On the Resolution of the Generalized Nonlinear Complementarity Problem

Minimization of a differentiable function subject to box constraints is proposed as a strategy to solve the generalized nonlinear complementarity problem (GNCP) defined on a polyhedral cone. It is not necessary to calculate projections that complicate and sometimes even disable the implementation of...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on optimization Vol. 12; no. 2; pp. 303 - 321
Main Authors: Andreani, Roberto, Friedlander, Ana, Santos, Sandra A.
Format: Journal Article
Language:English
Published: Philadelphia Society for Industrial and Applied Mathematics 2002
Subjects:
ISSN:1052-6234, 1095-7189
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Minimization of a differentiable function subject to box constraints is proposed as a strategy to solve the generalized nonlinear complementarity problem (GNCP) defined on a polyhedral cone. It is not necessary to calculate projections that complicate and sometimes even disable the implementation of algorithms for solving these kinds of problems. Theoretical results that relate stationary points of the function that is minimized to the solutions of the GNCP are presented. Perturbations of the GNCP are also considered, and results are obtained related to the resolution of GNCPs with very general assumptions on the data. These theoretical results show that local methods for box-constrained optimization applied to the associated problem are efficient tools for solving the GNCP. Numerical experiments are presented that encourage the use of this approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1052-6234
1095-7189
DOI:10.1137/S1052623400377591