Computation of lattice isomorphisms and the integral matrix similarity problem

Let K be a number field, let A be a finite-dimensional K-algebra, let $\operatorname {\mathrm {J}}(A)$ denote the Jacobson radical of A and let $\Lambda $ be an $\mathcal {O}_{K}$ -order in A. Suppose that each simple component of the semisimple K-algebra $A/{\operatorname {\mathrm {J}}(A)}$ is isom...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Forum of Mathematics, Sigma Ročník 10
Hlavní autori: Bley, Werner, Hofmann, Tommy, Johnston, Henri
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.01.2022
Predmet:
ISSN:2050-5094, 2050-5094
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let K be a number field, let A be a finite-dimensional K-algebra, let $\operatorname {\mathrm {J}}(A)$ denote the Jacobson radical of A and let $\Lambda $ be an $\mathcal {O}_{K}$ -order in A. Suppose that each simple component of the semisimple K-algebra $A/{\operatorname {\mathrm {J}}(A)}$ is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two $\Lambda $ -lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism $X \rightarrow Y$ . This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices $A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$ , determine whether A and B are similar over $\mathcal {O}_{K}$ , and if so, return a matrix $C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$ such that $B= CAC^{-1}$ . We give explicit examples that show that the implementation of the latter algorithm for $\mathcal {O}_{K}=\mathbb {Z}$ vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2022.74