Wireless Image Retrieval at the Edge

We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server. These can be images of the same person or a vehicle taken from other cameras at different times and locations. Our goal is to maximize...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal on selected areas in communications Ročník 39; číslo 1; s. 89 - 100
Hlavní autoři: Jankowski, Mikolaj, Gunduz, Deniz, Mikolajczyk, Krystian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0733-8716, 1558-0008
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server. These can be images of the same person or a vehicle taken from other cameras at different times and locations. Our goal is to maximize the accuracy of the retrieval task under power and bandwidth constraints over the wireless link. Due to the stringent delay constraint of the underlying application, sending the whole image at a sufficient quality is not possible. We propose two alternative schemes based on digital and analog communications, respectively. In the digital approach, we first propose a deep neural network (DNN) aided retrieval-oriented image compression scheme, whose output bit sequence is transmitted over the channel using conventional channel codes. In the analog joint source and channel coding (JSCC) approach, the feature vectors are directly mapped into channel symbols. We evaluate both schemes on image based re-identification (re-ID) tasks under different channel conditions, including both static and fading channels. We show that the JSCC scheme significantly increases the end-to-end accuracy, speeds up the encoding process, and provides graceful degradation with channel conditions. The proposed architecture is evaluated through extensive simulations on different datasets and channel conditions, as well as through ablation studies.
AbstractList We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server. These can be images of the same person or a vehicle taken from other cameras at different times and locations. Our goal is to maximize the accuracy of the retrieval task under power and bandwidth constraints over the wireless link. Due to the stringent delay constraint of the underlying application, sending the whole image at a sufficient quality is not possible. We propose two alternative schemes based on digital and analog communications, respectively. In the digital approach, we first propose a deep neural network (DNN) aided retrieval-oriented image compression scheme, whose output bit sequence is transmitted over the channel using conventional channel codes. In the analog joint source and channel coding (JSCC) approach, the feature vectors are directly mapped into channel symbols. We evaluate both schemes on image based re-identification (re-ID) tasks under different channel conditions, including both static and fading channels. We show that the JSCC scheme significantly increases the end-to-end accuracy, speeds up the encoding process, and provides graceful degradation with channel conditions. The proposed architecture is evaluated through extensive simulations on different datasets and channel conditions, as well as through ablation studies.
Author Gunduz, Deniz
Mikolajczyk, Krystian
Jankowski, Mikolaj
Author_xml – sequence: 1
  givenname: Mikolaj
  surname: Jankowski
  fullname: Jankowski, Mikolaj
  email: gunduz@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
– sequence: 2
  givenname: Deniz
  orcidid: 0000-0002-7725-395X
  surname: Gunduz
  fullname: Gunduz, Deniz
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
– sequence: 3
  givenname: Krystian
  surname: Mikolajczyk
  fullname: Mikolajczyk, Krystian
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
BookMark eNp9kE1LAzEQQINUsK3-APGyoNetk-_NsZSqlYLgBx5DNp3WLdvdmqSC_94tLR48eJo5vDcDb0B6TdsgIZcURpSCuX18GU9GDBiMOHBlpDwhfSplkQNA0SN90JznhabqjAxiXANQIQrWJzfvVcAaY8xmG7fC7BlTqPDL1ZlLWfrAbLpY4Tk5Xbo64sVxDsnb3fR18pDPn-5nk_E895yrlJeOOy3Rc-ROeqOkLDU3XkqpSmEUMMEMFiAMCu-dXmhVCFl6qRVCtzg-JNeHu9vQfu4wJrtud6HpXlomNCiuioJ1lD5QPrQxBlxaXyWXqrZJwVW1pWD3Sew-id0nsccknUn_mNtQbVz4_te5OjgVIv7yhilKleE_E89rXg
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_JSAC_2021_3087248
crossref_primary_10_1109_LWC_2021_3136045
crossref_primary_10_1109_TWC_2024_3369170
crossref_primary_10_1109_TWC_2024_3518399
crossref_primary_10_1109_TCCN_2025_3528891
crossref_primary_10_1109_JSAC_2021_3087240
crossref_primary_10_1109_TWC_2024_3371775
crossref_primary_10_1109_TWC_2024_3461336
crossref_primary_10_1109_TWC_2023_3240969
crossref_primary_10_1109_TCCN_2023_3326302
crossref_primary_10_1007_s11432_022_3652_2
crossref_primary_10_1109_TCOMM_2025_3535903
crossref_primary_10_1016_j_jfranklin_2025_107886
crossref_primary_10_1109_JIOT_2024_3456569
crossref_primary_10_1109_JIOT_2024_3450902
crossref_primary_10_1109_JSAC_2022_3180802
crossref_primary_10_1109_JSAC_2021_3118346
crossref_primary_10_1109_JSAC_2025_3559121
crossref_primary_10_1109_JSAC_2021_3126087
crossref_primary_10_1109_TMC_2023_3257268
crossref_primary_10_1109_TWC_2024_3427675
crossref_primary_10_1109_TGCN_2023_3275199
crossref_primary_10_1007_s11036_023_02267_8
crossref_primary_10_1109_TWC_2024_3397635
crossref_primary_10_1109_JIOT_2025_3555437
crossref_primary_10_1109_JSAC_2025_3559116
crossref_primary_10_1007_s11432_024_4408_1
crossref_primary_10_1109_ACCESS_2024_3516814
crossref_primary_10_1109_TCOMM_2025_3529221
crossref_primary_10_1016_j_future_2022_10_036
crossref_primary_10_1109_TWC_2024_3386807
crossref_primary_10_1016_j_phycom_2024_102582
crossref_primary_10_1109_TWC_2023_3334225
crossref_primary_10_1109_TWC_2023_3339239
crossref_primary_10_1109_COMST_2023_3333342
crossref_primary_10_1109_TWC_2023_3312115
crossref_primary_10_3390_electronics11101567
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_1109_LWC_2023_3256006
crossref_primary_10_1109_LSP_2023_3265330
crossref_primary_10_1109_JPROC_2022_3190205
crossref_primary_10_3390_electronics11091358
crossref_primary_10_1109_TWC_2023_3306465
crossref_primary_10_1109_JIOT_2024_3429391
crossref_primary_10_1109_TCOMM_2021_3128423
crossref_primary_10_1109_JSAC_2022_3191326
crossref_primary_10_1109_TVT_2024_3396426
crossref_primary_10_1109_TWC_2023_3314888
crossref_primary_10_1109_OJCOMS_2025_3586462
crossref_primary_10_1109_COMST_2024_3416309
crossref_primary_10_1109_JSAC_2023_3242701
crossref_primary_10_3390_e27080813
crossref_primary_10_1109_JSTSP_2024_3405853
crossref_primary_10_1109_LCOMM_2024_3436816
crossref_primary_10_1109_TSP_2024_3411692
crossref_primary_10_1109_TWC_2022_3221778
crossref_primary_10_1109_TWC_2021_3090048
crossref_primary_10_1109_TCSVT_2025_3539226
crossref_primary_10_1109_TWC_2024_3450697
crossref_primary_10_1109_MNET_2023_3321547
crossref_primary_10_1109_TVT_2024_3390213
crossref_primary_10_1109_JSAC_2025_3574605
crossref_primary_10_1186_s13634_022_00958_0
crossref_primary_10_1016_j_fmre_2023_08_002
crossref_primary_10_1109_JSAC_2023_3310089
crossref_primary_10_1109_JIOT_2024_3350656
crossref_primary_10_3390_jmse11122280
crossref_primary_10_1109_JSAC_2023_3288236
crossref_primary_10_1016_j_icte_2022_09_002
crossref_primary_10_1016_j_comnet_2025_111531
crossref_primary_10_1016_j_iot_2024_101383
crossref_primary_10_1109_TCCN_2024_3375496
crossref_primary_10_1109_JIOT_2025_3582442
crossref_primary_10_1109_TCOMM_2024_3487513
crossref_primary_10_1109_JSTSP_2023_3310654
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1109_JSAC_2025_3559160
crossref_primary_10_1109_MCOM_001_2200962
crossref_primary_10_1109_TWC_2022_3191118
crossref_primary_10_1109_JSAC_2023_3288243
crossref_primary_10_1109_JSAC_2023_3288246
crossref_primary_10_1109_TWC_2023_3349330
crossref_primary_10_1109_TCOMM_2024_3364990
crossref_primary_10_1109_JIOT_2023_3347234
crossref_primary_10_1038_s41598_025_86860_9
crossref_primary_10_3390_app15094608
crossref_primary_10_1109_JSAC_2022_3223408
crossref_primary_10_1109_TWC_2025_3534995
crossref_primary_10_1109_TWC_2024_3497167
crossref_primary_10_1109_JSTSP_2023_3300509
crossref_primary_10_1109_TWC_2024_3388329
crossref_primary_10_1109_LWC_2022_3204837
crossref_primary_10_1007_s11432_024_4465_3
crossref_primary_10_1109_TCCN_2024_3392803
crossref_primary_10_1016_j_jfranklin_2024_106739
crossref_primary_10_1109_JSAC_2023_3288252
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_JSAC_2022_3221977
crossref_primary_10_1109_JIOT_2024_3440313
crossref_primary_10_1109_JSYST_2022_3198711
crossref_primary_10_1109_MCOM_004_2200819
crossref_primary_10_1109_ACCESS_2023_3238795
crossref_primary_10_1109_TCCN_2023_3346481
crossref_primary_10_1109_TWC_2024_3386052
crossref_primary_10_1109_JIOT_2025_3531910
crossref_primary_10_1109_MIE_2022_3174331
crossref_primary_10_1109_TWC_2023_3265201
crossref_primary_10_1109_LWC_2025_3527145
crossref_primary_10_3390_app12094534
crossref_primary_10_1109_JIOT_2024_3388260
crossref_primary_10_1109_JIOT_2023_3305011
crossref_primary_10_1109_LCOMM_2024_3450598
crossref_primary_10_1016_j_icte_2022_04_001
crossref_primary_10_1109_JSAC_2025_3560359
crossref_primary_10_1109_TCCN_2024_3510586
crossref_primary_10_1109_MBITS_2023_3322667
Cites_doi 10.1109/ICASSP40776.2020.9054634
10.1109/JSAIT.2020.2987203
10.1109/TWC.2020.2974748
10.1109/TCCN.2019.2919300
10.1609/aaai.v33i01.33018295
10.1002/j.1538-7305.1948.tb01338.x
10.1109/ISLPED.2019.8824955
10.1109/ICCV.2019.00844
10.1109/18.720541
10.1109/ICCWorkshops49005.2020.9145068
10.1109/ACCESS.2019.2920929
10.1109/IJCNN.2019.8852059
10.1109/CVPR.2018.00679
10.1109/CVPR.2016.90
10.1109/TCOMM.2019.2944169
10.1109/CVPR.2014.27
10.1109/CVPR42600.2020.00667
10.1007/s11263-015-0816-y
10.1109/TIP.2019.2910414
10.1109/ICASSP.2018.8461983
10.1109/CVPR.2019.00412
10.1109/SPAWC.2019.8815416
10.1109/SPAWC48557.2020.9154306
10.1016/B978-012119792-6/50124-8
10.1109/TMM.2017.2751966
10.1109/VETEC.1995.504941
10.1109/ICCV.2015.133
10.1109/ISIT.2019.8849334
10.1109/JSAC.2019.2933969
10.1109/TIT.2019.2953750
10.1117/12.258246
10.1109/CVPR.2018.00225
10.1145/3240508.3240552
10.1109/JPROC.2019.2941458
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2020.3036955
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 100
ExternalDocumentID 10_1109_JSAC_2020_3036955
9261169
Genre orig-research
GrantInformation_xml – fundername: European Research Council (ERC) through Starting Grant BEACON
  grantid: 677854
  funderid: 10.13039/501100000781
– fundername: U.K. Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/N007743/1; EP/S032398/1; EP/T023600/1
  funderid: 10.13039/501100000266
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c336t-ba3a75ec3e3a5c9655b739c5556b49602429e8049e4cca7d76845bc576e045ba3
IEDL.DBID RIE
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599495400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Mon Jun 30 10:24:12 EDT 2025
Tue Nov 18 20:55:38 EST 2025
Sat Nov 29 03:23:03 EST 2025
Wed Aug 27 02:33:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-ba3a75ec3e3a5c9655b739c5556b49602429e8049e4cca7d76845bc576e045ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7725-395X
OpenAccessLink http://hdl.handle.net/11380/1247347
PQID 2470636882
PQPubID 85481
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JSAC_2020_3036955
crossref_primary_10_1109_JSAC_2020_3036955
ieee_primary_9261169
proquest_journals_2470636882
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref15
minnen (ref37) 2018
ref36
ref14
jankowski (ref1) 2020
ref31
li (ref13) 2018
hermans (ref25) 2017
ref33
ref11
ref32
ref2
ref39
ref17
ref38
ref19
ref18
liu (ref41) 2016
rumelhart (ref30) 1987
shi (ref10) 2019
zhai (ref27) 2005
ref24
ref23
ref26
ref20
ref42
ref22
ref21
gündüz (ref5) 2019; 37
ref28
ref29
ref8
zheng (ref16) 2016
ref7
gallager (ref43) 1968
ref9
ref4
ref3
ref6
ref40
References_xml – start-page: 10771
  year: 2018
  ident: ref37
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Advances in Neural IInformation Processing Systems
– ident: ref9
  doi: 10.1109/ICASSP40776.2020.9054634
– ident: ref3
  doi: 10.1109/JSAIT.2020.2987203
– ident: ref8
  doi: 10.1109/TWC.2020.2974748
– ident: ref2
  doi: 10.1109/TCCN.2019.2919300
– start-page: 5070
  year: 2020
  ident: ref1
  article-title: Deep joint source-channel coding for wireless image retrieval
  publication-title: Proc ICASSP-IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– start-page: 1
  year: 2019
  ident: ref10
  article-title: Improving device-edge cooperative inference of deep learning via 2-step pruning
  publication-title: Proc IEEE INFOCOM-IEEE Conf Comput Commun Workshops (INFOCOM WKSHPS)
– ident: ref21
  doi: 10.1609/aaai.v33i01.33018295
– ident: ref26
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref11
  doi: 10.1109/ISLPED.2019.8824955
– ident: ref20
  doi: 10.1109/ICCV.2019.00844
– ident: ref36
  doi: 10.1109/18.720541
– ident: ref12
  doi: 10.1109/ICCWorkshops49005.2020.9145068
– ident: ref14
  doi: 10.1109/ACCESS.2019.2920929
– ident: ref19
  doi: 10.1109/IJCNN.2019.8852059
– ident: ref22
  doi: 10.1109/CVPR.2018.00679
– ident: ref34
  doi: 10.1109/CVPR.2016.90
– ident: ref4
  doi: 10.1109/TCOMM.2019.2944169
– ident: ref39
  doi: 10.1109/CVPR.2014.27
– year: 1968
  ident: ref43
  publication-title: Information Theory and Reliable Communication
– ident: ref38
  doi: 10.1109/CVPR42600.2020.00667
– ident: ref35
  doi: 10.1007/s11263-015-0816-y
– ident: ref18
  doi: 10.1109/TIP.2019.2910414
– ident: ref31
  doi: 10.1109/ICASSP.2018.8461983
– ident: ref17
  doi: 10.1109/CVPR.2019.00412
– ident: ref32
  doi: 10.1109/SPAWC.2019.8815416
– ident: ref15
  doi: 10.1109/SPAWC48557.2020.9154306
– year: 2017
  ident: ref25
  article-title: In defense of the triplet loss for person re-identification
  publication-title: arXiv 1703 07737
– start-page: 318
  year: 1987
  ident: ref30
  publication-title: Learning Internal Representations by Error Propagation
– year: 2005
  ident: ref27
  article-title: Joint source-channel coding for video communications
  publication-title: Handbook of Image and Video Processing
  doi: 10.1016/B978-012119792-6/50124-8
– ident: ref42
  doi: 10.1109/TMM.2017.2751966
– year: 2016
  ident: ref16
  article-title: Person re-identification: Past, present and future
  publication-title: arXiv 1610 02984
– ident: ref29
  doi: 10.1109/VETEC.1995.504941
– ident: ref40
  doi: 10.1109/ICCV.2015.133
– ident: ref7
  doi: 10.1109/ISIT.2019.8849334
– volume: 37
  start-page: 2184
  year: 2019
  ident: ref5
  article-title: Machine learning in the air
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2019.2933969
– ident: ref33
  doi: 10.1109/TIT.2019.2953750
– start-page: 869
  year: 2016
  ident: ref41
  article-title: A deep learning-based approach to progressive vehicle re-identification for urban surveillance
  publication-title: Vision Computer
– start-page: 671
  year: 2018
  ident: ref13
  article-title: JALAD: Joint accuracy-and latency-aware deep structure decoupling for edge-cloud execution
  publication-title: Proc IEEE 24th Int Conf Parallel Distrib Syst (ICPADS)
– ident: ref28
  doi: 10.1117/12.258246
– ident: ref24
  doi: 10.1109/CVPR.2018.00225
– ident: ref23
  doi: 10.1145/3240508.3240552
– ident: ref6
  doi: 10.1109/JPROC.2019.2941458
SSID ssj0014482
Score 2.7024684
Snippet We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Ablation
Artificial neural networks
Bandwidths
Deep learning
Feature extraction
Image coding
Image compression
Image edge detection
Image management
Image quality
Image retrieval
Image transmission
Internet of Things
joint source-channel coding
Performance evaluation
person re-identification
Servers
Task analysis
Wireless communication
Title Wireless Image Retrieval at the Edge
URI https://ieeexplore.ieee.org/document/9261169
https://www.proquest.com/docview/2470636882
Volume 39
WOSCitedRecordID wos000599495400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4kEPflWxWmUPPYlrdzebZHMspUVFivhFb0s2nYpQW2m3_n4n6XYpKIK3PSSwvCQz72UmMwAtlpDbC0bMDzSiH2Og_UQY42eayLUOw0y4ZMzXezkYJMOheqjAVfkWBhFd8hle208Xyx_NzNJelbUV0f1QqCpUpRSrt1plxIBkhosYSMZ8KwKKCGYYqPbdU6dLSjAigUr2WtlXfRs-yDVV-WGJnXvp7_3vx_Zht6CRXme17gdQwekh7GwUF6xDyya2TsiQebcfZDS8R9c7izaWp3OPaJ_XG73hEbz0e8_dG7_oieAbxkROGDItORqGTHOjBOeZZMpwzkUWkxohj6swIdqPMa2NHNk4G88MqQok8kazj6E2nU3xBDwkHc0jK0jCsUUvCbUWY66V7UJtRNaAYI1SaoqC4bZvxSR1wiFQqQU2tcCmBbANuCynfK6qZfw1uG6RLAcWIDaguV6KtDhPizSKJXEpQXLg9PdZZ7Ad2WwTdznShFo-X-I5bJmv_H0xv3Bb5RsjHrfO
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmqgHv9CIou6Bk3Fld7vtbo-EQECRGEXDbdMtgzFBMHz4-52WhZBoTLztoU02r-3Me53pDECZxeT2vD5zPYXohugpNxZau6kicq18PxU2GfO1HXU6ca8nH3Nws3oLg4g2-QxvzaeN5ffHem6uyiqS6L4v5AZs8jAMvMVrrVXMgISGjRlEjLlGBmQxTN-Tlbvnao20YEASlSy2NO_61ryQbavywxZbB9PY_9-vHcBeRiSd6mLlDyGHoyPYXSsvWICySW0dkilzWh9kNpwn2z2LtpajZg4RP6fef8NjeGnUu7Wmm3VFcDVjYkYoMhVx1AyZ4loKztOISc05F2lIeoR8rsSYiD-GtDpR30TaeKpJVyDRN5p9AvnReISn4CApaR4YSeIPDHqxr5QYcCVNH2ot0iJ4S5QSnZUMN50rhomVDp5MDLCJATbJgC3C9WrK56Jexl-DCwbJ1cAMxCKUlkuRZCdqmgRhRGxKkCA4-33WFWw3uw_tpN3q3J_DTmByT-xVSQnys8kcL2BLf83ep5NLu22-AeVwuxU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wireless+Image+Retrieval+at+the+Edge&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Jankowski%2C+Mikolaj&rft.au=Gunduz%2C+Deniz&rft.au=Mikolajczyk%2C+Krystian&rft.date=2021-01-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=39&rft.issue=1&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1109%2FJSAC.2020.3036955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2020_3036955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon