A highly sensitive and selective fluorescent chemosensor for the sequential recognition of Zn2+ and S2− in living cells and aqueous media
A new highly selective chemosensor 1 (E)-5-((2-hydroxybenzylidene)amino)-1H-imidazole-4-carboxamide was designed and synthesized for the sequential recognition of Zn2+ and S2− in a near-perfect aqueous media. The sensor 1 exhibited a green color fluorescence in the presence of Zn2+. The detection li...
Saved in:
| Published in: | Sensors and actuators. B, Chemical Vol. 255; pp. 3108 - 3116 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.02.2018
|
| Subjects: | |
| ISSN: | 0925-4005, 1873-3077 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A new highly selective chemosensor 1 (E)-5-((2-hydroxybenzylidene)amino)-1H-imidazole-4-carboxamide was designed and synthesized for the sequential recognition of Zn2+ and S2− in a near-perfect aqueous media. The sensor 1 exhibited a green color fluorescence in the presence of Zn2+. The detection limit (1.18μM) of 1 for Zn2+ is much lower than World Health Organization guideline (76μM) in drinking water. 1 can detect and quantify Zn2+ in real water samples and the sensing mechanism of Zn2+ by 1 was explained by DFT calculations. Moreover, resulting 1-Zn2+ complex can detect hydrogen sulfide through turn-off fluorescent change, without any anion interference. The detection limit (2.60μM) of 1-Zn2+ complex for S2− was much lower than EPA guideline (7.8mM) by odor in drinking water. Furthermore, sensor 1 could detect sequentially Zn2+ and S2− in living cells. |
|---|---|
| ISSN: | 0925-4005 1873-3077 |
| DOI: | 10.1016/j.snb.2017.09.136 |