0077
Tanner (10.1016/j.media.2020.101754_bib0068) 2014
Alahi (10.1016/j.media.2020.101754_bib0002) 2016
10.1016/j.media.2020.101754_bib0037
Noorda (10.1016/j.media.2020.101754_bib0044) 2017; 62
Brock (10.1016/j.media.2020.101754_bib0008) 2002; 29
Paganelli (10.1016/j.media.2020.101754_bib0047) 2018; 62
Castillo (10.1016/j.media.2020.101754_bib0010) 2009; 55
Walker (10.1016/j.media.2020.101754_bib0074) 2015
Teo (10.1016/j.media.2020.101754_bib0070) 2018; 45
Luca (10.1016/j.media.2020.101754_bib0034) 2015; 60
McClelland (10.1016/j.media.2020.101754_bib0038) 2013; 17
Seregni (10.1016/j.media.2020.101754_bib0062) 2017; 123
von Siebenthal (10.1016/j.media.2020.101754_bib0064) 2007
Arnold (10.1016/j.media.2020.101754_bib0003) 2011
Hall (10.1016/j.media.2020.101754_bib0022) 2019; 122
Tanner (10.1016/j.media.2020.101754_bib0069) 2016; 11
Nguyen (10.1016/j.media.2020.101754_bib0043) 2008
Blackall (10.1016/j.media.2020.101754_bib0006) 2005; 24
Modat (10.1016/j.media.2020.101754_bib0041) 2010; 98
Wang (10.1016/j.media.2020.101754_bib0075) 2018; 6
10.1016/j.media.2020.101754_bib0027
Castillo (10.1016/j.media.2020.101754_bib0011) 2009; 54
Urschel (10.1016/j.media.2020.101754_bib0071) 2007
Lin (10.1016/j.media.2020.101754_bib0031) 2019; 64
Zhao (10.1016/j.media.2020.101754_bib0085) 2019
Yaromina (10.1016/j.media.2020.101754_bib0081) 2012; 6
Keall (10.1016/j.media.2020.101754_bib0025) 2006; 33
He (10.1016/j.media.2020.101754_bib0023) 2016
Rueckert (10.1016/j.media.2020.101754_bib0058) 1999; 18
Denton (10.1016/j.media.2020.101754_bib0015) 2017
Klüter (10.1016/j.media.2020.101754_bib0026) 2019
Seo (10.1016/j.media.2020.101754_bib0061) 2017; 13
Bradski (10.1016/j.media.2020.101754_bib0007) 2000
Dalca (10.1016/j.media.2020.101754_bib0013) 2018
Lorton (10.1016/j.media.2020.101754_bib0032) 2018; 66
Samei (10.1016/j.media.2020.101754_bib0059) 2012
Vondrick (10.1016/j.media.2020.101754_bib0073) 2016
Preiswerk (10.1016/j.media.2020.101754_bib0051) 2014; 18
10.1016/j.media.2020.101754_bib0054
10.1016/j.media.2020.101754_bib0012
Paganelli (10.1016/j.media.2020.101754_bib0049) 2018; 63
Romaguera (10.1016/j.media.2020.101754_bib0056) 2019; 14
10.1016/j.media.2020.101754_bib0057
Schuldt (10.1016/j.media.2020.101754_bib0060) 2004; 3
Garau (10.1016/j.media.2020.101754_bib0020) 2019
10.1016/j.media.2020.101754_bib0017
Li (10.1016/j.media.2020.101754_bib0028) 2011; 56
Luo (10.1016/j.media.2020.101754_bib0035) 2018
Srivastava (10.1016/j.media.2020.101754_bib0065) 2015
Li (10.1016/j.media.2020.101754_bib0029) 2018
Xingjian (10.1016/j.media.2020.101754_bib0079) 2015
Balakrishnan (10.1016/j.media.2020.101754_bib0005) 2019
Yao (10.1016/j.media.2020.101754_bib0080) 2019; 33
Fuerst (10.1016/j.media.2020.101754_bib0019) 2014; 34
Stemkens (10.1016/j.media.2020.101754_bib0066) 2016; 61
References_xml – year: 2019
  ident: bib0020
  article-title: A roi-based global motion model established on 4dct and 2d cine-mri data for mri-guidance in radiation therapy
  publication-title: Phys. Med. Biol.
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: bib0067
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural information Processing Systems
– reference: Chollet, F., et al., 2015. Keras.
– volume: 17
  start-page: 19
  year: 2013
  end-page: 42
  ident: bib0038
  article-title: Respiratory motion models: a review
  publication-title: Med. Image Anal.
– start-page: 147
  year: 2012
  end-page: 157
  ident: bib0059
  article-title: Predicting liver motion using exemplar models
  publication-title: International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging
– reference: Rueckert, D., Schnabel, J. A., 2019. Model-based and data-driven strategies in medical image computing. arXiv preprint arXiv:1909.10391.
– start-page: 2203
  year: 2017
  end-page: 2212
  ident: bib0036
  article-title: Unsupervised learning of long-term motion dynamics for videos
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 961
  year: 2016
  end-page: 971
  ident: bib0002
  article-title: Social lstm: human trajectory prediction in crowded spaces
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 472
  year: 2018
  end-page: 480
  ident: bib0052
  article-title: Joint learning of motion estimation and segmentation for cardiac mr image sequences
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 843
  year: 2015
  end-page: 852
  ident: bib0065
  article-title: Unsupervised learning of video representations using lstms
  publication-title: International Conference on Machine Learning
– volume: 34
  start-page: 28
  year: 2017
  end-page: 37
  ident: bib0040
  article-title: Evaluation of residual abdominal tumour motion in carbon ion gated treatments through respiratory motion modelling
  publication-title: Physica Med.
– volume: 63
  start-page: 22TR03
  year: 2018
  ident: bib0049
  article-title: Mri-guidance for motion management in external beam radiotherapy: current status and future challenges
  publication-title: Phys. Med. Biol.
– year: 2019
  ident: bib0026
  article-title: Technical design and concept of a 0.35 t mr-linac
  publication-title: Clin. Transl. Radiat. Oncol.
– year: 2007
  ident: bib0071
  article-title: Treating Tumors that Move with Respiration
– reference: Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H., 2017. Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033.
– volume: 56
  start-page: 6009
  year: 2011
  ident: bib0028
  article-title: On a pca-based lung motion model
  publication-title: Phys. Med. Biol.
– start-page: 7014
  year: 2019
  end-page: 7018
  ident: bib0004
  article-title: Model-free cardiorespiratory motion prediction from x-ray angiography sequence with lstm network
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– start-page: 4414
  year: 2017
  end-page: 4423
  ident: bib0015
  article-title: Unsupervised learning of disentangled representations from video
  publication-title: Advances in Neural Information Processing Systems
– reference: Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S., 2014. Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604.
– start-page: 613
  year: 2016
  end-page: 621
  ident: bib0073
  article-title: Generating videos with scene dynamics
  publication-title: Advances in Neural Information Processing Systems
– start-page: 698
  year: 2014
  end-page: 701
  ident: bib0068
  article-title: Decision fusion for temporal prediction of respiratory liver motion
  publication-title: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)
– start-page: 5207
  year: 2018
  end-page: 5215
  ident: bib0035
  article-title: Lstm pose machines
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 14
  start-page: 933
  year: 2019
  end-page: 944
  ident: bib0056
  article-title: Automatic self-gated 4d-mri construction from free-breathing 2d acquisitions applied on liver images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 54
  start-page: 1849
  year: 2009
  ident: bib0011
  article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 4772
  year: 2007
  end-page: 4781
  ident: bib0084
  article-title: A patient-specific respiratory model of anatomical motion for radiation treatment planning
  publication-title: Med. Phys.
– reference: Krebs, J., Mansi, T., Ayache, N., Delingette, H., 2019. Probabilistic motion modeling from medical image sequences: application to cardiac cine-mri. arXiv preprint arXiv:1907.13524.
– start-page: 600
  year: 2018
  end-page: 615
  ident: bib0029
  article-title: Flow-grounded spatial-temporal video prediction from still images
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 123
  start-page: S147
  year: 2017
  end-page: S148
  ident: bib0062
  article-title: Out-of-plane motion correction in orthogonal cine-mri registration
  publication-title: Radiotherapy and Oncology
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0023
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib0005
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 41
  start-page: 61703
  year: 2014
  ident: bib0021
  article-title: Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator
  publication-title: Med. Phys.
– start-page: 729
  year: 2018
  end-page: 738
  ident: bib0013
  article-title: Unsupervised learning for fast probabilistic diffeomorphic registration
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 13
  start-page: e1793
  year: 2017
  ident: bib0061
  article-title: Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound
  publication-title: Int. J. Med. Robot.Comput. Assist. Surg.
– volume: 11
  start-page: 1143
  year: 2016
  end-page: 1152
  ident: bib0069
  article-title: In vivo validation of spatio-temporal liver motion prediction from motion tracked on mr thermometry images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 33
  start-page: 3874
  year: 2006
  end-page: 3900
  ident: bib0025
  article-title: The management of respiratory motion in radiation oncology report of aapm task group 76 a
  publication-title: Med. Phys.
– volume: 55
  start-page: 305
  year: 2009
  ident: bib0010
  article-title: Four-dimensional deformable image registration using trajectory modeling
  publication-title: Phys. Med. Biol.
– volume: 63
  start-page: 35017
  year: 2018
  ident: bib0016
  article-title: Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs
  publication-title: Phys. Med. Biol.
– volume: 62
  start-page: L41
  year: 2017
  ident: bib0053
  article-title: First patients treated with a 1.5 t mri-linac: clinical proof of concept of a high-precision, high-field mri guided radiotherapy treatment
  publication-title: Phys. Med. Biol.
– start-page: 2017
  year: 2015
  end-page: 2025
  ident: bib0024
  article-title: Spatial transformer networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 4058
  year: 2012
  end-page: 4061
  ident: bib0018
  article-title: A generic respiratory motion model based on 4d mri imaging and 2d image navigators
  publication-title: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)
– year: 2000
  ident: bib0007
  article-title: The OpenCV Library
  publication-title: Dr. Dobb’s J. Softw. Tools
– volume: 11
  start-page: 1183
  year: 2000
  end-page: 1192
  ident: bib0014
  article-title: Three-dimensional catheter positioning during radiofrequency ablation in patients: first application of a real-time position management system
  publication-title: J. Cardiovasc. Electrophysiol.
– volume: 64
  start-page: 85010
  year: 2019
  ident: bib0031
  article-title: Towards real-time respiratory motion prediction based on long short-term memory neural networks
  publication-title: Phys. Med. Biol.
– volume: 60
  start-page: 5571
  year: 2015
  end-page: 5599
  ident: bib0034
  article-title: The 2014 liver ultrasound tracking benchmark
  publication-title: Phys. Med. Biol.
– volume: 63
  start-page: 25015
  year: 2018
  ident: bib0050
  article-title: Simultaneous tumor and surrogate motion tracking with dynamic mri for radiation therapy planning
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 599
  year: 2014
  end-page: 607
  ident: bib0019
  article-title: Patient-specific biomechanical model for the prediction of lung motion from 4-d ct images
  publication-title: IEEE Trans. Med. Imaging
– volume: 62
  start-page: 389
  year: 2018
  end-page: 400
  ident: bib0047
  article-title: Feasibility study on 3d image reconstruction from 2d orthogonal cine-mri for mri-guided radiotherapy
  publication-title: J. Med. Imaging Radiat. Oncol.
– volume: 66
  start-page: 2182
  year: 2018
  end-page: 2191
  ident: bib0032
  article-title: Self-scanned hifu ablation of moving tissue using real-time hybrid us-mr imaging
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 33
  start-page: 117
  year: 2008
  end-page: 123
  ident: bib0045
  article-title: Synchrony–cyberknife respiratory compensation technology
  publication-title: Med. Dosim.
– start-page: 659
  year: 2007
  end-page: 666
  ident: bib0064
  article-title: Inter-subject modelling of liver deformation during radiation therapy
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 62
  start-page: 2581
  year: 2017
  ident: bib0044
  article-title: Subject-specific liver motion modeling in mri: a feasibility study on spatiotemporal prediction
  publication-title: Phys. Med. Biol.
– volume: 45
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0055
  article-title: Low-dimensional representation of cardiac motion using barycentric subspaces: a new group-wise paradigm for estimation, analysis, and reconstruction
  publication-title: Med. Image Anal.
– volume: 44
  start-page: 2066
  year: 2017
  end-page: 2076
  ident: bib0078
  article-title: Examination of a deformable motion model for respiratory movements and 4d dose calculations using different driving surrogates
  publication-title: Med. Phys.
– volume: 24
  start-page: 1405
  year: 2005
  end-page: 1416
  ident: bib0006
  article-title: Alignment of sparse freehand 3-d ultrasound with preoperative images of the liver using models of respiratory motion and deformation
  publication-title: IEEE Trans. Med. Imaging
– reference: Lotter, W., Kreiman, G., Cox, D., 2016. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.
– volume: 5
  start-page: 27
  year: 2017
  ident: bib0083
  article-title: A framework for continuous target tracking during mr-guided high intensity focused ultrasound thermal ablations in the abdomen
  publication-title: J. Ther. Ultrasound.
– volume: 64
  start-page: 185013
  year: 2019
  ident: bib0048
  article-title: Time-resolved volumetric mri in mri-guided radiotherapy: an in silico comparative analysis
  publication-title: Phys. Med. Biol.
– start-page: 802
  year: 2015
  end-page: 810
  ident: bib0079
  article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1744
  year: 2017
  end-page: 1752
  ident: bib0030
  article-title: Dual motion gan for future-flow embedded video prediction
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 33
  start-page: 5668
  year: 2019
  end-page: 5675
  ident: bib0080
  article-title: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 623
  year: 2011
  end-page: 630
  ident: bib0003
  article-title: 3d organ motion prediction for mr-guided high intensity focused ultrasound
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 61
  start-page: 5335
  year: 2016
  ident: bib0066
  article-title: Image-driven, model-based 3d abdominal motion estimation for mr-guided radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 50
  start-page: 889
  year: 2001
  end-page: 898
  ident: bib0042
  article-title: The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy
  publication-title: Int. J. Radiat. Oncol.* Biol.* Phys.
– volume: 3
  start-page: 32
  year: 2004
  end-page: 36
  ident: bib0060
  article-title: Recognizing human actions: a local svm approach
  publication-title: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.
– volume: 18
  start-page: 740
  year: 2014
  end-page: 751
  ident: bib0051
  article-title: Model-guided respiratory organ motion prediction of the liver from 2d ultrasound
  publication-title: Med. Image Anal.
– reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
– reference: Mathieu, M., Couprie, C., LeCun, Y., 2015. Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440.
– start-page: 3945
  year: 2008
  end-page: 3948
  ident: bib0043
  article-title: Adapting population liver motion models for individualized online image-guided therapy
  publication-title: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  ident: bib0058
  article-title: Nonrigid registration using free-form deformations: application to breast mr images
  publication-title: IEEE Trans. Med. Imaging
– reference: Wei, H., Yin, X., Lin, P., 2018. Novel video prediction for large-scale scene using optical flow. arXiv preprint arXiv:1805.12243.
– reference: .
– volume: 6
  start-page: 51262
  year: 2018
  end-page: 51268
  ident: bib0075
  article-title: A feasibility of respiration prediction based on deep bi-lstm for real-time tumor tracking
  publication-title: IEEE Access
– start-page: 2443
  year: 2015
  end-page: 2451
  ident: bib0074
  article-title: Dense optical flow prediction from a static image
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 105
  start-page: S28
  year: 2019
  ident: bib0082
  article-title: A deep-learning based 3d tumor motion prediction algorithm for non-invasive intra-fractional tumor-tracked radiotherapy (niftert) on linac-mr
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 98
  start-page: 278
  year: 2010
  end-page: 284
  ident: bib0041
  article-title: Fast free-form deformation using graphics processing units
  publication-title: Comput. Methods Programs Biomed.
– volume: 6
  start-page: 211
  year: 2012
  end-page: 221
  ident: bib0081
  article-title: Individualization of cancer treatment from radiotherapy perspective
  publication-title: Mol. Oncol.
– volume: 29
  start-page: 1403
  year: 2002
  end-page: 1405
  ident: bib0008
  article-title: Creating a four-dimensional model of the liver using finite element analysis
  publication-title: Med. Phys.
– volume: 122
  start-page: 42
  year: 2019
  end-page: 52
  ident: bib0022
  article-title: The transformation of radiation oncology using real-time magnetic resonance guidance: a review
  publication-title: Eur. J. Cancer
– volume: 60
  start-page: 7165
  year: 2015
  ident: bib0046
  article-title: Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine mri images
  publication-title: Phys. Med. Biol.
– volume: 71
  start-page: 191
  year: 2004
  end-page: 200
  ident: bib0039
  article-title: Dosimetric effect of respiratory motion in external beam radiotherapy of the lung
  publication-title: Radiother. Oncol.
– volume: 61
  start-page: 872
  year: 2016
  ident: bib0063
  article-title: Motion prediction in mri-guided radiotherapy based on interleaved orthogonal cine-mri
  publication-title: Phys. Med. Biol.
– reference: Wang, Y., Gao, Z., Long, M., Wang, J., Yu, P. S., 2018b. Predrnn++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. arXiv preprint arXiv:1804.06300.
– reference: Elsayed, N., Maida, A. S., Bayoumi, M., 2018. Reduced-gate convolutional lstm using predictive coding for spatiotemporal prediction. arXiv preprint arXiv:1810.07251.
– start-page: 5926
  year: 2019
  end-page: 5930
  ident: bib0085
  article-title: Predicting tongue motion in unlabeled ultrasound videos using convolutional lstm neural networks
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 753
  year: 2018
  end-page: 769
  ident: bib0009
  article-title: Contextvp: fully context-aware video prediction
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 45
  start-page: 830
  year: 2018
  end-page: 845
  ident: bib0070
  article-title: Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories
  publication-title: Med. Phys.
– year: 2007
  ident: 10.1016/j.media.2020.101754_bib0071
– start-page: 2203
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0036
  article-title: Unsupervised learning of long-term motion dynamics for videos
– volume: 44
  start-page: 2066
  issue: 6
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0078
  article-title: Examination of a deformable motion model for respiratory movements and 4d dose calculations using different driving surrogates
  publication-title: Med. Phys.
  doi: 10.1002/mp.12243
– start-page: 3945
  year: 2008
  ident: 10.1016/j.media.2020.101754_bib0043
  article-title: Adapting population liver motion models for individualized online image-guided therapy
– volume: 33
  start-page: 117
  issue: 2
  year: 2008
  ident: 10.1016/j.media.2020.101754_bib0045
  article-title: Synchrony–cyberknife respiratory compensation technology
  publication-title: Med. Dosim.
  doi: 10.1016/j.meddos.2008.02.004
– volume: 63
  start-page: 25015
  issue: 2
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0050
  article-title: Simultaneous tumor and surrogate motion tracking with dynamic mri for radiation therapy planning
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aaa20b
– volume: 62
  start-page: 2581
  issue: 7
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0044
  article-title: Subject-specific liver motion modeling in mri: a feasibility study on spatiotemporal prediction
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5e96
– ident: 10.1016/j.media.2020.101754_bib0057
– volume: 98
  start-page: 278
  issue: 3
  year: 2010
  ident: 10.1016/j.media.2020.101754_bib0041
  article-title: Fast free-form deformation using graphics processing units
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2009.09.002
– start-page: 613
  year: 2016
  ident: 10.1016/j.media.2020.101754_bib0073
  article-title: Generating videos with scene dynamics
– ident: 10.1016/j.media.2020.101754_bib0054
– ident: 10.1016/j.media.2020.101754_bib0077
– volume: 6
  start-page: 211
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2020.101754_bib0081
  article-title: Individualization of cancer treatment from radiotherapy perspective
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2012.01.007
– volume: 24
  start-page: 1405
  issue: 11
  year: 2005
  ident: 10.1016/j.media.2020.101754_bib0006
  article-title: Alignment of sparse freehand 3-d ultrasound with preoperative images of the liver using models of respiratory motion and deformation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2005.856751
– start-page: 472
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0052
  article-title: Joint learning of motion estimation and segmentation for cardiac mr image sequences
– volume: 45
  start-page: 830
  issue: 2
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0070
  article-title: Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories
  publication-title: Med. Phys.
  doi: 10.1002/mp.12731
– start-page: 4058
  year: 2012
  ident: 10.1016/j.media.2020.101754_bib0018
  article-title: A generic respiratory motion model based on 4d mri imaging and 2d image navigators
– year: 2019
  ident: 10.1016/j.media.2020.101754_bib0020
  article-title: A roi-based global motion model established on 4dct and 2d cine-mri data for mri-guidance in radiation therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aafcec
– start-page: 147
  year: 2012
  ident: 10.1016/j.media.2020.101754_bib0059
  article-title: Predicting liver motion using exemplar models
– volume: 34
  start-page: 28
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0040
  article-title: Evaluation of residual abdominal tumour motion in carbon ion gated treatments through respiratory motion modelling
  publication-title: Physica Med.
  doi: 10.1016/j.ejmp.2017.01.009
– start-page: 5926
  year: 2019
  ident: 10.1016/j.media.2020.101754_bib0085
  article-title: Predicting tongue motion in unlabeled ultrasound videos using convolutional lstm neural networks
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2020.101754_bib0023
  article-title: Deep residual learning for image recognition
– volume: 62
  start-page: L41
  issue: 23
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0053
  article-title: First patients treated with a 1.5 t mri-linac: clinical proof of concept of a high-precision, high-field mri guided radiotherapy treatment
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa9517
– volume: 11
  start-page: 1143
  issue: 6
  year: 2016
  ident: 10.1016/j.media.2020.101754_bib0069
  article-title: In vivo validation of spatio-temporal liver motion prediction from motion tracked on mr thermometry images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-016-1405-4
– volume: 18
  start-page: 740
  issue: 5
  year: 2014
  ident: 10.1016/j.media.2020.101754_bib0051
  article-title: Model-guided respiratory organ motion prediction of the liver from 2d ultrasound
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.03.006
– volume: 60
  start-page: 7165
  issue: 18
  year: 2015
  ident: 10.1016/j.media.2020.101754_bib0046
  article-title: Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine mri images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/18/7165
– ident: 10.1016/j.media.2020.101754_bib0012
– ident: 10.1016/j.media.2020.101754_bib0037
– volume: 13
  start-page: e1793
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0061
  article-title: Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound
  publication-title: Int. J. Med. Robot.Comput. Assist. Surg.
  doi: 10.1002/rcs.1793
– start-page: 1744
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0030
  article-title: Dual motion gan for future-flow embedded video prediction
– ident: 10.1016/j.media.2020.101754_bib0033
– volume: 63
  start-page: 35017
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0016
  article-title: Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa9c22
– volume: 17
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2020.101754_bib0038
  article-title: Respiratory motion models: a review
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.09.005
– start-page: 698
  year: 2014
  ident: 10.1016/j.media.2020.101754_bib0068
  article-title: Decision fusion for temporal prediction of respiratory liver motion
– volume: 63
  start-page: 22TR03
  issue: 22
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0049
  article-title: Mri-guidance for motion management in external beam radiotherapy: current status and future challenges
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aaebcf
– ident: 10.1016/j.media.2020.101754_bib0001
– start-page: 659
  year: 2007
  ident: 10.1016/j.media.2020.101754_bib0064
  article-title: Inter-subject modelling of liver deformation during radiation therapy
– start-page: 623
  year: 2011
  ident: 10.1016/j.media.2020.101754_bib0003
  article-title: 3d organ motion prediction for mr-guided high intensity focused ultrasound
– volume: 55
  start-page: 305
  issue: 1
  year: 2009
  ident: 10.1016/j.media.2020.101754_bib0010
  article-title: Four-dimensional deformable image registration using trajectory modeling
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/1/018
– volume: 61
  start-page: 5335
  issue: 14
  year: 2016
  ident: 10.1016/j.media.2020.101754_bib0066
  article-title: Image-driven, model-based 3d abdominal motion estimation for mr-guided radiotherapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/14/5335
– start-page: 7014
  year: 2019
  ident: 10.1016/j.media.2020.101754_bib0004
  article-title: Model-free cardiorespiratory motion prediction from x-ray angiography sequence with lstm network
– ident: 10.1016/j.media.2020.101754_bib0017
– start-page: 2017
  year: 2015
  ident: 10.1016/j.media.2020.101754_bib0024
  article-title: Spatial transformer networks
– volume: 62
  start-page: 389
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0047
  article-title: Feasibility study on 3d image reconstruction from 2d orthogonal cine-mri for mri-guided radiotherapy
  publication-title: J. Med. Imaging Radiat. Oncol.
  doi: 10.1111/1754-9485.12713
– year: 2019
  ident: 10.1016/j.media.2020.101754_bib0026
  article-title: Technical design and concept of a 0.35 t mr-linac
  publication-title: Clin. Transl. Radiat. Oncol.
– start-page: 753
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0009
  article-title: Contextvp: fully context-aware video prediction
– volume: 45
  start-page: 1
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0055
  article-title: Low-dimensional representation of cardiac motion using barycentric subspaces: a new group-wise paradigm for estimation, analysis, and reconstruction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.12.008
– volume: 64
  start-page: 185013
  issue: 18
  year: 2019
  ident: 10.1016/j.media.2020.101754_bib0048
  article-title: Time-resolved volumetric mri in mri-guided radiotherapy: an in silico comparative analysis
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab33e5
– start-page: 5207
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0035
  article-title: Lstm pose machines
– volume: 3
  start-page: 32
  year: 2004
  ident: 10.1016/j.media.2020.101754_bib0060
  article-title: Recognizing human actions: a local svm approach
– volume: 123
  start-page: S147
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0062
  article-title: Out-of-plane motion correction in orthogonal cine-mri registration
– start-page: 843
  year: 2015
  ident: 10.1016/j.media.2020.101754_bib0065
  article-title: Unsupervised learning of video representations using lstms
– volume: 18
  start-page: 712
  issue: 8
  year: 1999
  ident: 10.1016/j.media.2020.101754_bib0058
  article-title: Nonrigid registration using free-form deformations: application to breast mr images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– volume: 54
  start-page: 1849
  issue: 7
  year: 2009
  ident: 10.1016/j.media.2020.101754_bib0011
  article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/7/001
– volume: 33
  start-page: 3874
  issue: 10
  year: 2006
  ident: 10.1016/j.media.2020.101754_bib0025
  article-title: The management of respiratory motion in radiation oncology report of aapm task group 76 a
  publication-title: Med. Phys.
  doi: 10.1118/1.2349696
– start-page: 600
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0029
  article-title: Flow-grounded spatial-temporal video prediction from still images
– volume: 14
  start-page: 933
  issue: 6
  year: 2019
  ident: 10.1016/j.media.2020.101754_bib0056
  article-title: Automatic self-gated 4d-mri construction from free-breathing 2d acquisitions applied on liver images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-01941-1
– start-page: 4414
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0015
  article-title: Unsupervised learning of disentangled representations from video
– volume: 33
  start-page: 5668
  year: 2019
  ident: 10.1016/j.media.2020.101754_bib0080
  article-title: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction
– volume: 71
  start-page: 191
  issue: 2
  year: 2004
  ident: 10.1016/j.media.2020.101754_bib0039
  article-title: Dosimetric effect of respiratory motion in external beam radiotherapy of the lung
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2004.01.011
– year: 2000
  ident: 10.1016/j.media.2020.101754_bib0007
  article-title: The OpenCV Library
  publication-title: Dr. Dobb’s J. Softw. Tools
– volume: 29
  start-page: 1403
  issue: 7
  year: 2002
  ident: 10.1016/j.media.2020.101754_bib0008
  article-title: Creating a four-dimensional model of the liver using finite element analysis
  publication-title: Med. Phys.
  doi: 10.1118/1.1485055
– volume: 56
  start-page: 6009
  issue: 18
  year: 2011
  ident: 10.1016/j.media.2020.101754_bib0028
  article-title: On a pca-based lung motion model
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/18/015
– volume: 34
  start-page: 599
  issue: 2
  year: 2014
  ident: 10.1016/j.media.2020.101754_bib0019
  article-title: Patient-specific biomechanical model for the prediction of lung motion from 4-d ct images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2363611
– volume: 61
  start-page: 872
  issue: 2
  year: 2016
  ident: 10.1016/j.media.2020.101754_bib0063
  article-title: Motion prediction in mri-guided radiotherapy based on interleaved orthogonal cine-mri
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/2/872
– start-page: 3104
  year: 2014
  ident: 10.1016/j.media.2020.101754_bib0067
  article-title: Sequence to sequence learning with neural networks
– volume: 11
  start-page: 1183
  issue: 11
  year: 2000
  ident: 10.1016/j.media.2020.101754_bib0014
  article-title: Three-dimensional catheter positioning during radiofrequency ablation in patients: first application of a real-time position management system
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1046/j.1540-8167.2000.01183.x
– ident: 10.1016/j.media.2020.101754_bib0072
– start-page: 802
  year: 2015
  ident: 10.1016/j.media.2020.101754_bib0079
  article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting
– volume: 50
  start-page: 889
  issue: 4
  year: 2001
  ident: 10.1016/j.media.2020.101754_bib0042
  article-title: The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy
  publication-title: Int. J. Radiat. Oncol.* Biol.* Phys.
  doi: 10.1016/S0360-3016(01)01516-4
– volume: 105
  start-page: S28
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2020.101754_bib0082
  article-title: A deep-learning based 3d tumor motion prediction algorithm for non-invasive intra-fractional tumor-tracked radiotherapy (niftert) on linac-mr
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2019.06.434
– volume: 5
  start-page: 27
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2020.101754_bib0083
  article-title: A framework for continuous target tracking during mr-guided high intensity focused ultrasound thermal ablations in the abdomen
  publication-title: J. Ther. Ultrasound.
  doi: 10.1186/s40349-017-0106-y
– volume: 122
  start-page: 42
  year: 2019
  ident: 10.1016/j.media.2020.101754_bib0022
  article-title: The transformation of radiation oncology using real-time magnetic resonance guidance: a review
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2019.07.021
– ident: 10.1016/j.media.2020.101754_bib0027
  doi: 10.1007/978-3-030-39074-7_19
– start-page: 2443
  year: 2015
  ident: 10.1016/j.media.2020.101754_bib0074
  article-title: Dense optical flow prediction from a static image
– volume: 34
  start-page: 4772
  issue: 12
  year: 2007
  ident: 10.1016/j.media.2020.101754_bib0084
  article-title: A patient-specific respiratory model of anatomical motion for radiation treatment planning
  publication-title: Med. Phys.
  doi: 10.1118/1.2804576
– ident: 10.1016/j.media.2020.101754_bib0076
– volume: 41
  start-page: 61703
  issue: 6Part1
  year: 2014
  ident: 10.1016/j.media.2020.101754_bib0021
  article-title: Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator
  publication-title: Med. Phys.
  doi: 10.1118/1.4873682
– volume: 64
  start-page: 85010
  issue: 8
  year: 2019
  ident: 10.1016/j.media.2020.101754_bib0031
  article-title: Towards real-time respiratory motion prediction based on long short-term memory neural networks
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab13fa
– volume: 60
  start-page: 5571
  issue: 14
  year: 2015
  ident: 10.1016/j.media.2020.101754_bib0034
  article-title: The 2014 liver ultrasound tracking benchmark
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/14/5571
– year: 2019
  ident: 10.1016/j.media.2020.101754_bib0005
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2897538
– start-page: 729
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0013
  article-title: Unsupervised learning for fast probabilistic diffeomorphic registration
– start-page: 961
  year: 2016
  ident: 10.1016/j.media.2020.101754_bib0002
  article-title: Social lstm: human trajectory prediction in crowded spaces
– volume: 6
  start-page: 51262
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0075
  article-title: A feasibility of respiration prediction based on deep bi-lstm for real-time tumor tracking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869780
– volume: 66
  start-page: 2182
  issue: 8
  year: 2018
  ident: 10.1016/j.media.2020.101754_bib0032
  article-title: Self-scanned hifu ablation of moving tissue using real-time hybrid us-mr imaging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2885233
SSID ssj0007440
Score 2.4548733
Snippet •Free-breathing motion compensation aimed at image-guided radiotherapy.•Novel framework with multi-scale feature extraction and spatial transformation for...
External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101754
SubjectTerms Deep learning
Free-breathing
Liver
LSTM
Lungs
Motion prediction
Radiotherapy
Title Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks
URI https://dx.doi.org/10.1016/j.media.2020.101754
https://www.proquest.com/docview/2417430671
Volume 64
WOSCitedRecordID wos000551766800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6DSF4QDBAjI_JSLyVVKRJY-dxoKGBxrSHMfUtSuLrKVNJqqStxviT_CSuv5J0ExV74CWqXMeyek_vPbbPvSbkHee-9HnOvAmEgRdO_NyLIZWeyBlGA4xosS72fH7MTk74dBqfDga_XS7MasbKkl9dxfP_ampsQ2Or1Nk7mLsdFBvwMxodn2h2fP6T4U9rdfbiiGBRenOlZzXXNw0FtNmKLkNR1gBeprij3oyqU1HYrKyfw1WRqiOc3Nz9pVVGjZJga4W6ZbxQD0ujJW_6TNedABU_lCootbVPuvMdbF6CvuRoeFw0sBie6zN7_xoD1XXrsGfK8FJ_w1dgpOANLh2gNxCYVB17RUheKVW_KC7USx-DFvtHRhKQ2Rwl1Vu3sKpY2_oYd8I7562DyPd4aPJBnTuPwp4_Vg7HFKm-FSrMrsXlSGfojNTwo673emHuGwGzlTE6hdxlogdJ1CCJGWSL7IzZJEY_u3Pw5XD6tWUHqiCjyQU0U3eVsLTm8NZc_saWbvAGTYbOHpNHdhVDDwz6npABlLvkYa-25S65_82qNp6SXx0kaSWpgyTVkKQ9SFIDSboOSdqHJEVI0nVIUgtJ2oMkdZB8Rr5_Pjz7dOTZSz-8PAiihZfJAFfEEEHIpFDhZMLyFMZBJn0mYx5nbCxilgkhAhlBHMlIyAlH9wJBjmxdBs_JdlmV8ILQOIyyNAOG8Z6HgFwYogyXz1Ji1PkAQuyRsftxk9xWxFcXs8ySDYbdI-_bl-amIMzm7pGzWmI5reGqCeJw84tvnY0T9PjqGA8tUy2bBDk30n5kmf7Lu83lFXnQ_Ytek-1FvYQ35F6-WhRNvU-22JTvW7j-AeLZ1T0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+in-plane+organ+deformation+during+free-breathing+radiotherapy+via+discriminative+spatial+transformer+networks&rft.jtitle=Medical+image+analysis&rft.au=Romaguera%2C+Liset+V%C3%A1zquez&rft.au=Plantef%C3%A8ve%2C+Rosalie&rft.au=Romero%2C+Francisco+Perdig%C3%B3n&rft.au=H%C3%A9bert%2C+Fran%C3%A7ois&rft.date=2020-08-01&rft.issn=1361-8415&rft.volume=64&rft.spage=101754&rft_id=info:doi/10.1016%2Fj.media.2020.101754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2020_101754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon