A Similarity-Based Cooperative Co-Evolutionary Algorithm for Dynamic Interval Multiobjective Optimization Problems

Dynamic interval multiobjective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms (EAs) that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multiobjective cooperative co-evolutionary optimization...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 24; no. 1; pp. 142 - 156
Main Authors: Gong, Dunwei, Xu, Biao, Zhang, Yong, Guo, Yinan, Yang, Shengxiang
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dynamic interval multiobjective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms (EAs) that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multiobjective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two subpopulations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances as well as a multiperiod portfolio selection problem and compared with five state-of-the-art EAs. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances.
AbstractList Dynamic interval multiobjective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms (EAs) that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multiobjective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two subpopulations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances as well as a multiperiod portfolio selection problem and compared with five state-of-the-art EAs. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances.
Author Yang, Shengxiang
Guo, Yinan
Gong, Dunwei
Xu, Biao
Zhang, Yong
Author_xml – sequence: 1
  givenname: Dunwei
  orcidid: 0000-0002-0363-4207
  surname: Gong
  fullname: Gong, Dunwei
  email: dwgong@vip.163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Biao
  orcidid: 0000-0002-9551-8579
  surname: Xu
  fullname: Xu, Biao
  email: xubiao512@163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 3
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  email: yongzh401@126.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 4
  givenname: Yinan
  orcidid: 0000-0002-4276-5410
  surname: Guo
  fullname: Guo, Yinan
  email: guoyinan@cumt.edu.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 5
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, U.K
BookMark eNp9kE1LAzEQQIMoWKs_QLwseN6aSfYjOdZatVCpYBFvS3Y70ZTdTc2mhfrrTVvx4EEIZA7vTcI7I8etbZGQS6ADACpv5uPX0YBRkAMmgTGaHJEeyARiSll2HGYqZJzn4u2UnHXdklJIUpA94obRi2lMrZzx2_hWdbiIRtau0ClvNhjmeLyx9dob2yq3jYb1uw3oRxNp66K7basaU0WT1qPbqDp6WteBLJdY7e3ZyoflX2pnR8_OljU23Tk50aru8OLn7pP5_Xg-eoyns4fJaDiNK84zH5coUZRJojET4YDWPNWCpZmu9CItU2SiSiUC17oUZbngWlQ0pyCYBp1w3ifXh7UrZz_X2PliadeuDS8WjCcSQOQgApUfqMrZrnOoi8r4_X-9U6YugBa7vsWub7HrW_z0DSb8MVfONKHRv87VwTGI-MuLTCaUUv4Nb7aLFw
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123336
crossref_primary_10_3390_math9040420
crossref_primary_10_1007_s10489_020_01861_7
crossref_primary_10_1016_j_asoc_2022_109605
crossref_primary_10_1109_TCYB_2020_2989465
crossref_primary_10_1109_TCYB_2020_3017049
crossref_primary_10_1016_j_ins_2024_121690
crossref_primary_10_1109_TEVC_2022_3222844
