Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks
•Free-breathing motion compensation aimed at image-guided radiotherapy.•Novel framework with multi-scale feature extraction and spatial transformation for in-plane motion prediction and future frame generation.•Prediction of the next k deformations from a given input image sequence.•Validation on di...
Uloženo v:
| Vydáno v: | Medical image analysis Ročník 64; s. 101754 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2020
|
| Témata: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Free-breathing motion compensation aimed at image-guided radiotherapy.•Novel framework with multi-scale feature extraction and spatial transformation for in-plane motion prediction and future frame generation.•Prediction of the next k deformations from a given input image sequence.•Validation on different imaging modalities: MRI, US and CT.
[Display omitted]
External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion constitutes a major limitation during the intervention. It may stray the pre-defined target and trajectories determined during planning from the actual anatomy. We propose a novel framework to predict the in-plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages feature representations at multiple scales. It simultaneously learns to map dense deformations between consecutive images from a given input sequence and to extrapolate them through time. Subsequently, several cascade-arranged spatial transformers use the predicted deformation fields to generate a future image sequence. We propose the use of a composite loss function which minimizes the difference between ground-truth and predicted images while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised manner, thus it does not require additional information beyond image data. Moreover, no pre-processing steps such as segmentation or registration are needed. We report results on 85 different cases (healthy subjects and patients) belonging to multiples datasets across different imaging modalities. Experiments were aimed at investigating the importance of the proposed multi-scale architecture design and the effect of increasing the number of predicted frames on the overall accuracy of the model. The proposed model was able to predict vessel positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74) mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results show the strong potential of the model by achieving accurate matching between the predicted and target images on several imaging modalities. |
|---|---|
| AbstractList | •Free-breathing motion compensation aimed at image-guided radiotherapy.•Novel framework with multi-scale feature extraction and spatial transformation for in-plane motion prediction and future frame generation.•Prediction of the next k deformations from a given input image sequence.•Validation on different imaging modalities: MRI, US and CT.
[Display omitted]
External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion constitutes a major limitation during the intervention. It may stray the pre-defined target and trajectories determined during planning from the actual anatomy. We propose a novel framework to predict the in-plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages feature representations at multiple scales. It simultaneously learns to map dense deformations between consecutive images from a given input sequence and to extrapolate them through time. Subsequently, several cascade-arranged spatial transformers use the predicted deformation fields to generate a future image sequence. We propose the use of a composite loss function which minimizes the difference between ground-truth and predicted images while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised manner, thus it does not require additional information beyond image data. Moreover, no pre-processing steps such as segmentation or registration are needed. We report results on 85 different cases (healthy subjects and patients) belonging to multiples datasets across different imaging modalities. Experiments were aimed at investigating the importance of the proposed multi-scale architecture design and the effect of increasing the number of predicted frames on the overall accuracy of the model. The proposed model was able to predict vessel positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74) mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results show the strong potential of the model by achieving accurate matching between the predicted and target images on several imaging modalities. External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion constitutes a major limitation during the intervention. It may stray the pre-defined target and trajectories determined during planning from the actual anatomy. We propose a novel framework to predict the in-plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages feature representations at multiple scales. It simultaneously learns to map dense deformations between consecutive images from a given input sequence and to extrapolate them through time. Subsequently, several cascade-arranged spatial transformers use the predicted deformation fields to generate a future image sequence. We propose the use of a composite loss function which minimizes the difference between ground-truth and predicted images while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised manner, thus it does not require additional information beyond image data. Moreover, no pre-processing steps such as segmentation or registration are needed. We report results on 85 different cases (healthy subjects and patients) belonging to multiples datasets across different imaging modalities. Experiments were aimed at investigating the importance of the proposed multi-scale architecture design and the effect of increasing the number of predicted frames on the overall accuracy of the model. The proposed model was able to predict vessel positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74) mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results show the strong potential of the model by achieving accurate matching between the predicted and target images on several imaging modalities.External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion constitutes a major limitation during the intervention. It may stray the pre-defined target and trajectories determined during planning from the actual anatomy. We propose a novel framework to predict the in-plane organ motion. We introduce a recurrent encoder-decoder architecture which leverages feature representations at multiple scales. It simultaneously learns to map dense deformations between consecutive images from a given input sequence and to extrapolate them through time. Subsequently, several cascade-arranged spatial transformers use the predicted deformation fields to generate a future image sequence. We propose the use of a composite loss function which minimizes the difference between ground-truth and predicted images while maintaining smooth deformations. Our model is trained end-to-end in an unsupervised manner, thus it does not require additional information beyond image data. Moreover, no pre-processing steps such as segmentation or registration are needed. We report results on 85 different cases (healthy subjects and patients) belonging to multiples datasets across different imaging modalities. Experiments were aimed at investigating the importance of the proposed multi-scale architecture design and the effect of increasing the number of predicted frames on the overall accuracy of the model. The proposed model was able to predict vessel positions in the next temporal image with a median accuracy of 0.45 (0.55) mm, 0.45 (0.74) mm and 0.28 (0.58) mm in MRI, US and CT datasets, respectively. The obtained results show the strong potential of the model by achieving accurate matching between the predicted and target images on several imaging modalities. |
| ArticleNumber | 101754 |
| Author | Hébert, François Carrier, Jean-François Kadoury, Samuel Romaguera, Liset Vázquez Plantefève, Rosalie Romero, Francisco Perdigón |
| Author_xml | – sequence: 1 givenname: Liset Vázquez orcidid: 0000-0001-9731-6789 surname: Romaguera fullname: Romaguera, Liset Vázquez email: liset.vazquez@polymtl.ca organization: École Polytechnique de Montréal, Montréal, Canada – sequence: 2 givenname: Rosalie surname: Plantefève fullname: Plantefève, Rosalie organization: Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada – sequence: 3 givenname: Francisco Perdigón surname: Romero fullname: Romero, Francisco Perdigón organization: École Polytechnique de Montréal, Montréal, Canada – sequence: 4 givenname: François surname: Hébert fullname: Hébert, François organization: Elekta Ltd., Montréal, Canada – sequence: 5 givenname: Jean-François surname: Carrier fullname: Carrier, Jean-François organization: Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada – sequence: 6 givenname: Samuel orcidid: 0000-0002-3048-4291 surname: Kadoury fullname: Kadoury, Samuel organization: École Polytechnique de Montréal, Montréal, Canada |
| BookMark | eNqFkD1vFDEQhi0UpHzxC9K4pNnDXu_auwUFiiAgRYKC1JbXHic-9uxl7DsU8efx3iEKCqjGH_OM5n0uyVlMEQi54WzDGZdvtpsduGA2LWuPL6rvXpALLiRvhq4VZ3_OvD8nlzlvGWOq69gF-fkFK2lLSJEmT0NsltlEoAkfTaQOfMKdOf66PYb4SD0CNBOCKU_rFY0LqTwBmuWZHoKhLmSLYRdipQ5A81KrmWlBE_M6DJBGKD8SfsvX5KU3c4ZXv-sVefjw_uvtx-b-892n23f3jRVClmbyomsHkNAp73o1qF5ZA62YPFd-HMZJtW5Uk3NOeAmj9NL5fgDjQVjJWy-uyOvT3AXT9z3kond1SZjXoGmfddtx1QkmFa-t46nVYsoZwWsbyjF_DRBmzZleheutPgrXq3B9El5Z8Re7VBEGn_9DvT1RUA0cAqDONkC0tRHBFu1S-Cf_C8MZoWY |
| CitedBy_id | crossref_primary_10_1088_1361_6560_acf10e crossref_primary_10_1002_nme_6943 crossref_primary_10_1016_j_radonc_2023_109555 crossref_primary_10_1038_s41571_022_00631_3 crossref_primary_10_1016_j_engfailanal_2021_105488 crossref_primary_10_1016_j_radonc_2023_109970 crossref_primary_10_1088_1361_6560_acb484 crossref_primary_10_1016_j_intonc_2025_06_006 crossref_primary_10_1016_j_bspc_2024_106923 crossref_primary_10_1002_mp_14927 crossref_primary_10_1002_acm2_14155 crossref_primary_10_1088_1361_6560_acc71d crossref_primary_10_1088_1361_6560_ad611b crossref_primary_10_1016_j_cmpb_2022_106908 crossref_primary_10_1016_j_media_2021_102250 crossref_primary_10_1109_JBHI_2022_3191978 crossref_primary_10_1109_TMI_2023_3234046 crossref_primary_10_1111_1754_9485_13285 crossref_primary_10_1186_s13014_024_02532_4 crossref_primary_10_1007_s11548_021_02425_x crossref_primary_10_1088_1361_6560_aca873 crossref_primary_10_3748_wjg_v27_i40_6825 crossref_primary_10_1088_1361_6560_abf1b8 crossref_primary_10_1007_s00066_024_02277_9 crossref_primary_10_1016_j_media_2021_102260 crossref_primary_10_1007_s40766_025_00073_4 crossref_primary_10_1186_s13014_025_02676_x crossref_primary_10_1002_mp_17609 |
| Cites_doi | 10.1002/mp.12243 10.1016/j.meddos.2008.02.004 10.1088/1361-6560/aaa20b 10.1088/1361-6560/aa5e96 10.1016/j.cmpb.2009.09.002 10.1016/j.molonc.2012.01.007 10.1109/TMI.2005.856751 10.1002/mp.12731 10.1088/1361-6560/aafcec 10.1016/j.ejmp.2017.01.009 10.1088/1361-6560/aa9517 10.1007/s11548-016-1405-4 10.1016/j.media.2014.03.006 10.1088/0031-9155/60/18/7165 10.1002/rcs.1793 10.1088/1361-6560/aa9c22 10.1016/j.media.2012.09.005 10.1088/1361-6560/aaebcf 10.1088/0031-9155/55/1/018 10.1088/0031-9155/61/14/5335 10.1111/1754-9485.12713 10.1016/j.media.2017.12.008 10.1088/1361-6560/ab33e5 10.1109/42.796284 10.1088/0031-9155/54/7/001 10.1118/1.2349696 10.1007/s11548-019-01941-1 10.1016/j.radonc.2004.01.011 10.1118/1.1485055 10.1088/0031-9155/56/18/015 10.1109/TMI.2014.2363611 10.1088/0031-9155/61/2/872 10.1046/j.1540-8167.2000.01183.x 10.1016/S0360-3016(01)01516-4 10.1016/j.ijrobp.2019.06.434 10.1186/s40349-017-0106-y 10.1016/j.ejca.2019.07.021 10.1007/978-3-030-39074-7_19 10.1118/1.2804576 10.1118/1.4873682 10.1088/1361-6560/ab13fa 10.1088/0031-9155/60/14/5571 10.1109/TMI.2019.2897538 10.1109/ACCESS.2018.2869780 10.1109/TBME.2018.2885233 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright © 2020. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier B.V. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1016/j.media.2020.101754 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| ExternalDocumentID | 10_1016_j_media_2020_101754 S1361841520301183 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7X8 |
| ID | FETCH-LOGICAL-c336t-bf3428e6e47fd578757cae23bf17f989b72d97bddd3f6e96f6df58eafe3c612f3 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551766800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Sun Nov 09 10:10:11 EST 2025 Sat Nov 29 07:05:38 EST 2025 Tue Nov 18 22:37:56 EST 2025 Fri Feb 23 02:47:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning LSTM Motion prediction Lungs Liver 41A10 65D05 65D17 Radiotherapy 41A05 Free-breathing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c336t-bf3428e6e47fd578757cae23bf17f989b72d97bddd3f6e96f6df58eafe3c612f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3048-4291 0000-0001-9731-6789 |
| PQID | 2417430671 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2417430671 crossref_citationtrail_10_1016_j_media_2020_101754 crossref_primary_10_1016_j_media_2020_101754 elsevier_sciencedirect_doi_10_1016_j_media_2020_101754 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 20200801 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Medical image analysis |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Luo, Ren, Wang, Sun, Pan, Liu, Pang, Lin (bib0035) 2018 Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib0058) 1999; 18 Byeon, Wang, Kumar Srivastava, Koumoutsakos (bib0009) 2018 Blackall, Penney, King, Hawkes (bib0006) 2005; 24 Diodato, Cafarelli, Schiappacasse, Tognarelli, Ciuti, Menciassi (bib0016) 2018; 63 Jaderberg, Simonyan, Zisserman (bib0024) 2015 Elsayed, N., Maida, A. S., Bayoumi, M., 2018. Reduced-gate convolutional lstm using predictive coding for spatiotemporal prediction. arXiv preprint arXiv:1810.07251. Mathieu, M., Couprie, C., LeCun, Y., 2015. Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440. Azizmohammadi, Martin, Miro, Duong (bib0004) 2019 Tanner, Eppenhof, Gelderblom, Szekely (bib0068) 2014 Seregni, Paganelli, Kipritidis, Baroni, Riboldi (bib0062) 2017; 123 Rohé, Sermesant, Pennec (bib0055) 2018; 45 Castillo, Castillo, Guerra, Johnson, McPhail, Garg, Guerrero (bib0011) 2009; 54 Raaymakers, Jürgenliemk-Schulz, Bol, Glitzner, Kotte, Van Asselen, De Boer, Bluemink, Hackett, Moerland (bib0053) 2017; 62 Seregni, Paganelli, Lee, Greer, Baroni, Keall, Riboldi (bib0063) 2016; 61 Li, Fang, Yang, Wang, Lu, Yang (bib0029) 2018 Yao, Tang, Wei, Zheng, Li (bib0080) 2019; 33 Alahi, Goel, Ramanathan, Robicquet, Fei-Fei, Savarese (bib0002) 2016 Vondrick, Pirsiavash, Torralba (bib0073) 2016 Schuldt, Laptev, Caputo (bib0060) 2004; 3 Wei, H., Yin, X., Lin, P., 2018. Novel video prediction for large-scale scene using optical flow. arXiv preprint arXiv:1805.12243. Yaromina, Krause, Baumann (bib0081) 2012; 6 . Preiswerk, De Luca, Arnold, Celicanin, Petrusca, Tanner, Bieri, Salomir, Cattin (bib0051) 2014; 18 Modat, Ridgway, Taylor, Lehmann, Barnes, Hawkes, Fox, Ourselin (bib0041) 2010; 98 Nguyen, Moseley, Dawson, Jaffray, Brock (bib0043) 2008 Paganelli, Lee, Greer, Baroni, Riboldi, Keall (bib0046) 2015; 60 Fuerst, Mansi, Carnis, Sälzle, Zhang, Declerck, Boettger, Bayouth, Navab, Kamen (bib0019) 2014; 34 Lorton, Guillemin, Möri, Crowe, Boudabbous, Terraz, Becker, Cattin, Salomir, Gui (bib0032) 2018; 66 Zhao, Zhang, Zhu, Wu, Wang, Xu (bib0085) 2019 Samei, Tanner, Székely (bib0059) 2012 Wang, Liang, Zhu, Xie (bib0075) 2018; 6 McClelland, Hawkes, Schaeffter, King (bib0038) 2013; 17 Denton (bib0015) 2017 Brock, Hollister, Dawson, Balter (bib0008) 2002; 29 Wölfelschneider, Seregni, Fassi, Ziegler, Baroni, Fietkau, Riboldi, Bert (bib0078) 2017; 44 Noorda, Bartels, Viergever, Pluim (bib0044) 2017; 62 Sutskever, Vinyals, Le (bib0067) 2014 Zhang, Pevsner, Hertanto, Hu, Rosenzweig, Ling, Mageras (bib0084) 2007; 34 Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H., 2017. Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033. Wang, Y., Gao, Z., Long, M., Wang, J., Yu, P. S., 2018b. Predrnn++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. arXiv preprint arXiv:1804.06300. Ozhasoglu, Saw, Chen, Burton, Komanduri, Yue, Huq, Heron (bib0045) 2008; 33 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0005) 2019 Romaguera, Olofsson, Plantefève, Lugez, De Guise, Kadoury (bib0056) 2019; 14 Zachiu, de Senneville, Dmitriev, Moonen, Ries (bib0083) 2017; 5 Srivastava, Mansimov, Salakhudinov (bib0065) 2015 Hall, Paulson, van der Heide, Fuller, Raaymakers, Lagendijk, Li, Jaffray, Dawson, Erickson (bib0022) 2019; 122 Park, Farah, Shea, Tryggestad, Hales, Lee (bib0050) 2018; 63 De Groot, Bootsma, VAN DER VELDE, Schalij (bib0014) 2000; 11 Lin, Shi, Wang, Chan, Tang, Ji (bib0031) 2019; 64 Lotter, W., Kreiman, G., Cox, D., 2016. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104. Dalca, Balakrishnan, Guttag, Sabuncu (bib0013) 2018 Xingjian, Chen, Wang, Yeung, Wong, Woo (bib0079) 2015 Stemkens, Tijssen, De Senneville, Lagendijk, Van Den Berg (bib0066) 2016; 61 Tanner, Zur, French, Samei, Strehlow, Sat, McLeod, Houston, Kozerke, Székely (bib0069) 2016; 11 He, Zhang, Ren, Sun (bib0023) 2016 Luca, Benz, Kondo (bib0034) 2015; 60 Yun, Rathee, Fallone (bib0082) 2019; 105 Negoro, Nagata, Aoki, Mizowaki, Araki, Takayama, Kokubo, Yano, Koga, Sasai (bib0042) 2001; 50 Qin, Bai, Schlemper, Petersen, Piechnik, Neubauer, Rueckert (bib0052) 2018 Mechalakos, Yorke, Mageras, Hertanto, Jackson, Obcemea, Rosenzweig, Ling (bib0039) 2004; 71 Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S., 2014. Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604. Li, Lewis, Jia, Zhao, Liu, Wuenschel, Lamb, Yang, Low, Jiang (bib0028) 2011; 56 Paganelli, Whelan, Peroni, Summers, Fast, van de Lindt, McClelland, Eiben, Keall, Lomax (bib0049) 2018; 63 Ge, O’Brien, Shieh, Booth, Keall (bib0021) 2014; 41 Teo, Ahmed, Kawalec, Alayoubi, Bruce, Lyn, Pistorius (bib0070) 2018; 45 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. Paganelli, Lee, Kipritidis, Whelan, Greer, Baroni, Riboldi, Keall (bib0047) 2018; 62 Bradski (bib0007) 2000 Seo, Koizumi, Mitsuishi, Sugita (bib0061) 2017; 13 Liang, Lee, Dai, Xing (bib0030) 2017 Luo, Peng, Huang, Alahi, Fei-Fei (bib0036) 2017 Chollet, F., et al., 2015. Keras. Rueckert, D., Schnabel, J. A., 2019. Model-based and data-driven strategies in medical image computing. arXiv preprint arXiv:1909.10391. von Siebenthal, Székely, Lomax, Cattin (bib0064) 2007 Krebs, J., Mansi, T., Ayache, N., Delingette, H., 2019. Probabilistic motion modeling from medical image sequences: application to cardiac cine-mri. arXiv preprint arXiv:1907.13524. Paganelli, Portoso, Garau, Meschini, Via, Buizza, Keall, Riboldi, Baroni (bib0048) 2019; 64 Arnold, Preiswerk, Fasel, Salomir, Scheffler, Cattin (bib0003) 2011 Klüter (bib0026) 2019 Garau, Via, Meschini, Lee, Keall, Riboldi, Baroni, Paganelli (bib0020) 2019 Fayad, Buerger, Tsoumpas, Cheze-Le-Rest, Visvikis (bib0018) 2012 Meschini, Seregni, Pella, Ciocca, Fossati, Valvo, Riboldi, Baroni (bib0040) 2017; 34 Keall, Mageras, Balter, Emery, Forster, Jiang, Kapatoes, Low, Murphy, Murray (bib0025) 2006; 33 Walker, Gupta, Hebert (bib0074) 2015 Urschel, Kresl, Luketich, Papiez, Schulz, Timmerman (bib0071) 2007 Castillo, Castillo, Martinez, Shenoy, Guerrero (bib0010) 2009; 55 Byeon (10.1016/j.media.2020.101754_bib0009) 2018 Paganelli (10.1016/j.media.2020.101754_bib0048) 2019; 64 Meschini (10.1016/j.media.2020.101754_bib0040) 2017; 34 10.1016/j.media.2020.101754_bib0001 Negoro (10.1016/j.media.2020.101754_bib0042) 2001; 50 Liang (10.1016/j.media.2020.101754_bib0030) 2017 Luo (10.1016/j.media.2020.101754_bib0036) 2017 De Groot (10.1016/j.media.2020.101754_bib0014) 2000; 11 Paganelli (10.1016/j.media.2020.101754_bib0046) 2015; 60 Raaymakers (10.1016/j.media.2020.101754_bib0053) 2017; 62 Ge (10.1016/j.media.2020.101754_bib0021) 2014; 41 Azizmohammadi (10.1016/j.media.2020.101754_bib0004) 2019 Ozhasoglu (10.1016/j.media.2020.101754_bib0045) 2008; 33 Zachiu (10.1016/j.media.2020.101754_bib0083) 2017; 5 Mechalakos (10.1016/j.media.2020.101754_bib0039) 2004; 71 Qin (10.1016/j.media.2020.101754_bib0052) 2018 Zhang (10.1016/j.media.2020.101754_bib0084) 2007; 34 Rohé (10.1016/j.media.2020.101754_bib0055) 2018; 45 Fayad (10.1016/j.media.2020.101754_bib0018) 2012 Yun (10.1016/j.media.2020.101754_bib0082) 2019; 105 10.1016/j.media.2020.101754_bib0072 Wölfelschneider (10.1016/j.media.2020.101754_bib0078) 2017; 44 Park (10.1016/j.media.2020.101754_bib0050) 2018; 63 Diodato (10.1016/j.media.2020.101754_bib0016) 2018; 63 Jaderberg (10.1016/j.media.2020.101754_bib0024) 2015 Seregni (10.1016/j.media.2020.101754_bib0063) 2016; 61 Sutskever (10.1016/j.media.2020.101754_bib0067) 2014 10.1016/j.media.2020.101754_bib0076 10.1016/j.media.2020.101754_bib0033 10.1016/j.media.2020.101754_bib0077 Tanner (10.1016/j.media.2020.101754_bib0068) 2014 Alahi (10.1016/j.media.2020.101754_bib0002) 2016 10.1016/j.media.2020.101754_bib0037 Noorda (10.1016/j.media.2020.101754_bib0044) 2017; 62 Brock (10.1016/j.media.2020.101754_bib0008) 2002; 29 Paganelli (10.1016/j.media.2020.101754_bib0047) 2018; 62 Castillo (10.1016/j.media.2020.101754_bib0010) 2009; 55 Walker (10.1016/j.media.2020.101754_bib0074) 2015 Teo (10.1016/j.media.2020.101754_bib0070) 2018; 45 Luca (10.1016/j.media.2020.101754_bib0034) 2015; 60 McClelland (10.1016/j.media.2020.101754_bib0038) 2013; 17 Seregni (10.1016/j.media.2020.101754_bib0062) 2017; 123 von Siebenthal (10.1016/j.media.2020.101754_bib0064) 2007 Arnold (10.1016/j.media.2020.101754_bib0003) 2011 Hall (10.1016/j.media.2020.101754_bib0022) 2019; 122 Tanner (10.1016/j.media.2020.101754_bib0069) 2016; 11 Nguyen (10.1016/j.media.2020.101754_bib0043) 2008 Blackall (10.1016/j.media.2020.101754_bib0006) 2005; 24 Modat (10.1016/j.media.2020.101754_bib0041) 2010; 98 Wang (10.1016/j.media.2020.101754_bib0075) 2018; 6 10.1016/j.media.2020.101754_bib0027 Castillo (10.1016/j.media.2020.101754_bib0011) 2009; 54 Urschel (10.1016/j.media.2020.101754_bib0071) 2007 Lin (10.1016/j.media.2020.101754_bib0031) 2019; 64 Zhao (10.1016/j.media.2020.101754_bib0085) 2019 Yaromina (10.1016/j.media.2020.101754_bib0081) 2012; 6 Keall (10.1016/j.media.2020.101754_bib0025) 2006; 33 He (10.1016/j.media.2020.101754_bib0023) 2016 Rueckert (10.1016/j.media.2020.101754_bib0058) 1999; 18 Denton (10.1016/j.media.2020.101754_bib0015) 2017 Klüter (10.1016/j.media.2020.101754_bib0026) 2019 Seo (10.1016/j.media.2020.101754_bib0061) 2017; 13 Bradski (10.1016/j.media.2020.101754_bib0007) 2000 Dalca (10.1016/j.media.2020.101754_bib0013) 2018 Lorton (10.1016/j.media.2020.101754_bib0032) 2018; 66 Samei (10.1016/j.media.2020.101754_bib0059) 2012 Vondrick (10.1016/j.media.2020.101754_bib0073) 2016 Preiswerk (10.1016/j.media.2020.101754_bib0051) 2014; 18 10.1016/j.media.2020.101754_bib0054 10.1016/j.media.2020.101754_bib0012 Paganelli (10.1016/j.media.2020.101754_bib0049) 2018; 63 Romaguera (10.1016/j.media.2020.101754_bib0056) 2019; 14 10.1016/j.media.2020.101754_bib0057 Schuldt (10.1016/j.media.2020.101754_bib0060) 2004; 3 Garau (10.1016/j.media.2020.101754_bib0020) 2019 10.1016/j.media.2020.101754_bib0017 Li (10.1016/j.media.2020.101754_bib0028) 2011; 56 Luo (10.1016/j.media.2020.101754_bib0035) 2018 Srivastava (10.1016/j.media.2020.101754_bib0065) 2015 Li (10.1016/j.media.2020.101754_bib0029) 2018 Xingjian (10.1016/j.media.2020.101754_bib0079) 2015 Balakrishnan (10.1016/j.media.2020.101754_bib0005) 2019 Yao (10.1016/j.media.2020.101754_bib0080) 2019; 33 Fuerst (10.1016/j.media.2020.101754_bib0019) 2014; 34 Stemkens (10.1016/j.media.2020.101754_bib0066) 2016; 61 |
| References_xml | – year: 2019 ident: bib0020 article-title: A roi-based global motion model established on 4dct and 2d cine-mri data for mri-guidance in radiation therapy publication-title: Phys. Med. Biol. – start-page: 3104 year: 2014 end-page: 3112 ident: bib0067 article-title: Sequence to sequence learning with neural networks publication-title: Advances in Neural information Processing Systems – reference: Chollet, F., et al., 2015. Keras. – volume: 17 start-page: 19 year: 2013 end-page: 42 ident: bib0038 article-title: Respiratory motion models: a review publication-title: Med. Image Anal. – start-page: 147 year: 2012 end-page: 157 ident: bib0059 article-title: Predicting liver motion using exemplar models publication-title: International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging – reference: Rueckert, D., Schnabel, J. A., 2019. Model-based and data-driven strategies in medical image computing. arXiv preprint arXiv:1909.10391. – start-page: 2203 year: 2017 end-page: 2212 ident: bib0036 article-title: Unsupervised learning of long-term motion dynamics for videos publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 961 year: 2016 end-page: 971 ident: bib0002 article-title: Social lstm: human trajectory prediction in crowded spaces publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 472 year: 2018 end-page: 480 ident: bib0052 article-title: Joint learning of motion estimation and segmentation for cardiac mr image sequences publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 843 year: 2015 end-page: 852 ident: bib0065 article-title: Unsupervised learning of video representations using lstms publication-title: International Conference on Machine Learning – volume: 34 start-page: 28 year: 2017 end-page: 37 ident: bib0040 article-title: Evaluation of residual abdominal tumour motion in carbon ion gated treatments through respiratory motion modelling publication-title: Physica Med. – volume: 63 start-page: 22TR03 year: 2018 ident: bib0049 article-title: Mri-guidance for motion management in external beam radiotherapy: current status and future challenges publication-title: Phys. Med. Biol. – year: 2019 ident: bib0026 article-title: Technical design and concept of a 0.35 t mr-linac publication-title: Clin. Transl. Radiat. Oncol. – year: 2007 ident: bib0071 article-title: Treating Tumors that Move with Respiration – reference: Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H., 2017. Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033. – volume: 56 start-page: 6009 year: 2011 ident: bib0028 article-title: On a pca-based lung motion model publication-title: Phys. Med. Biol. – start-page: 7014 year: 2019 end-page: 7018 ident: bib0004 article-title: Model-free cardiorespiratory motion prediction from x-ray angiography sequence with lstm network publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – start-page: 4414 year: 2017 end-page: 4423 ident: bib0015 article-title: Unsupervised learning of disentangled representations from video publication-title: Advances in Neural Information Processing Systems – reference: Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S., 2014. Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604. – start-page: 613 year: 2016 end-page: 621 ident: bib0073 article-title: Generating videos with scene dynamics publication-title: Advances in Neural Information Processing Systems – start-page: 698 year: 2014 end-page: 701 ident: bib0068 article-title: Decision fusion for temporal prediction of respiratory liver motion publication-title: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) – start-page: 5207 year: 2018 end-page: 5215 ident: bib0035 article-title: Lstm pose machines publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 14 start-page: 933 year: 2019 end-page: 944 ident: bib0056 article-title: Automatic self-gated 4d-mri construction from free-breathing 2d acquisitions applied on liver images publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 54 start-page: 1849 year: 2009 ident: bib0011 article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets publication-title: Phys. Med. Biol. – volume: 34 start-page: 4772 year: 2007 end-page: 4781 ident: bib0084 article-title: A patient-specific respiratory model of anatomical motion for radiation treatment planning publication-title: Med. Phys. – reference: Krebs, J., Mansi, T., Ayache, N., Delingette, H., 2019. Probabilistic motion modeling from medical image sequences: application to cardiac cine-mri. arXiv preprint arXiv:1907.13524. – start-page: 600 year: 2018 end-page: 615 ident: bib0029 article-title: Flow-grounded spatial-temporal video prediction from still images publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 123 start-page: S147 year: 2017 end-page: S148 ident: bib0062 article-title: Out-of-plane motion correction in orthogonal cine-mri registration publication-title: Radiotherapy and Oncology – start-page: 770 year: 2016 end-page: 778 ident: bib0023 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2019 ident: bib0005 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging – volume: 41 start-page: 61703 year: 2014 ident: bib0021 article-title: Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator publication-title: Med. Phys. – start-page: 729 year: 2018 end-page: 738 ident: bib0013 article-title: Unsupervised learning for fast probabilistic diffeomorphic registration publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 13 start-page: e1793 year: 2017 ident: bib0061 article-title: Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound publication-title: Int. J. Med. Robot.Comput. Assist. Surg. – volume: 11 start-page: 1143 year: 2016 end-page: 1152 ident: bib0069 article-title: In vivo validation of spatio-temporal liver motion prediction from motion tracked on mr thermometry images publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 33 start-page: 3874 year: 2006 end-page: 3900 ident: bib0025 article-title: The management of respiratory motion in radiation oncology report of aapm task group 76 a publication-title: Med. Phys. – volume: 55 start-page: 305 year: 2009 ident: bib0010 article-title: Four-dimensional deformable image registration using trajectory modeling publication-title: Phys. Med. Biol. – volume: 63 start-page: 35017 year: 2018 ident: bib0016 article-title: Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs publication-title: Phys. Med. Biol. – volume: 62 start-page: L41 year: 2017 ident: bib0053 article-title: First patients treated with a 1.5 t mri-linac: clinical proof of concept of a high-precision, high-field mri guided radiotherapy treatment publication-title: Phys. Med. Biol. – start-page: 2017 year: 2015 end-page: 2025 ident: bib0024 article-title: Spatial transformer networks publication-title: Advances in Neural Information Processing Systems – start-page: 4058 year: 2012 end-page: 4061 ident: bib0018 article-title: A generic respiratory motion model based on 4d mri imaging and 2d image navigators publication-title: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) – year: 2000 ident: bib0007 article-title: The OpenCV Library publication-title: Dr. Dobb’s J. Softw. Tools – volume: 11 start-page: 1183 year: 2000 end-page: 1192 ident: bib0014 article-title: Three-dimensional catheter positioning during radiofrequency ablation in patients: first application of a real-time position management system publication-title: J. Cardiovasc. Electrophysiol. – volume: 64 start-page: 85010 year: 2019 ident: bib0031 article-title: Towards real-time respiratory motion prediction based on long short-term memory neural networks publication-title: Phys. Med. Biol. – volume: 60 start-page: 5571 year: 2015 end-page: 5599 ident: bib0034 article-title: The 2014 liver ultrasound tracking benchmark publication-title: Phys. Med. Biol. – volume: 63 start-page: 25015 year: 2018 ident: bib0050 article-title: Simultaneous tumor and surrogate motion tracking with dynamic mri for radiation therapy planning publication-title: Phys. Med. Biol. – volume: 34 start-page: 599 year: 2014 end-page: 607 ident: bib0019 article-title: Patient-specific biomechanical model for the prediction of lung motion from 4-d ct images publication-title: IEEE Trans. Med. Imaging – volume: 62 start-page: 389 year: 2018 end-page: 400 ident: bib0047 article-title: Feasibility study on 3d image reconstruction from 2d orthogonal cine-mri for mri-guided radiotherapy publication-title: J. Med. Imaging Radiat. Oncol. – volume: 66 start-page: 2182 year: 2018 end-page: 2191 ident: bib0032 article-title: Self-scanned hifu ablation of moving tissue using real-time hybrid us-mr imaging publication-title: IEEE Trans. Biomed. Eng. – volume: 33 start-page: 117 year: 2008 end-page: 123 ident: bib0045 article-title: Synchrony–cyberknife respiratory compensation technology publication-title: Med. Dosim. – start-page: 659 year: 2007 end-page: 666 ident: bib0064 article-title: Inter-subject modelling of liver deformation during radiation therapy publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 62 start-page: 2581 year: 2017 ident: bib0044 article-title: Subject-specific liver motion modeling in mri: a feasibility study on spatiotemporal prediction publication-title: Phys. Med. Biol. – volume: 45 start-page: 1 year: 2018 end-page: 12 ident: bib0055 article-title: Low-dimensional representation of cardiac motion using barycentric subspaces: a new group-wise paradigm for estimation, analysis, and reconstruction publication-title: Med. Image Anal. – volume: 44 start-page: 2066 year: 2017 end-page: 2076 ident: bib0078 article-title: Examination of a deformable motion model for respiratory movements and 4d dose calculations using different driving surrogates publication-title: Med. Phys. – volume: 24 start-page: 1405 year: 2005 end-page: 1416 ident: bib0006 article-title: Alignment of sparse freehand 3-d ultrasound with preoperative images of the liver using models of respiratory motion and deformation publication-title: IEEE Trans. Med. Imaging – reference: Lotter, W., Kreiman, G., Cox, D., 2016. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104. – volume: 5 start-page: 27 year: 2017 ident: bib0083 article-title: A framework for continuous target tracking during mr-guided high intensity focused ultrasound thermal ablations in the abdomen publication-title: J. Ther. Ultrasound. – volume: 64 start-page: 185013 year: 2019 ident: bib0048 article-title: Time-resolved volumetric mri in mri-guided radiotherapy: an in silico comparative analysis publication-title: Phys. Med. Biol. – start-page: 802 year: 2015 end-page: 810 ident: bib0079 article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – start-page: 1744 year: 2017 end-page: 1752 ident: bib0030 article-title: Dual motion gan for future-flow embedded video prediction publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 33 start-page: 5668 year: 2019 end-page: 5675 ident: bib0080 article-title: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 623 year: 2011 end-page: 630 ident: bib0003 article-title: 3d organ motion prediction for mr-guided high intensity focused ultrasound publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 61 start-page: 5335 year: 2016 ident: bib0066 article-title: Image-driven, model-based 3d abdominal motion estimation for mr-guided radiotherapy publication-title: Phys. Med. Biol. – volume: 50 start-page: 889 year: 2001 end-page: 898 ident: bib0042 article-title: The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy publication-title: Int. J. Radiat. Oncol.* Biol.* Phys. – volume: 3 start-page: 32 year: 2004 end-page: 36 ident: bib0060 article-title: Recognizing human actions: a local svm approach publication-title: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. – volume: 18 start-page: 740 year: 2014 end-page: 751 ident: bib0051 article-title: Model-guided respiratory organ motion prediction of the liver from 2d ultrasound publication-title: Med. Image Anal. – reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. – reference: Mathieu, M., Couprie, C., LeCun, Y., 2015. Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440. – start-page: 3945 year: 2008 end-page: 3948 ident: bib0043 article-title: Adapting population liver motion models for individualized online image-guided therapy publication-title: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 18 start-page: 712 year: 1999 end-page: 721 ident: bib0058 article-title: Nonrigid registration using free-form deformations: application to breast mr images publication-title: IEEE Trans. Med. Imaging – reference: Wei, H., Yin, X., Lin, P., 2018. Novel video prediction for large-scale scene using optical flow. arXiv preprint arXiv:1805.12243. – reference: . – volume: 6 start-page: 51262 year: 2018 end-page: 51268 ident: bib0075 article-title: A feasibility of respiration prediction based on deep bi-lstm for real-time tumor tracking publication-title: IEEE Access – start-page: 2443 year: 2015 end-page: 2451 ident: bib0074 article-title: Dense optical flow prediction from a static image publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 105 start-page: S28 year: 2019 ident: bib0082 article-title: A deep-learning based 3d tumor motion prediction algorithm for non-invasive intra-fractional tumor-tracked radiotherapy (niftert) on linac-mr publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 98 start-page: 278 year: 2010 end-page: 284 ident: bib0041 article-title: Fast free-form deformation using graphics processing units publication-title: Comput. Methods Programs Biomed. – volume: 6 start-page: 211 year: 2012 end-page: 221 ident: bib0081 article-title: Individualization of cancer treatment from radiotherapy perspective publication-title: Mol. Oncol. – volume: 29 start-page: 1403 year: 2002 end-page: 1405 ident: bib0008 article-title: Creating a four-dimensional model of the liver using finite element analysis publication-title: Med. Phys. – volume: 122 start-page: 42 year: 2019 end-page: 52 ident: bib0022 article-title: The transformation of radiation oncology using real-time magnetic resonance guidance: a review publication-title: Eur. J. Cancer – volume: 60 start-page: 7165 year: 2015 ident: bib0046 article-title: Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine mri images publication-title: Phys. Med. Biol. – volume: 71 start-page: 191 year: 2004 end-page: 200 ident: bib0039 article-title: Dosimetric effect of respiratory motion in external beam radiotherapy of the lung publication-title: Radiother. Oncol. – volume: 61 start-page: 872 year: 2016 ident: bib0063 article-title: Motion prediction in mri-guided radiotherapy based on interleaved orthogonal cine-mri publication-title: Phys. Med. Biol. – reference: Wang, Y., Gao, Z., Long, M., Wang, J., Yu, P. S., 2018b. Predrnn++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. arXiv preprint arXiv:1804.06300. – reference: Elsayed, N., Maida, A. S., Bayoumi, M., 2018. Reduced-gate convolutional lstm using predictive coding for spatiotemporal prediction. arXiv preprint arXiv:1810.07251. – start-page: 5926 year: 2019 end-page: 5930 ident: bib0085 article-title: Predicting tongue motion in unlabeled ultrasound videos using convolutional lstm neural networks publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 753 year: 2018 end-page: 769 ident: bib0009 article-title: Contextvp: fully context-aware video prediction publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 45 start-page: 830 year: 2018 end-page: 845 ident: bib0070 article-title: Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories publication-title: Med. Phys. – year: 2007 ident: 10.1016/j.media.2020.101754_bib0071 – start-page: 2203 year: 2017 ident: 10.1016/j.media.2020.101754_bib0036 article-title: Unsupervised learning of long-term motion dynamics for videos – volume: 44 start-page: 2066 issue: 6 year: 2017 ident: 10.1016/j.media.2020.101754_bib0078 article-title: Examination of a deformable motion model for respiratory movements and 4d dose calculations using different driving surrogates publication-title: Med. Phys. doi: 10.1002/mp.12243 – start-page: 3945 year: 2008 ident: 10.1016/j.media.2020.101754_bib0043 article-title: Adapting population liver motion models for individualized online image-guided therapy – volume: 33 start-page: 117 issue: 2 year: 2008 ident: 10.1016/j.media.2020.101754_bib0045 article-title: Synchrony–cyberknife respiratory compensation technology publication-title: Med. Dosim. doi: 10.1016/j.meddos.2008.02.004 – volume: 63 start-page: 25015 issue: 2 year: 2018 ident: 10.1016/j.media.2020.101754_bib0050 article-title: Simultaneous tumor and surrogate motion tracking with dynamic mri for radiation therapy planning publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aaa20b – volume: 62 start-page: 2581 issue: 7 year: 2017 ident: 10.1016/j.media.2020.101754_bib0044 article-title: Subject-specific liver motion modeling in mri: a feasibility study on spatiotemporal prediction publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa5e96 – ident: 10.1016/j.media.2020.101754_bib0057 – volume: 98 start-page: 278 issue: 3 year: 2010 ident: 10.1016/j.media.2020.101754_bib0041 article-title: Fast free-form deformation using graphics processing units publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2009.09.002 – start-page: 613 year: 2016 ident: 10.1016/j.media.2020.101754_bib0073 article-title: Generating videos with scene dynamics – ident: 10.1016/j.media.2020.101754_bib0054 – ident: 10.1016/j.media.2020.101754_bib0077 – volume: 6 start-page: 211 issue: 2 year: 2012 ident: 10.1016/j.media.2020.101754_bib0081 article-title: Individualization of cancer treatment from radiotherapy perspective publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2012.01.007 – volume: 24 start-page: 1405 issue: 11 year: 2005 ident: 10.1016/j.media.2020.101754_bib0006 article-title: Alignment of sparse freehand 3-d ultrasound with preoperative images of the liver using models of respiratory motion and deformation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2005.856751 – start-page: 472 year: 2018 ident: 10.1016/j.media.2020.101754_bib0052 article-title: Joint learning of motion estimation and segmentation for cardiac mr image sequences – volume: 45 start-page: 830 issue: 2 year: 2018 ident: 10.1016/j.media.2020.101754_bib0070 article-title: Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories publication-title: Med. Phys. doi: 10.1002/mp.12731 – start-page: 4058 year: 2012 ident: 10.1016/j.media.2020.101754_bib0018 article-title: A generic respiratory motion model based on 4d mri imaging and 2d image navigators – year: 2019 ident: 10.1016/j.media.2020.101754_bib0020 article-title: A roi-based global motion model established on 4dct and 2d cine-mri data for mri-guidance in radiation therapy publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aafcec – start-page: 147 year: 2012 ident: 10.1016/j.media.2020.101754_bib0059 article-title: Predicting liver motion using exemplar models – volume: 34 start-page: 28 year: 2017 ident: 10.1016/j.media.2020.101754_bib0040 article-title: Evaluation of residual abdominal tumour motion in carbon ion gated treatments through respiratory motion modelling publication-title: Physica Med. doi: 10.1016/j.ejmp.2017.01.009 – start-page: 5926 year: 2019 ident: 10.1016/j.media.2020.101754_bib0085 article-title: Predicting tongue motion in unlabeled ultrasound videos using convolutional lstm neural networks – start-page: 770 year: 2016 ident: 10.1016/j.media.2020.101754_bib0023 article-title: Deep residual learning for image recognition – volume: 62 start-page: L41 issue: 23 year: 2017 ident: 10.1016/j.media.2020.101754_bib0053 article-title: First patients treated with a 1.5 t mri-linac: clinical proof of concept of a high-precision, high-field mri guided radiotherapy treatment publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa9517 – volume: 11 start-page: 1143 issue: 6 year: 2016 ident: 10.1016/j.media.2020.101754_bib0069 article-title: In vivo validation of spatio-temporal liver motion prediction from motion tracked on mr thermometry images publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-016-1405-4 – volume: 18 start-page: 740 issue: 5 year: 2014 ident: 10.1016/j.media.2020.101754_bib0051 article-title: Model-guided respiratory organ motion prediction of the liver from 2d ultrasound publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.03.006 – volume: 60 start-page: 7165 issue: 18 year: 2015 ident: 10.1016/j.media.2020.101754_bib0046 article-title: Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine mri images publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/18/7165 – ident: 10.1016/j.media.2020.101754_bib0012 – ident: 10.1016/j.media.2020.101754_bib0037 – volume: 13 start-page: e1793 issue: 4 year: 2017 ident: 10.1016/j.media.2020.101754_bib0061 article-title: Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound publication-title: Int. J. Med. Robot.Comput. Assist. Surg. doi: 10.1002/rcs.1793 – start-page: 1744 year: 2017 ident: 10.1016/j.media.2020.101754_bib0030 article-title: Dual motion gan for future-flow embedded video prediction – ident: 10.1016/j.media.2020.101754_bib0033 – volume: 63 start-page: 35017 issue: 3 year: 2018 ident: 10.1016/j.media.2020.101754_bib0016 article-title: Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa9c22 – volume: 17 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.media.2020.101754_bib0038 article-title: Respiratory motion models: a review publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.09.005 – start-page: 698 year: 2014 ident: 10.1016/j.media.2020.101754_bib0068 article-title: Decision fusion for temporal prediction of respiratory liver motion – volume: 63 start-page: 22TR03 issue: 22 year: 2018 ident: 10.1016/j.media.2020.101754_bib0049 article-title: Mri-guidance for motion management in external beam radiotherapy: current status and future challenges publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aaebcf – ident: 10.1016/j.media.2020.101754_bib0001 – start-page: 659 year: 2007 ident: 10.1016/j.media.2020.101754_bib0064 article-title: Inter-subject modelling of liver deformation during radiation therapy – start-page: 623 year: 2011 ident: 10.1016/j.media.2020.101754_bib0003 article-title: 3d organ motion prediction for mr-guided high intensity focused ultrasound – volume: 55 start-page: 305 issue: 1 year: 2009 ident: 10.1016/j.media.2020.101754_bib0010 article-title: Four-dimensional deformable image registration using trajectory modeling publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/55/1/018 – volume: 61 start-page: 5335 issue: 14 year: 2016 ident: 10.1016/j.media.2020.101754_bib0066 article-title: Image-driven, model-based 3d abdominal motion estimation for mr-guided radiotherapy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/14/5335 – start-page: 7014 year: 2019 ident: 10.1016/j.media.2020.101754_bib0004 article-title: Model-free cardiorespiratory motion prediction from x-ray angiography sequence with lstm network – ident: 10.1016/j.media.2020.101754_bib0017 – start-page: 2017 year: 2015 ident: 10.1016/j.media.2020.101754_bib0024 article-title: Spatial transformer networks – volume: 62 start-page: 389 issue: 3 year: 2018 ident: 10.1016/j.media.2020.101754_bib0047 article-title: Feasibility study on 3d image reconstruction from 2d orthogonal cine-mri for mri-guided radiotherapy publication-title: J. Med. Imaging Radiat. Oncol. doi: 10.1111/1754-9485.12713 – year: 2019 ident: 10.1016/j.media.2020.101754_bib0026 article-title: Technical design and concept of a 0.35 t mr-linac publication-title: Clin. Transl. Radiat. Oncol. – start-page: 753 year: 2018 ident: 10.1016/j.media.2020.101754_bib0009 article-title: Contextvp: fully context-aware video prediction – volume: 45 start-page: 1 year: 2018 ident: 10.1016/j.media.2020.101754_bib0055 article-title: Low-dimensional representation of cardiac motion using barycentric subspaces: a new group-wise paradigm for estimation, analysis, and reconstruction publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.12.008 – volume: 64 start-page: 185013 issue: 18 year: 2019 ident: 10.1016/j.media.2020.101754_bib0048 article-title: Time-resolved volumetric mri in mri-guided radiotherapy: an in silico comparative analysis publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab33e5 – start-page: 5207 year: 2018 ident: 10.1016/j.media.2020.101754_bib0035 article-title: Lstm pose machines – volume: 3 start-page: 32 year: 2004 ident: 10.1016/j.media.2020.101754_bib0060 article-title: Recognizing human actions: a local svm approach – volume: 123 start-page: S147 year: 2017 ident: 10.1016/j.media.2020.101754_bib0062 article-title: Out-of-plane motion correction in orthogonal cine-mri registration – start-page: 843 year: 2015 ident: 10.1016/j.media.2020.101754_bib0065 article-title: Unsupervised learning of video representations using lstms – volume: 18 start-page: 712 issue: 8 year: 1999 ident: 10.1016/j.media.2020.101754_bib0058 article-title: Nonrigid registration using free-form deformations: application to breast mr images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 – volume: 54 start-page: 1849 issue: 7 year: 2009 ident: 10.1016/j.media.2020.101754_bib0011 article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/7/001 – volume: 33 start-page: 3874 issue: 10 year: 2006 ident: 10.1016/j.media.2020.101754_bib0025 article-title: The management of respiratory motion in radiation oncology report of aapm task group 76 a publication-title: Med. Phys. doi: 10.1118/1.2349696 – start-page: 600 year: 2018 ident: 10.1016/j.media.2020.101754_bib0029 article-title: Flow-grounded spatial-temporal video prediction from still images – volume: 14 start-page: 933 issue: 6 year: 2019 ident: 10.1016/j.media.2020.101754_bib0056 article-title: Automatic self-gated 4d-mri construction from free-breathing 2d acquisitions applied on liver images publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-019-01941-1 – start-page: 4414 year: 2017 ident: 10.1016/j.media.2020.101754_bib0015 article-title: Unsupervised learning of disentangled representations from video – volume: 33 start-page: 5668 year: 2019 ident: 10.1016/j.media.2020.101754_bib0080 article-title: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction – volume: 71 start-page: 191 issue: 2 year: 2004 ident: 10.1016/j.media.2020.101754_bib0039 article-title: Dosimetric effect of respiratory motion in external beam radiotherapy of the lung publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2004.01.011 – year: 2000 ident: 10.1016/j.media.2020.101754_bib0007 article-title: The OpenCV Library publication-title: Dr. Dobb’s J. Softw. Tools – volume: 29 start-page: 1403 issue: 7 year: 2002 ident: 10.1016/j.media.2020.101754_bib0008 article-title: Creating a four-dimensional model of the liver using finite element analysis publication-title: Med. Phys. doi: 10.1118/1.1485055 – volume: 56 start-page: 6009 issue: 18 year: 2011 ident: 10.1016/j.media.2020.101754_bib0028 article-title: On a pca-based lung motion model publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/18/015 – volume: 34 start-page: 599 issue: 2 year: 2014 ident: 10.1016/j.media.2020.101754_bib0019 article-title: Patient-specific biomechanical model for the prediction of lung motion from 4-d ct images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2363611 – volume: 61 start-page: 872 issue: 2 year: 2016 ident: 10.1016/j.media.2020.101754_bib0063 article-title: Motion prediction in mri-guided radiotherapy based on interleaved orthogonal cine-mri publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/2/872 – start-page: 3104 year: 2014 ident: 10.1016/j.media.2020.101754_bib0067 article-title: Sequence to sequence learning with neural networks – volume: 11 start-page: 1183 issue: 11 year: 2000 ident: 10.1016/j.media.2020.101754_bib0014 article-title: Three-dimensional catheter positioning during radiofrequency ablation in patients: first application of a real-time position management system publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1046/j.1540-8167.2000.01183.x – ident: 10.1016/j.media.2020.101754_bib0072 – start-page: 802 year: 2015 ident: 10.1016/j.media.2020.101754_bib0079 article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting – volume: 50 start-page: 889 issue: 4 year: 2001 ident: 10.1016/j.media.2020.101754_bib0042 article-title: The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy publication-title: Int. J. Radiat. Oncol.* Biol.* Phys. doi: 10.1016/S0360-3016(01)01516-4 – volume: 105 start-page: S28 issue: 1 year: 2019 ident: 10.1016/j.media.2020.101754_bib0082 article-title: A deep-learning based 3d tumor motion prediction algorithm for non-invasive intra-fractional tumor-tracked radiotherapy (niftert) on linac-mr publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2019.06.434 – volume: 5 start-page: 27 issue: 1 year: 2017 ident: 10.1016/j.media.2020.101754_bib0083 article-title: A framework for continuous target tracking during mr-guided high intensity focused ultrasound thermal ablations in the abdomen publication-title: J. Ther. Ultrasound. doi: 10.1186/s40349-017-0106-y – volume: 122 start-page: 42 year: 2019 ident: 10.1016/j.media.2020.101754_bib0022 article-title: The transformation of radiation oncology using real-time magnetic resonance guidance: a review publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2019.07.021 – ident: 10.1016/j.media.2020.101754_bib0027 doi: 10.1007/978-3-030-39074-7_19 – start-page: 2443 year: 2015 ident: 10.1016/j.media.2020.101754_bib0074 article-title: Dense optical flow prediction from a static image – volume: 34 start-page: 4772 issue: 12 year: 2007 ident: 10.1016/j.media.2020.101754_bib0084 article-title: A patient-specific respiratory model of anatomical motion for radiation treatment planning publication-title: Med. Phys. doi: 10.1118/1.2804576 – ident: 10.1016/j.media.2020.101754_bib0076 – volume: 41 start-page: 61703 issue: 6Part1 year: 2014 ident: 10.1016/j.media.2020.101754_bib0021 article-title: Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator publication-title: Med. Phys. doi: 10.1118/1.4873682 – volume: 64 start-page: 85010 issue: 8 year: 2019 ident: 10.1016/j.media.2020.101754_bib0031 article-title: Towards real-time respiratory motion prediction based on long short-term memory neural networks publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab13fa – volume: 60 start-page: 5571 issue: 14 year: 2015 ident: 10.1016/j.media.2020.101754_bib0034 article-title: The 2014 liver ultrasound tracking benchmark publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/14/5571 – year: 2019 ident: 10.1016/j.media.2020.101754_bib0005 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897538 – start-page: 729 year: 2018 ident: 10.1016/j.media.2020.101754_bib0013 article-title: Unsupervised learning for fast probabilistic diffeomorphic registration – start-page: 961 year: 2016 ident: 10.1016/j.media.2020.101754_bib0002 article-title: Social lstm: human trajectory prediction in crowded spaces – volume: 6 start-page: 51262 year: 2018 ident: 10.1016/j.media.2020.101754_bib0075 article-title: A feasibility of respiration prediction based on deep bi-lstm for real-time tumor tracking publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869780 – volume: 66 start-page: 2182 issue: 8 year: 2018 ident: 10.1016/j.media.2020.101754_bib0032 article-title: Self-scanned hifu ablation of moving tissue using real-time hybrid us-mr imaging publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2885233 |
| SSID | ssj0007440 |
| Score | 2.4548733 |
| Snippet | •Free-breathing motion compensation aimed at image-guided radiotherapy.•Novel framework with multi-scale feature extraction and spatial transformation for... External beam radiotherapy is a commonly used treatment option for patients with cancer in the thoracic and abdominal regions. However, respiratory motion... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101754 |
| SubjectTerms | Deep learning Free-breathing Liver LSTM Lungs Motion prediction Radiotherapy |
| Title | Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks |
| URI | https://dx.doi.org/10.1016/j.media.2020.101754 https://www.proquest.com/docview/2417430671 |
| Volume | 64 |
| WOSCitedRecordID | wos000551766800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6DSF4QDBAjI_JSLyVVKRJY-dxoKGBxrSHMfUtSuLrKVNJqqStxviT_CSuv5J0ExV74CWqXMeyek_vPbbPvSbkHee-9HnOvAmEgRdO_NyLIZWeyBlGA4xosS72fH7MTk74dBqfDga_XS7MasbKkl9dxfP_ampsQ2Or1Nk7mLsdFBvwMxodn2h2fP6T4U9rdfbiiGBRenOlZzXXNw0FtNmKLkNR1gBeprij3oyqU1HYrKyfw1WRqiOc3Nz9pVVGjZJga4W6ZbxQD0ujJW_6TNedABU_lCootbVPuvMdbF6CvuRoeFw0sBie6zN7_xoD1XXrsGfK8FJ_w1dgpOANLh2gNxCYVB17RUheKVW_KC7USx-DFvtHRhKQ2Rwl1Vu3sKpY2_oYd8I7562DyPd4aPJBnTuPwp4_Vg7HFKm-FSrMrsXlSGfojNTwo673emHuGwGzlTE6hdxlogdJ1CCJGWSL7IzZJEY_u3Pw5XD6tWUHqiCjyQU0U3eVsLTm8NZc_saWbvAGTYbOHpNHdhVDDwz6npABlLvkYa-25S65_82qNp6SXx0kaSWpgyTVkKQ9SFIDSboOSdqHJEVI0nVIUgtJ2oMkdZB8Rr5_Pjz7dOTZSz-8PAiihZfJAFfEEEHIpFDhZMLyFMZBJn0mYx5nbCxilgkhAhlBHMlIyAlH9wJBjmxdBs_JdlmV8ILQOIyyNAOG8Z6HgFwYogyXz1Ji1PkAQuyRsftxk9xWxFcXs8ySDYbdI-_bl-amIMzm7pGzWmI5reGqCeJw84tvnY0T9PjqGA8tUy2bBDk30n5kmf7Lu83lFXnQ_Ytek-1FvYQ35F6-WhRNvU-22JTvW7j-AeLZ1T0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+in-plane+organ+deformation+during+free-breathing+radiotherapy+via+discriminative+spatial+transformer+networks&rft.jtitle=Medical+image+analysis&rft.au=Romaguera%2C+Liset+V%C3%A1zquez&rft.au=Plantef%C3%A8ve%2C+Rosalie&rft.au=Romero%2C+Francisco+Perdig%C3%B3n&rft.au=H%C3%A9bert%2C+Fran%C3%A7ois&rft.date=2020-08-01&rft.issn=1361-8415&rft.volume=64&rft.spage=101754&rft_id=info:doi/10.1016%2Fj.media.2020.101754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2020_101754 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |