Kirchhoff’s theorem for Prym varieties

We prove an analogue of Kirchhoff’s matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel–Prym map. In pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of Mathematics, Sigma Jg. 10
Hauptverfasser: Len, Yoav, Zakharov, Dmitry
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.01.2022
Schlagworte:
ISSN:2050-5094, 2050-5094
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We prove an analogue of Kirchhoff’s matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel–Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition and prove that its global degree is $2^{g-1}$ . Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel–Prym map is $2^{g-1}$ as well.
AbstractList We prove an analogue of Kirchhoff’s matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel–Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition and prove that its global degree is $2^{g-1}$ . Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel–Prym map is $2^{g-1}$ as well.
We prove an analogue of Kirchhoff’s matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel–Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition and prove that its global degree is $2^{g-1}$. Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel–Prym map is $2^{g-1}$ as well.
ArticleNumber e11
Author Zakharov, Dmitry
Len, Yoav
Author_xml – sequence: 1
  givenname: Yoav
  orcidid: 0000-0002-4997-6659
  surname: Len
  fullname: Len, Yoav
  email: yoav.len@st-andrews.ac.uk
  organization: 1Mathematical Institute, University of St Andrews, St Andrews KY16 9SS, UK; E-mail: yoav.len@st-andrews.ac.uk
– sequence: 2
  givenname: Dmitry
  surname: Zakharov
  fullname: Zakharov, Dmitry
  email: dvzakharov@gmail.com
  organization: 2Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, USA; E-mail: dvzakharov@gmail.com
BookMark eNp1kM9Kw0AQhxepYK09-QIBL4Kk7p9spjlKsSoW9KDnZZPM2i1Ntu5uhd58DV_PJzGlBUX0NHP4fjM_vmPSa12LhJwyOmKUwaVpwohTzkYgD0ifU0lTSYus92M_IsMQFpRSxjhIgD45v7e-ms-dMZ_vHyGJc3Qem8Q4nzz6TZO8aW8xWgwn5NDoZcDhfg7I8_T6aXKbzh5u7iZXs7QSIo9pmYMQEjivtTRaFDXNYFwxgTXPxhlnRZYJ4BWUBWLXQQiDCCUzpmCgjcjFgJzt7q68e11jiGrh1r7tXiqe83EhuOSyoy52VOVdCB6NWnnbaL9RjKqtDdXZUFsbCrY0-0VXNupoXRu9tst_Muk-o5vS2_oFv4v8xX8BdIlyYg
CitedBy_id crossref_primary_10_1016_j_disc_2025_114631
crossref_primary_10_1007_s00026_024_00707_0
crossref_primary_10_1017_S0305004123000518
crossref_primary_10_5802_alco_410
Cites_doi 10.1142/S0129167X92000357
10.1090/S0002-9947-01-02746-5
10.1007/s11856-018-1698-9
10.4310/ARKIV.2020.v58.n1.a5
10.1007/BF01418373
10.1142/9789814503365_0009
10.1016/j.jpaa.2016.12.029
10.1007/978-3-319-06514-4_7
10.1017/fms.2014.25
10.1016/j.disc.2013.11.008
10.1007/BF02392458
10.1006/jctb.1998.1861
10.2140/pjm.2001.201.479
10.1007/s10801-010-0247-3
10.4310/ACTA.2017.v218.n1.a2
10.2307/1970801
10.1007/s00574-014-0076-4
10.1090/S0002-9939-1984-0759646-4
10.1016/j.laa.2021.07.009
10.1007/BF01472135
10.1007/s00029-017-0379-6
10.1016/j.aim.2007.04.012
10.1006/aima.2000.1917
10.1007/BF02698887
10.4171/JEMS/678
10.1090/conm/465/09104
10.1016/j.jcta.2012.07.011
10.1093/imrn/rnu168
10.1090/S0894-0347-1994-1254134-8
10.1006/aima.1996.0050
10.1090/conm/564/11147
10.1017/fms.2019.40
10.1016/0166-218X(82)90033-6
10.1007/s00208-018-1646-3
10.1017/S0004972700025053
10.1007/BF01390330
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
– notice: The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
DBID IKXGN
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1017/fms.2021.75
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Engineering Database

Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge Univ. Press Open Journals (Free internet resource, activated by CARLI)
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2050-5094
ExternalDocumentID 10_1017_fms_2021_75
GroupedDBID 09C
09E
0E1
0R~
5VS
8FE
8FG
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AANRG
AARAB
AASVR
ABBXD
ABDBF
ABGDZ
ABJCF
ABKKG
ABMWE
ABQTM
ABROB
ACBMC
ACGFS
ACIMK
ACIWK
ACREK
ACUIJ
ACUYZ
ACWGA
ACZBM
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADVJH
AEBAK
AEGXH
AEHGV
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
AUXHV
BBLKV
BCNDV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
DOHLZ
EBS
EJD
GROUPED_DOAJ
HCIFZ
HG-
HZ~
I.6
IKXGN
IOEEP
IPYYG
IS6
I~P
JHPGK
JQKCU
KCGVB
KFECR
KQ8
L6V
LW7
M-V
M48
M7S
M~E
NIKVX
O9-
OK1
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WXY
ZYDXJ
AAYXX
ABVKB
ABXHF
ACAJB
ACDLN
ACUHS
AFFHD
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c336t-b67335722da5fa39d0478c13ed248421944372c7b9ee12733fee7b1ff917af363
IEDL.DBID M7S
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755592700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-5094
IngestDate Fri Jul 25 11:56:35 EDT 2025
Tue Nov 18 22:22:01 EST 2025
Sat Nov 29 02:40:39 EST 2025
Wed Mar 13 06:06:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 14T05
14H40
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-b67335722da5fa39d0478c13ed248421944372c7b9ee12733fee7b1ff917af363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4997-6659
OpenAccessLink https://www.cambridge.org/core/product/identifier/S205050942100075X/type/journal_article
PQID 2628932525
PQPubID 2035935
PageCount 54
ParticipantIDs proquest_journals_2628932525
crossref_primary_10_1017_fms_2021_75
crossref_citationtrail_10_1017_fms_2021_75
cambridge_journals_10_1017_fms_2021_75
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Forum of Mathematics, Sigma
PublicationTitleAlternate Forum of Mathematics, Sigma
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2017; 218
2019; 7
2001; 201
2014; 318
1981; 146
2012
2018; 226
2002; 553
1986; 273
2011; 33
1977; 41
1996; 121
2000; 154
2013; 120
2014; 45
2018; 24
1982; 45
2001; 353
2018; 372
1991; 422
1976; 14
2007; 215
1984; 92
2014; 2
1986; 85
2020
1982; 4
1994; 79
2017; 19
1972; 95
1998; 74
2017; 221
2018; II
1992; 1
1992; 3
1994; 7
S205050942100075X_r35
Arbarello (S205050942100075X_r4) 1985; 267
S205050942100075X_r38
S205050942100075X_r39
Lim (S205050942100075X_r36) 2012
Deninger (S205050942100075X_r24) 1991; 422
Creech (S205050942100075X_r23) 2020
S205050942100075X_r41
S205050942100075X_r42
S205050942100075X_r43
S205050942100075X_r44
S205050942100075X_r45
S205050942100075X_r46
S205050942100075X_r47
S205050942100075X_r48
S205050942100075X_r49
Masiewicki (S205050942100075X_r37) 1976; 222
Birkenhake (S205050942100075X_r13) 2004; 302
Mumford (S205050942100075X_r40) 1974
S205050942100075X_r50
S205050942100075X_r53
S205050942100075X_r10
S205050942100075X_r54
S205050942100075X_r55
S205050942100075X_r12
S205050942100075X_r56
S205050942100075X_r14
S205050942100075X_r15
S205050942100075X_r17
S205050942100075X_r19
Beauville (S205050942100075X_r11) 1982; 45
Eisenbud (S205050942100075X_r26) 1992; 1
S205050942100075X_r3
S205050942100075X_r5
S205050942100075X_r1
S205050942100075X_r6
S205050942100075X_r20
S205050942100075X_r7
Caporaso (S205050942100075X_r16) 2018; II
S205050942100075X_r21
S205050942100075X_r8
S205050942100075X_r22
S205050942100075X_r9
S205050942100075X_r25
S205050942100075X_r27
S205050942100075X_r28
S205050942100075X_r29
Terras (S205050942100075X_r51) 2010; 51
Vologodsky (S205050942100075X_r52) 2002; 553
Alexeev (S205050942100075X_r2) 2002; 553
S205050942100075X_r30
Christ (S205050942100075X_r18) 2018
S205050942100075X_r31
S205050942100075X_r32
S205050942100075X_r33
S205050942100075X_r34
References_xml – volume: 372
  start-page: 891
  issue: 3–4
  year: 2018
  end-page: 914
  article-title: Non-Archimedean and tropical theta functions
  publication-title: Math. Ann
– year: 2020
  article-title: Prym–Brill–Noether loci of special curves
  publication-title: Int. Math. Res. Not. IMRN
– volume: 7
  start-page: 589
  issue: 3
  year: 1994
  end-page: 660
  article-title: A compactification of the universal Picard variety over the moduli space of stable curves
  publication-title: J. Amer. Math. Soc
– volume: 422
  start-page: 201
  year: 1991
  end-page: 219
  article-title: Motivic decomposition of abelian schemes and the Fourier transform
  publication-title: J. Reine Angew. Math
– volume: 45
  start-page: 357
  issue: 3
  year: 1982
  end-page: 383
  article-title: Sous-variétés spéciales des variétés de Prym
  publication-title: Compos. Math
– volume: 24
  start-page: 1391
  issue: 2
  year: 2018
  end-page: 1410
  article-title: Tropicalization of theta characteristics, double covers, and Prym varieties
  publication-title: Selecta Math. (N.S.)
– volume: 3
  start-page: 717
  issue: 06
  year: 1992
  end-page: 797
  article-title: The Ihara-Selberg zeta function of a tree lattice
  publication-title: Int. J. Math
– volume: 1
  start-page: 15
  issue: 1
  year: 1992
  end-page: 30
  article-title: Finite projective schemes in linearly general position
  publication-title: J. Algebraic Geom
– volume: 79
  start-page: 47
  year: 1994
  end-page: 129
  article-title: Moduli of representations of the fundamental group of a smooth projective variety, I
  publication-title: Inst. Hautes Études Sci. Publ. Math
– volume: 318
  start-page: 10
  year: 2014
  end-page: 40
  article-title: Critical groups of covering, voltage and signed graphs
  publication-title: Discrete Math
– volume: 2
  year: 2014
  article-title: Canonical representatives for divisor classes on tropical curves and the matrix–tree theorem
  publication-title: Forum Math. Sigma
– volume: II
  start-page: 635
  year: 2018
  end-page: 652
  article-title: Recursive combinatorial aspects of compactified moduli spaces
  publication-title: Proceedings of the International Congress of Mathematicians (ICM 2018)
– volume: 45
  start-page: 807
  issue: 4
  year: 2014
  end-page: 818
  article-title: A simple characteristic-free proof of the Brill–Noether theorem
  publication-title: Bull. Braz. Math. Soc. (N.S.)
– volume: 7
  year: 2019
  article-title: Geometric bijections for regular matroids, zonotopes and Ehrhart theory
  publication-title: Forum Math. Sigma
– volume: 92
  start-page: 329
  issue: 3
  year: 1984
  end-page: 331
  article-title: A new proof of the Ran-Matsusaka criterion for Jacobians
  publication-title: Proc. Amer. Math. Soc
– volume: 74
  start-page: 408
  issue: 2
  year: 1998
  end-page: 410
  article-title: A note on the zeta function of a graph
  publication-title: J. Combin. Theory Ser. B
– volume: 553
  start-page: 117
  year: 2002
  end-page: 124
  article-title: Locus of indeterminacy of the Prym map
  publication-title: J. Reine Angew. Math
– volume: 33
  start-page: 349
  issue: 3
  year: 2011
  end-page: 381
  article-title: Metric properties of the tropical Abel-Jacobi map
  publication-title: J. Algebraic Combin
– volume: 553
  start-page: 73
  year: 2002
  end-page: 116
  article-title: Degenerations of Prym varieties
  publication-title: J. Reine Angew. Math
– volume: 4
  start-page: 47
  issue: 1
  year: 1982
  end-page: 74
  article-title: Signed graphs
  publication-title: Discrete Appl. Math
– volume: 85
  start-page: 615
  year: 1986
  end-page: 635
  article-title: Degenerations of Prym varieties and intersections of three quadrics
  publication-title: Invent. Math
– volume: 221
  start-page: 2420
  issue: 10
  year: 2017
  end-page: 2430
  article-title: Brill–Noether theory for cyclic covers
  publication-title: J. Pure Appl. Algebra
– volume: 154
  start-page: 132
  issue: 1
  year: 2000
  end-page: 195
  article-title: Zeta functions of finite graphs and coverings, part II
  publication-title: Adv. Math
– volume: 95
  start-page: 281
  issue: 2
  year: 1972
  end-page: 356
  article-title: The intermediate Jacobian of the cubic threefold
  publication-title: Ann. Math
– start-page: 5408
  issue: 23
  year: 2012
  end-page: 5504
  article-title: A note on Brill-Noether theory and rank determining sets for metric graphs
  publication-title: Int. Math. Res. Not. IMRN
– volume: 120
  start-page: 164
  issue: 1
  year: 2013
  end-page: 182
  article-title: Chip-firing games, potential theory on graphs, and spanning trees
  publication-title: J. Combin. Theory Ser. A
– volume: 353
  start-page: 3045
  issue: 8
  year: 2001
  end-page: 3095
  article-title: Compactifying the relative Jacobian over families of reduced curves
  publication-title: Trans. Amer. Math. Soc
– volume: 226
  start-page: 351
  year: 2018
  end-page: 385
  article-title: Enumerative geometry of elliptic curves on toric surfaces
  publication-title: Isr. J. Math
– volume: 218
  start-page: 55
  issue: 1
  year: 2017
  end-page: 135
  article-title: A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold
  publication-title: Acta Math
– volume: 41
  start-page: 149
  issue: 2
  year: 1977
  end-page: 196
  article-title: Prym varieties and the Schottky problem
  publication-title: Invent. Math
– volume: 14
  start-page: 233
  issue: 2
  year: 1976
  end-page: 248
  article-title: Double covers of graphs
  publication-title: Bull. Aust. Math. Soc
– volume: 146
  start-page: 25
  issue: 1–2
  year: 1981
  end-page: 102
  article-title: The structure of the Prym map
  publication-title: Acta Math
– volume: 19
  start-page: 659
  year: 2017
  end-page: 723
  article-title: Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties
  publication-title: J. Eur. Math. Soc
– volume: 215
  start-page: 766
  issue: 2
  year: 2007
  end-page: 788
  article-title: Riemann–Roch and Abel–Jacobi theory on a finite graph
  publication-title: Adv. Math
– volume: 273
  start-page: 647
  issue: 4
  year: 1986
  end-page: 651
  article-title: Sur l’anneau de Chow d’une variété abélienne
  publication-title: Math. Ann
– volume: 121
  start-page: 124
  issue: 1
  year: 1996
  end-page: 165
  article-title: Zeta functions of finite graphs and coverings
  publication-title: Adv. Math
– volume: 201
  start-page: 479
  issue: 2
  year: 2001
  end-page: 509
  article-title: A Riemann singularities theorem for Prym theta divisors, with applications
  publication-title: Pacific J. Math
– ident: S205050942100075X_r9
  doi: 10.1142/S0129167X92000357
– ident: S205050942100075X_r27
  doi: 10.1090/S0002-9947-01-02746-5
– ident: S205050942100075X_r33
  doi: 10.1007/s11856-018-1698-9
– ident: S205050942100075X_r20
  doi: 10.4310/ARKIV.2020.v58.n1.a5
– ident: S205050942100075X_r10
  doi: 10.1007/BF01418373
– ident: S205050942100075X_r47
  doi: 10.1142/9789814503365_0009
– ident: S205050942100075X_r14
– ident: S205050942100075X_r45
  doi: 10.1016/j.jpaa.2016.12.029
– ident: S205050942100075X_r39
  doi: 10.1007/978-3-319-06514-4_7
– ident: S205050942100075X_r54
  doi: 10.1017/fms.2014.25
– ident: S205050942100075X_r43
  doi: 10.1016/j.disc.2013.11.008
– ident: S205050942100075X_r25
  doi: 10.1007/BF02392458
– ident: S205050942100075X_r41
  doi: 10.1006/jctb.1998.1861
– ident: S205050942100075X_r48
  doi: 10.2140/pjm.2001.201.479
– ident: S205050942100075X_r5
  doi: 10.1007/s10801-010-0247-3
– ident: S205050942100075X_r32
  doi: 10.4310/ACTA.2017.v218.n1.a2
– ident: S205050942100075X_r21
  doi: 10.2307/1970801
– ident: S205050942100075X_r42
  doi: 10.1007/s00574-014-0076-4
– volume: 267
  volume-title: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
  year: 1985
  ident: S205050942100075X_r4
– ident: S205050942100075X_r30
– ident: S205050942100075X_r22
  doi: 10.1090/S0002-9939-1984-0759646-4
– ident: S205050942100075X_r1
– volume: 45
  start-page: 357
  year: 1982
  ident: S205050942100075X_r11
  article-title: Sous-variétés spéciales des variétés de Prym
  publication-title: Compos. Math
– volume: 1
  start-page: 15
  year: 1992
  ident: S205050942100075X_r26
  article-title: Finite projective schemes in linearly general position
  publication-title: J. Algebraic Geom
– ident: S205050942100075X_r55
  doi: 10.1016/j.laa.2021.07.009
– ident: S205050942100075X_r34
– volume-title: Orientations, Break Divisors and Compactified Jacobians
  year: 2018
  ident: S205050942100075X_r18
– ident: S205050942100075X_r12
  doi: 10.1007/BF01472135
– ident: S205050942100075X_r31
  doi: 10.1007/s00029-017-0379-6
– ident: S205050942100075X_r6
  doi: 10.1016/j.aim.2007.04.012
– volume: II
  start-page: 635
  year: 2018
  ident: S205050942100075X_r16
  article-title: Recursive combinatorial aspects of compactified moduli spaces
  publication-title: Proceedings of the International Congress of Mathematicians (ICM 2018)
– start-page: 325
  volume-title: Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers)
  year: 1974
  ident: S205050942100075X_r40
– volume: 553
  start-page: 73
  year: 2002
  ident: S205050942100075X_r2
  article-title: Degenerations of Prym varieties
  publication-title: J. Reine Angew. Math
– volume: 553
  start-page: 117
  year: 2002
  ident: S205050942100075X_r52
  article-title: Locus of indeterminacy of the Prym map
  publication-title: J. Reine Angew. Math
– volume: 422
  start-page: 201
  year: 1991
  ident: S205050942100075X_r24
  article-title: Motivic decomposition of abelian schemes and the Fourier transform
  publication-title: J. Reine Angew. Math
– ident: S205050942100075X_r50
  doi: 10.1006/aima.2000.1917
– volume: 51
  start-page: 177
  year: 2010
  ident: S205050942100075X_r51
– ident: S205050942100075X_r46
  doi: 10.1007/BF02698887
– ident: S205050942100075X_r35
– volume: 302
  volume-title: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
  year: 2004
  ident: S205050942100075X_r13
– start-page: 5408
  year: 2012
  ident: S205050942100075X_r36
  article-title: A note on Brill-Noether theory and rank determining sets for metric graphs
  publication-title: Int. Math. Res. Not. IMRN
– ident: S205050942100075X_r17
  doi: 10.4171/JEMS/678
– ident: S205050942100075X_r38
  doi: 10.1090/conm/465/09104
– ident: S205050942100075X_r8
  doi: 10.1016/j.jcta.2012.07.011
– ident: S205050942100075X_r7
  doi: 10.1093/imrn/rnu168
– ident: S205050942100075X_r15
  doi: 10.1090/S0894-0347-1994-1254134-8
– ident: S205050942100075X_r49
  doi: 10.1006/aima.1996.0050
– ident: S205050942100075X_r3
  doi: 10.1090/conm/564/11147
– ident: S205050942100075X_r44
  doi: 10.1017/fms.2019.40
– year: 2020
  ident: S205050942100075X_r23
  article-title: Prym–Brill–Noether loci of special curves
  publication-title: Int. Math. Res. Not. IMRN
– ident: S205050942100075X_r56
  doi: 10.1016/0166-218X(82)90033-6
– ident: S205050942100075X_r28
  doi: 10.1007/s00208-018-1646-3
– ident: S205050942100075X_r53
  doi: 10.1017/S0004972700025053
– volume: 222
  start-page: 221
  volume-title: ‘Universal properties of Prym varieties with an application to algebraic curves of genus five’,
  year: 1976
  ident: S205050942100075X_r37
– ident: S205050942100075X_r29
  doi: 10.1007/BF01390330
– ident: S205050942100075X_r19
SSID ssj0001127577
Score 2.2650802
Snippet We prove an analogue of Kirchhoff’s matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algebra
Algebraic and Complex Geometry
Decomposition
Graphs
Theorems
Trees
SummonAdditionalLinks – databaseName: Cambridge University Press Wholly Gold Open Access Journals
  dbid: IKXGN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5q60EPvsVqlRyKiBDD7jbZ7FHEqhRLQYXcQrIPLNgHSS1482_49_wl7ibbFKEHL17DQCYzu5lvdme-AWhzQX2chtKloZRuR4Xc1bgZuZwEGkAnOocWSTFsgvb7YRSxQQ2iRS-MKausOA6Km_xiPtq0pD_1hqKsoZGZ94TNEDadnWBUBL7IM4eWnnVBbA2_Bg2NYDCuQ-OhF931l-cvhtmcUtuyZ1ik1cjQd2N0ZWoOl0QLvwPW7_91EYS62_-n_g5sWWDqXJdPdqEmx3uw-Vixuub7cNEb6l3xOlHq-_Mrd8oeyJGjYa8zyD5Gztzk3Yag9QBeurfPN_eunbSgfUKCmZsGlBCfYiwSXyWECcPZwxGRAndCrSHrmOs9TlMmpbYbIUpKmiKldLKXKBKQQ6iPJ2N5BE6aJgwJJRRSGhzo9eGzgHHEGOcpCThtwnlloNh-bR6XtWZU76w8Nj6Iqd-Ey4XdY275ys3YjLfVwu1KeFrSdKwWay0cuHw3DnTSSbCP_eO_6nYCG9i0QRRHMS2oz7J3eQrrfD4b5tmZXWo_xvbnlA
  priority: 102
  providerName: Cambridge University Press
Title Kirchhoff’s theorem for Prym varieties
URI https://www.cambridge.org/core/product/identifier/S205050942100075X/type/journal_article
https://www.proquest.com/docview/2628932525
Volume 10
WOSCitedRecordID wos000755592700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge Univ. Press Open Journals (Free internet resource, activated by CARLI)
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: IKXGN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: M7S
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609aAH32K1lhyKiBAlu0k2exKVVqUYig_oLST7wIJ92NSCF_Fv-Pf8Je4k24ZC8eIlEDKQMDOZ1858g1CdC-rhJJA2DaS0XRVwW8fNjs2JrwPoWOfQIs6WTdAwDDod1jYFt9S0VU5tYmaoxYBDjfwc-zo1INjD3sXwzYatUXC6alZoLKMyoCTgrHXvsaixAHo5pWYsD5CiVQ8gurFzBn2FBZjCvFOat8mZo2lu_PcTN9G6CTGty1wnttCS7G-jtfsZPmu6g05aXa3fLwOlfr6-UyufZuxZOoC12qOPnjWBDBqgVnfRc7PxdH1rm50JmrvEH9uJTwnxKMYi9lRMmAD0He4QKbAbuNo8uXBQx2nCpNTcIURJSRNHKZ22xYr4ZA-V-oO-3EdWksTMEUooR2k3ryXtMZ9xhzHOE-JzWkHHMwZGRvPTKO8ao_ofSSPgdES9CjqdcjfiBnkcFmC8Liauz4iHOeDGYrLqVAbFuwsBHPz9-BCtYhhjyEopVVQaj97lEVrhk3E3HdVQ-aoRth9qWX6u7-5anZuwlqkWXD8bvwrU1q8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qFdSDb7FaNYcqIkTJbpLNHkRELS19ULBCbzHZ7GLBPmxqpTf_hn_CH-UvcTePFqF468FzhuyyMzuvnfkGoMACYiHf4TpxONdN4TBd-s2GzrAtHWhPxtCBFw2bIPW602rRRga-0l4YVVaZ6sRIUQc9pnLkl8iWoQFGFrKu-6-6mhqlXlfTERqxWFT4-F2GbOFV-U7y9wSh4n3ztqQnUwXk-tge6r5NMLYIQoFnCQ_TQOHTMAPzAJmOKS-wqZ6yGPEp54Y07lhwTnxDCBnYeALbWP53ARZNpf2jUsGHaU5HoaUTkrQBKmRq0VGQ4Mi4UHWMU_CG30bwtw2IDFtx_b8dyQasJS60dhPL_CZkeHcLVmsT_NlwG84qbbmr554Q3x-foRZ3a3Y06aBrjcG4o41UhkBBye7A41y2ugvZbq_L90DzfY8agQiEIaQbIyXZojZlBqWM-dhmJAenE4a5yc0O3bgqjkgdELqKsy6xcnCectNlCbK6GvDxMpu4MCHux4Ais8nyKc-na08Zvv_352NYLjVrVbdarlcOYAWplo0obZSH7HDwxg9hiY2G7XBwFAmwBk_zFo8fkhQsaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kirchhoff%E2%80%99s+theorem+for+Prym+varieties&rft.jtitle=Forum+of+mathematics.+Sigma&rft.au=Len%2C+Yoav&rft.au=Zakharov%2C+Dmitry&rft.date=2022-01-01&rft.pub=Cambridge+University+Press&rft.eissn=2050-5094&rft.volume=10&rft_id=info:doi/10.1017%2Ffms.2021.75
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5094&client=summon