crossref_primary_10_1109_TEVC_2022_3144180
crossref_primary_10_1360_SSI_2024_0320
crossref_primary_10_1016_j_asoc_2021_107399
crossref_primary_10_1007_s10489_020_02025_3
crossref_primary_10_1007_s10489_021_02969_0
crossref_primary_10_1016_j_eswa_2025_128915
crossref_primary_10_1016_j_knosys_2024_111998
crossref_primary_10_1007_s11277_021_08356_9
crossref_primary_10_1016_j_swevo_2023_101370
crossref_primary_10_1016_j_knosys_2022_109890
crossref_primary_10_1016_j_suscom_2022_100668
crossref_primary_10_1007_s10489_022_03169_0
crossref_primary_10_1016_j_ins_2021_04_055
crossref_primary_10_1016_j_ins_2025_122018
crossref_primary_10_1016_j_swevo_2024_101621
crossref_primary_10_1016_j_swevo_2024_101624
crossref_primary_10_1002_cjce_24158
crossref_primary_10_1016_j_future_2024_04_032
crossref_primary_10_1007_s10489_020_02079_3
crossref_primary_10_1145_3524495
crossref_primary_10_1016_j_engappai_2022_105530
crossref_primary_10_1109_ACCESS_2021_3070071
crossref_primary_10_1016_j_egyr_2021_03_044
crossref_primary_10_1016_j_eswa_2023_119970
crossref_primary_10_1016_j_future_2023_03_034
crossref_primary_10_1109_TEVC_2020_2975381
crossref_primary_10_1109_ACCESS_2021_3110853
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_1109_TASE_2020_3011428
crossref_primary_10_1016_j_ins_2020_07_009
crossref_primary_10_1016_j_eswa_2025_127792
crossref_primary_10_1016_j_swevo_2025_101853
crossref_primary_10_3390_math10122117
crossref_primary_10_1016_j_asoc_2021_107258
crossref_primary_10_1109_TCYB_2020_2986600
crossref_primary_10_1016_j_swevo_2024_101693
crossref_primary_10_1109_TEVC_2023_3253850
crossref_primary_10_1109_TCYB_2024_3364375
crossref_primary_10_3390_data9020020
crossref_primary_10_1109_TEVC_2022_3233642
crossref_primary_10_1109_ACCESS_2020_3047936
crossref_primary_10_1109_TEVC_2023_3235196
crossref_primary_10_3390_math9080864
crossref_primary_10_1016_j_oceaneng_2024_119267
crossref_primary_10_1016_j_knosys_2022_109591
crossref_primary_10_1016_j_isatra_2023_03_038
crossref_primary_10_1080_0305215X_2025_2507285
crossref_primary_10_1016_j_asoc_2021_107268
crossref_primary_10_1109_TSMC_2021_3069986
crossref_primary_10_3390_agronomy13122939
crossref_primary_10_3390_pr9060911
crossref_primary_10_1016_j_swevo_2025_102012
crossref_primary_10_1016_j_eswa_2021_115509
crossref_primary_10_1186_s40537_020_00398_3
crossref_primary_10_1016_j_swevo_2025_102011
crossref_primary_10_1016_j_knosys_2021_107569
crossref_primary_10_1371_journal_pone_0297855
crossref_primary_10_1007_s00158_023_03568_y
crossref_primary_10_1016_j_eswa_2020_114413
crossref_primary_10_1016_j_applthermaleng_2022_118150
crossref_primary_10_1016_j_cie_2021_107229
crossref_primary_10_1109_TASE_2022_3148459
crossref_primary_10_3390_math10091384
crossref_primary_10_1016_j_swevo_2021_100864
crossref_primary_10_1016_j_swevo_2024_101713
crossref_primary_10_1016_j_ins_2022_08_020
crossref_primary_10_1016_j_knosys_2021_107215
crossref_primary_10_1109_TCYB_2020_3017017
crossref_primary_10_1016_j_knosys_2023_111019
crossref_primary_10_1109_TEVC_2020_2985323
crossref_primary_10_1016_j_ijpe_2024_109399
crossref_primary_10_1016_j_eswa_2020_114145
crossref_primary_10_1109_TEVC_2020_3004027
crossref_primary_10_1109_ACCESS_2019_2932883
crossref_primary_10_1016_j_asoc_2023_110880
crossref_primary_10_1109_TSMC_2023_3298804
crossref_primary_10_1109_TCYB_2021_3049712
crossref_primary_10_1016_j_afres_2025_100853
crossref_primary_10_1016_j_eswa_2025_129642
crossref_primary_10_1109_TCYB_2020_3025662
crossref_primary_10_1109_TNSM_2022_3224158
crossref_primary_10_1109_TCYB_2020_3041494
crossref_primary_10_7717_peerj_cs_3000
crossref_primary_10_1016_j_psep_2022_08_026
crossref_primary_10_1109_ACCESS_2021_3063218
crossref_primary_10_1016_j_envsoft_2020_104902
crossref_primary_10_1109_ACCESS_2021_3138141
crossref_primary_10_1007_s11633_022_1367_7
crossref_primary_10_1109_TEVC_2024_3418858
crossref_primary_10_1007_s00500_023_09185_7
crossref_primary_10_1109_ACCESS_2020_2999161
crossref_primary_10_1109_TEVC_2022_3193294
crossref_primary_10_1016_j_ins_2024_121192
crossref_primary_10_1007_s12293_021_00348_3
crossref_primary_10_1109_TCYB_2021_3070434
crossref_primary_10_1109_TEVC_2023_3243109
crossref_primary_10_1109_TCYB_2023_3280175
crossref_primary_10_1109_TEVC_2021_3063606
crossref_primary_10_1016_j_knosys_2022_110242
crossref_primary_10_3390_math12060913
crossref_primary_10_3389_fenrg_2024_1354196
crossref_primary_10_1007_s10489_020_01874_2
crossref_primary_10_1016_j_asoc_2024_112071
crossref_primary_10_1016_j_ins_2022_05_123
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_1109_TEVC_2024_3424393
crossref_primary_10_3390_electronics12122722
crossref_primary_10_1007_s12293_021_00330_z
crossref_primary_10_1109_TEVC_2023_3290485
crossref_primary_10_1109_ACCESS_2021_3091185
crossref_primary_10_3390_pr12010189
crossref_primary_10_1109_ACCESS_2020_3047699
crossref_primary_10_1109_TCYB_2021_3128584
crossref_primary_10_1016_j_jfca_2025_107499
crossref_primary_10_1109_TEVC_2021_3115795
crossref_primary_10_1155_2021_7906047
crossref_primary_10_1093_jcde_qwac124
crossref_primary_10_1016_j_swevo_2020_100799
crossref_primary_10_1007_s11431_021_1960_7
Cites_doi 10.1016/j.ins.2018.01.006
10.1109/TSG.2012.2210059
10.1007/s00500-015-1820-4
10.1109/TEVC.2004.831456
10.1016/j.cie.2014.05.014
10.1109/TEVC.2017.2754271
10.1109/TEVC.2013.2281543
10.1109/TEVC.2017.2669638
10.1016/j.neucom.2012.09.019
10.1109/TCYB.2013.2245892
10.1007/s10479-016-2117-4
10.1007/s00158-010-0501-2
10.1016/j.ijepes.2018.04.011
10.1109/TCYB.2015.2490738
10.1016/j.ins.2011.05.011
10.1016/j.compstruc.2008.10.005
10.1007/s11047-014-9415-z
10.1360/jos182700
10.1109/CEC.2005.1554719
10.1007/s10489-014-0625-y
10.1016/j.asoc.2014.03.005
10.1109/TEVC.2017.2657787
10.1109/TCBB.2017.2652453
10.1016/j.apm.2011.10.007
10.1007/s00500-013-1085-8
10.1016/j.engstruct.2007.01.020
10.1109/TCYB.2018.2842158
10.1016/j.solener.2018.07.004
10.1016/j.cie.2011.09.003
10.1016/j.ast.2018.07.029
10.1016/j.cor.2016.03.002
10.1016/j.asoc.2017.05.008
10.1109/BICTA.2010.5645160
10.1109/TSMCB.2012.2214382
10.1016/j.ijpe.2013.12.023
10.1007/978-3-540-95976-2_3
10.1109/CEC.2001.934314
10.3724/SP.J.1004.2008.00921
10.1007/978-3-540-70928-2_60
10.1007/978-3-540-70928-2_62
10.1109/TEVC.2016.2634625
10.1016/j.cie.2018.06.013
10.1016/j.ress.2015.09.008
10.1016/j.enbuild.2016.08.082
10.1016/j.asoc.2012.04.021
10.1137/1.9780898717716
10.1016/j.asoc.2015.10.018
10.1109/TEVC.2015.2455812
10.1109/TEVC.2016.2600642
10.1109/4235.996017
10.1109/TIA.2018.2828379
10.1007/s00291-011-0268-x
10.1007/s12293-009-0026-7
10.1007/s10589-014-9717-1
10.1080/0951192X.2016.1145813
10.1109/TEVC.2008.920671
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2019.2912204
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 156
ExternalDocumentID 10_1109_TEVC_2019_2912204
8694000
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFB1003802-01
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61773384; 61876184; 61876185; 61873105; 61703188; 61573361; 61573362; 61503220; 61673404; 61673331; 61763026
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-be9e8b44fe68e681ff35f8256fcfd5b5e28c59e13ffb8bbd3f8c070182f1f433
IEDL.DBID RIE
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510708100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 06:57:18 EST 2025
Tue Nov 18 21:00:57 EST 2025
Sat Nov 29 03:13:48 EST 2025
Wed Aug 27 06:30:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-be9e8b44fe68e681ff35f8256fcfd5b5e28c59e13ffb8bbd3f8c070182f1f433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0363-4207
0000-0001-7222-4917
0000-0002-9551-8579
0000-0002-4276-5410
OpenAccessLink https://www.dora.dmu.ac.uk/handle/2086/17875
PQID 2349118718
PQPubID 85418
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2019_2912204
ieee_primary_8694000
crossref_primary_10_1109_TEVC_2019_2912204
proquest_journals_2349118718
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref18
ref51
ref50
ref46
ref45
ref48
ref47
potter (ref19) 1994; 866
ref42
ref41
ref44
ref43
goh (ref20) 2009; 13
mehnen (ref62) 2006; 1
qu (ref56) 2017
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref30
ref33
ref32
ref2
ref1
ref39
ref38
sun (ref36) 2013; 22
ref24
ref23
ref26
ref25
cheng (ref31) 2004; 30
ref63
ref22
ref21
ref28
ref27
ref29
xu (ref57) 2007; 37
sun (ref64) 0
guo (ref60) 2016; 16
ref61
References_xml – ident: ref41
  doi: 10.1016/j.ins.2018.01.006
– ident: ref10
  doi: 10.1109/TSG.2012.2210059
– volume: 866
  start-page: 249
  year: 1994
  ident: ref19
  publication-title: A Cooperative Coevolutionary Approach to Function Optimization
– ident: ref45
  doi: 10.1007/s00500-015-1820-4
– ident: ref61
  doi: 10.1109/TEVC.2004.831456
– start-page: 1
  year: 2017
  ident: ref56
  article-title: Solving dynamic economic emission dispatch problem considering wind power by multi-objective differential evolution with ensemble of selection method
  publication-title: Nat Comput
– ident: ref16
  doi: 10.1016/j.cie.2014.05.014
– ident: ref55
  doi: 10.1109/TEVC.2017.2754271
– ident: ref58
  doi: 10.1109/TEVC.2013.2281543
– ident: ref47
  doi: 10.1109/TEVC.2017.2669638
– ident: ref2
  doi: 10.1016/j.neucom.2012.09.019
– ident: ref59
  doi: 10.1109/TCYB.2013.2245892
– ident: ref63
  doi: 10.1007/s10479-016-2117-4
– ident: ref28
  doi: 10.1007/s00158-010-0501-2
– ident: ref26
  doi: 10.1016/j.ijepes.2018.04.011
– ident: ref51
  doi: 10.1109/TCYB.2015.2490738
– ident: ref15
  doi: 10.1016/j.ins.2011.05.011
– ident: ref27
  doi: 10.1016/j.compstruc.2008.10.005
– ident: ref53
  doi: 10.1007/s11047-014-9415-z
– volume: 16
  start-page: 1
  year: 2016
  ident: ref60
  article-title: Cultural particle swarm optimization algorithms for uncertain multi-objective problems with interval parameters
  publication-title: Nat Comput
– ident: ref43
  doi: 10.1360/jos182700
– ident: ref24
  doi: 10.1109/CEC.2005.1554719
– ident: ref50
  doi: 10.1007/s10489-014-0625-y
– ident: ref44
  doi: 10.1016/j.asoc.2014.03.005
– volume: 22
  start-page: 269
  year: 2013
  ident: ref36
  article-title: Solving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degree
  publication-title: Chin J Electron
– ident: ref42
  doi: 10.1109/TEVC.2017.2657787
– ident: ref23
  doi: 10.1109/TCBB.2017.2652453
– ident: ref7
  doi: 10.1016/j.apm.2011.10.007
– ident: ref54
  doi: 10.1007/s00500-013-1085-8
– volume: 37
  start-page: 1
  year: 2007
  ident: ref57
  article-title: On similarity degrees of interval numbers
  publication-title: Chinese Journal of Mathematics in Practice and Theory
– ident: ref32
  doi: 10.1016/j.engstruct.2007.01.020
– ident: ref52
  doi: 10.1109/TCYB.2018.2842158
– ident: ref12
  doi: 10.1016/j.solener.2018.07.004
– ident: ref17
  doi: 10.1016/j.cie.2011.09.003
– ident: ref13
  doi: 10.1016/j.ast.2018.07.029
– ident: ref1
  doi: 10.1016/j.cor.2016.03.002
– ident: ref49
  doi: 10.1016/j.asoc.2017.05.008
– ident: ref34
  doi: 10.1109/BICTA.2010.5645160
– ident: ref14
  doi: 10.1109/TSMCB.2012.2214382
– ident: ref6
  doi: 10.1016/j.ijpe.2013.12.023
– volume: 1
  start-page: 1
  year: 2006
  ident: ref62
  article-title: Evolutionary optimization of dynamic multi-objective test functions
  publication-title: Sonderforschungsbereich
– ident: ref38
  doi: 10.1007/978-3-540-95976-2_3
– ident: ref18
  doi: 10.1109/CEC.2001.934314
– ident: ref37
  doi: 10.3724/SP.J.1004.2008.00921
– ident: ref25
  doi: 10.1007/978-3-540-70928-2_60
– ident: ref48
  doi: 10.1007/978-3-540-70928-2_62
– ident: ref11
  doi: 10.1109/TEVC.2016.2634625
– year: 0
  ident: ref64
  article-title: Interval multi-objective programming methods for solving multi-period portfolio selection problems
  publication-title: Control and Decision J Chinese
– ident: ref8
  doi: 10.1016/j.cie.2018.06.013
– ident: ref3
  doi: 10.1016/j.ress.2015.09.008
– ident: ref29
  doi: 10.1016/j.enbuild.2016.08.082
– ident: ref35
  doi: 10.1016/j.asoc.2012.04.021
– ident: ref30
  doi: 10.1137/1.9780898717716
– ident: ref40
  doi: 10.1016/j.asoc.2015.10.018
– ident: ref22
  doi: 10.1109/TEVC.2015.2455812
– ident: ref21
  doi: 10.1109/TEVC.2016.2600642
– ident: ref33
  doi: 10.1109/4235.996017
– volume: 30
  start-page: 455
  year: 2004
  ident: ref31
  article-title: Feasibility analysis for optimization of uncertain systems with interval parameters
  publication-title: ACTA Automatica Sinica
– ident: ref4
  doi: 10.1109/TIA.2018.2828379
– ident: ref5
  doi: 10.1007/s00291-011-0268-x
– ident: ref46
  doi: 10.1007/s12293-009-0026-7
– ident: ref39
  doi: 10.1007/s10589-014-9717-1
– ident: ref9
  doi: 10.1080/0951192X.2016.1145813
– volume: 13
  start-page: 103
  year: 2009
  ident: ref20
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.920671
SSID ssj0014519
Score 2.6396725
Snippet Dynamic interval multiobjective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms Cooperative co-evolutionary optimization
dynamic optimization
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Heuristic algorithms
interval similarity
Mopping
multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimization
Probability distribution
Programming
response strategy
Robots
Similarity
Sociology
Strategy
Variables
Title A Similarity-Based Cooperative Co-Evolutionary Algorithm for Dynamic Interval Multiobjective Optimization Problems
URI https://ieeexplore.ieee.org/document/8694000
https://www.proquest.com/docview/2349118718
Volume 24
WOSCitedRecordID wos000510708100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1UPOjB-on1ixw8idHNZnebHGuteBAVLNLb0mQTrbRdaWvBf-8kmxZBEYQ95JDAwktm5iUz8wBOhbSMaxXRhCtJkyzTtMeUotz2eoVupInyYjDPd437e9HtysclOF_UwhhjfPKZuXBD_5ZflPrDXZVdiszJeCNBX240sqpWa_Fi4NqkVMn0EiNG0Q0vmCySl532c8slccmLWLI4Dppscx_kRVV-WGLvXm5q__uxTdgIYSRpVrhvwZIZbUNtLtFAwondhvVv_QZ3YNwkT_1hH8ksxt70Ch1YQVpl-W6q9t84pu1Z2Iu98SdpDl5KnPo6JBjakutKvJ74S0TcoMQX75bqrbKZ5AGtzzCUdZLHSqhmsgudm3andUuD6ALVnGdTqow0QiWJNZnAj1nLU4s0MrPaFqlKTSx0Kg3j1iqhVMGt0Gg2kKZYZhPO92BlVI7MPhAVi8wq12GOFUiLCgx8MPaSkbQYc-kkrkM0RyHXoSG508UY5J6YRDJ3wOUOuDwAV4ezxZL3qhvHX5N3HFKLiQGkOhzNoc7DeZ3kMU-kE15n4uD3VYewFjum7fO1j2BlOv4wx7CqZ9P-ZHzit-IX_yfdlw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0hQGo5AIVWhELxoaeqhvXHLvYxhCBQ0xSpEcptFXvtNhXJoiQg8e879jpRpVZIlfbggy2t9OyZefbMPICPSnsmrMmoFEZTWRSWjpgxVPjRqLLnuTRRDOaud97vq-FQ367B51UtjHMuJp-50zCMb_lVbR_DVdmZKoKMNxL0jVxKnjXVWqs3g9AopUmn1xgzqmF6w2SZPht07zohjUufcs04T6psSy8UZVX-ssXRwVzt_N-v7cJ2CiRJu0H-Day56R7sLEUaSDqze7D1R8fBfZi1yffxZIx0FqNveoEurCKdun5wTQNwHNPuU9qNo9kzad__qHHqzwnB4JZcNvL1JF4j4hYlsXy3Nr8aq0m-of2ZpMJOcttI1czfwuCqO-hc0yS7QK0QxYIap50yUnpXKPyY9yL3SCQLb32Vm9xxZXPtmPDeKGMq4ZVFw4FExTMvhXgH69N66g6AGK4Kb0KPOVYhMaow9MHoS2faY9RlJW9BtkShtKkleVDGuC8jNcl0GYArA3BlAq4Fn1ZLHpp-HC9N3g9IrSYmkFpwtIS6TCd2XnIhdZBeZ-rw36tO4NX14Guv7N30v7yH1zzw7pi9fQTri9mjO4ZN-7QYz2cf4rb8DaqQ4N4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Similarity-Based+Cooperative+Co-Evolutionary+Algorithm+for+Dynamic+Interval+Multiobjective+Optimization+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Gong%2C+Dunwei&rft.au=Xu%2C+Biao&rft.au=Zhang%2C+Yong&rft.au=Guo%2C+Yinan&rft.date=2020-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=24&rft.issue=1&rft.spage=142&rft.epage=156&rft_id=info:doi/10.1109%2FTEVC.2019.2912204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2019_2912204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon