An improvement in RBF learning algorithm based on PSO for real time applications

Radial basis function (RBF) neural networks have been broadly used for classification and interpolation regression. So the idea for trying to develop new learning algorithms for getting better performance of RBF neural networks is an interesting subject. This paper presents a new learning method for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 111; s. 169 - 176
Hlavní autori: Fathi, Vahid, Montazer, Gholam Ali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 02.07.2013
Elsevier
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Radial basis function (RBF) neural networks have been broadly used for classification and interpolation regression. So the idea for trying to develop new learning algorithms for getting better performance of RBF neural networks is an interesting subject. This paper presents a new learning method for RBF neural networks. A novel Particle Swarm Optimization (PSO) has been applied in the proposed method to optimize the Optimum Steepest Decent (OSD) algorithm. The OSD algorithm could be used in applications where need real-time capabilities for retraining neural networks. To initialize the RBF units more accurately, the new approach based on PSO has been developed and compared with a Conventional PSO clustering algorithm. The obtained results have shown better and same network response in fewer train iterations which is essential for fast retraining of the network. The PSO–OSD and Three-phased OSD algorithms have been applied on five benchmark problems and the results have been compared. Finally, employing the proposed method in a real-time problem has shown interesting outcomes as have come out in this paper.
AbstractList Radial basis function (RBF) neural networks have been broadly used for classification and interpolation regression. So the idea for trying to develop new learning algorithms for getting better performance of RBF neural networks is an interesting subject. This paper presents a new learning method for RBF neural networks. A novel Particle Swarm Optimization (PSO) has been applied in the proposed method to optimize the Optimum Steepest Decent (OSD) algorithm. The OSD algorithm could be used in applications where need real-time capabilities for retraining neural networks. To initialize the RBF units more accurately, the new approach based on PSO has been developed and compared with a Conventional PSO clustering algorithm. The obtained results have shown better and same network response in fewer train iterations which is essential for fast retraining of the network. The PSO–OSD and Three-phased OSD algorithms have been applied on five benchmark problems and the results have been compared. Finally, employing the proposed method in a real-time problem has shown interesting outcomes as have come out in this paper.
Author Montazer, Gholam Ali
Fathi, Vahid
Author_xml – sequence: 1
  givenname: Vahid
  surname: Fathi
  fullname: Fathi, Vahid
  email: v.fathi@modares.ac.ir
– sequence: 2
  givenname: Gholam Ali
  surname: Montazer
  fullname: Montazer, Gholam Ali
  email: montazer@modares.ac.ir
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27322334$$DView record in Pascal Francis
BookMark eNqFkEtLAzEUhYNUsK3-AxfZuJyaxzw6LoRarApCi491uM3c1JSZZEjGgv_eqRUXLhQO3M35DtxvRAbOOyTknLMJZzy_3E4cvmvfTATjYtKHifSIDPm0EMlUTPMBGbJSZImQXJyQUYxbxnjBRTkkq5mjtmmD32GDrqPW0aebBa0RgrNuQ6He-GC7t4auIWJFvaOr5yU1PtCAUNPONkihbWurobPexVNybKCOePZ9x-R1cfsyv08el3cP89ljoqXMuwQqNIbJgrPClIZlZZaKAniKDIADq4pcZtkakU-N1iI3nOUVW5sqL_NMmqySY3Jx2G0haqhNAKdtVG2wDYQPJQophJRp30sPPR18jAHNT4UztbentupgT-3tqT69vR67-oVp23192AWw9X_w9QHGXsDOYlBRW3QaKxtQd6ry9u-BTzdij6E
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3454296
crossref_primary_10_1016_j_neucom_2014_11_003
crossref_primary_10_1007_s11063_017_9614_6
crossref_primary_10_1016_j_asoc_2014_12_015
crossref_primary_10_1109_TCYB_2017_2764744
crossref_primary_10_1007_s11063_014_9404_3
crossref_primary_10_1016_j_asoc_2016_08_032
crossref_primary_10_1016_j_ijleo_2016_05_145
crossref_primary_10_1016_j_ymssp_2017_12_026
crossref_primary_10_1155_2015_129361
crossref_primary_10_1002_ep_12448
crossref_primary_10_1080_02726351_2022_2158970
crossref_primary_10_1155_2014_907386
crossref_primary_10_3390_jmse11071381
crossref_primary_10_3390_ai3030044
crossref_primary_10_3103_S1060992X18030062
crossref_primary_10_1016_j_imu_2016_12_001
crossref_primary_10_1016_j_neucom_2015_08_083
crossref_primary_10_1155_2019_6571092
crossref_primary_10_3389_fenvs_2023_1177891
crossref_primary_10_1016_j_advengsoft_2014_12_004
crossref_primary_10_1098_rsos_180529
crossref_primary_10_1016_j_neunet_2019_03_007
crossref_primary_10_3103_S1060992X19040088
crossref_primary_10_1007_s11063_025_11768_4
crossref_primary_10_1016_j_amc_2015_04_067
crossref_primary_10_1109_TIE_2018_2835402
crossref_primary_10_1016_j_neucom_2015_05_104
crossref_primary_10_1016_j_isatra_2017_10_001
crossref_primary_10_1007_s10064_015_0804_z
crossref_primary_10_1016_j_comcom_2018_09_007
crossref_primary_10_1109_TCSII_2019_2895343
crossref_primary_10_1016_j_neucom_2015_01_028
crossref_primary_10_1371_journal_pone_0196871
crossref_primary_10_1016_j_marstruc_2022_103181
crossref_primary_10_1007_s10846_014_0152_4
crossref_primary_10_3390_en11040860
crossref_primary_10_1007_s10044_020_00868_7
crossref_primary_10_1016_j_procs_2018_10_398
crossref_primary_10_1109_TNNLS_2016_2616413
crossref_primary_10_1016_j_neucom_2014_07_017
crossref_primary_10_1016_j_jobe_2017_08_008
crossref_primary_10_3233_IDA_163392
crossref_primary_10_1007_s11768_024_00196_9
crossref_primary_10_3390_ai4040054
crossref_primary_10_3390_math11010242
Cites_doi 10.1007/BF01385607
10.1109/ICSMC.1997.637339
10.1109/5.58326
10.1162/neco.1989.1.2.281
10.1109/CEC.2003.1299577
10.1016/S0893-6080(01)00027-2
10.1109/PGEC.1965.264137
10.1016/j.neucom.2008.05.011
10.1016/j.future.2004.03.013
10.1162/neco.1991.3.4.579
10.1109/TCST.2004.841648
10.1142/S0129065700000223
10.1016/S0168-9274(02)00237-4
10.1016/j.neucom.2007.08.002
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.neucom.2012.12.024
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-8286
EndPage 176
ExternalDocumentID 27322334
10_1016_j_neucom_2012_12_024
S0925231213000611
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-adeff037107f9f0595427a14e0aa1a0d76355bee18fcc26f106d0bfd69653f5d3
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319248000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Mon Jul 21 09:16:52 EDT 2025
Sat Nov 29 08:01:42 EST 2025
Tue Nov 18 22:38:26 EST 2025
Fri Feb 23 02:27:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimum Steepest Descent (OSD)
Three-phase OSD
PSO–OSD
Radial basis function (RBF)
Neural network
Particle Swarm Optimization (PSO)
Capability index
Steepest descent method
Cluster
Real time
Particle swarm optimization
Radial basis function
Classification
Swarm intelligence
PSO-OSD
Learning algorithm
Artificial intelligence
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-adeff037107f9f0595427a14e0aa1a0d76355bee18fcc26f106d0bfd69653f5d3
PageCount 8
ParticipantIDs pascalfrancis_primary_27322334
crossref_primary_10_1016_j_neucom_2012_12_024
crossref_citationtrail_10_1016_j_neucom_2012_12_024
elsevier_sciencedirect_doi_10_1016_j_neucom_2012_12_024
PublicationCentury 2000
PublicationDate 2013-07-02
PublicationDateYYYYMMDD 2013-07-02
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-02
  day: 02
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tan, Tang (bib8) 2005; 13
Montazer, Sabzevari, Ghorbani (bib16) 2009; 72
T. Mu, Detection of breast cancer using v-SVM and RBF networks with self organized selection of centers, vol. 2005, 2005, pp. 47–52.
Powell (bib2) 1987
L. Prechelt, PROBEN 1: a set of benchmarks and benchmarking rules for neural network training algorithms, Universität Fakultät für Informatik, 1994.
Broomhead, Lowe (bib1) 1988
Neruda, Kudovà (bib5) 2005; 21
Orr, Hallam, Murray, Leonard (bib11) 2000; 10
Moody, Darken (bib4) 2011; 1
Leishman (bib25) 2006
Montazer, Sabzevari, Khatir (bib15) 2007; 71
Bishop (bib22) 1995
Schwenker, Kestler, Palm (bib23) 2001; 14
(accessed 25.09.12).
Cancelliere, Gai (bib14) 2003; 45
Bishop (bib7) 1991; 3
Chen (bib13) 2007; vol. 4493
D.W. van der Merwe, A.P. Engelbrecht, Data clustering using particle swarm optimization, in: Proceedings of the 2003 Congress on Evolutionary Computation, CEC ′03, vol. 1, 2003, pp. 215–220.
Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1998, pp. 69–73.
Lin, Liou (bib12) 2007; vol. 4669
Eberhart, Shi, Kennedy (bib17) 2001
Cover (bib21) 1965; EC-14
J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108.
S. Chen, S.A. Billings, C.F.N. Cowan, P.M. Grant, Practical identification of NARMAX models using radial basis functions, 1990. Available from
Dyn, Micchelli (bib3) 1990; 58
Poggio, Girosi (bib6) 1990; 78
Broomhead (10.1016/j.neucom.2012.12.024_bib1) 1988
Powell (10.1016/j.neucom.2012.12.024_bib2) 1987
Cover (10.1016/j.neucom.2012.12.024_bib21) 1965; EC-14
Chen (10.1016/j.neucom.2012.12.024_bib13) 2007; vol. 4493
10.1016/j.neucom.2012.12.024_bib10
Poggio (10.1016/j.neucom.2012.12.024_bib6) 1990; 78
Bishop (10.1016/j.neucom.2012.12.024_bib7) 1991; 3
10.1016/j.neucom.2012.12.024_bib19
10.1016/j.neucom.2012.12.024_bib18
Cancelliere (10.1016/j.neucom.2012.12.024_bib14) 2003; 45
10.1016/j.neucom.2012.12.024_bib9
Moody (10.1016/j.neucom.2012.12.024_bib4) 2011; 1
Neruda (10.1016/j.neucom.2012.12.024_bib5) 2005; 21
Dyn (10.1016/j.neucom.2012.12.024_bib3) 1990; 58
10.1016/j.neucom.2012.12.024_bib24
10.1016/j.neucom.2012.12.024_bib20
Tan (10.1016/j.neucom.2012.12.024_bib8) 2005; 13
Schwenker (10.1016/j.neucom.2012.12.024_bib23) 2001; 14
Eberhart (10.1016/j.neucom.2012.12.024_bib17) 2001
Leishman (10.1016/j.neucom.2012.12.024_bib25) 2006
Orr (10.1016/j.neucom.2012.12.024_bib11) 2000; 10
Montazer (10.1016/j.neucom.2012.12.024_bib15) 2007; 71
Montazer (10.1016/j.neucom.2012.12.024_bib16) 2009; 72
Lin (10.1016/j.neucom.2012.12.024_bib12) 2007; vol. 4669
Bishop (10.1016/j.neucom.2012.12.024_bib22) 1995
References_xml – reference: T. Mu, Detection of breast cancer using v-SVM and RBF networks with self organized selection of centers, vol. 2005, 2005, pp. 47–52.
– reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1998, pp. 69–73.
– year: 2001
  ident: bib17
  article-title: Swarm Intelligence
– volume: 3
  start-page: 579
  year: 1991
  end-page: 588
  ident: bib7
  article-title: Improving the generalization properties of radial basis function neural networks
  publication-title: Neural Comput.
– volume: 72
  start-page: 1797
  year: 2009
  end-page: 1802
  ident: bib16
  article-title: Three-phase strategy for the OSD learning method in RBF neural networks
  publication-title: Neurocomputing
– volume: 58
  start-page: 1
  year: 1990
  end-page: 9
  ident: bib3
  article-title: Interpolation by sums of radial functions
  publication-title: Numer. Math.
– volume: 45
  start-page: 87
  year: 2003
  end-page: 98
  ident: bib14
  article-title: A comparative analysis of neural network performances in astronomical imaging
  publication-title: Appl. Numer. Math.
– reference: D.W. van der Merwe, A.P. Engelbrecht, Data clustering using particle swarm optimization, in: Proceedings of the 2003 Congress on Evolutionary Computation, CEC ′03, vol. 1, 2003, pp. 215–220.
– year: 1995
  ident: bib22
  article-title: Neural Networks for Pattern Recognition
– volume: vol. 4493
  year: 2007
  ident: bib13
  article-title: Deformation measurement of the large flexible surface by improved RBFNN algorithm and BPNN algorithm
  publication-title: Advances in Neural Networks—ISNN
– volume: 21
  start-page: 1131
  year: 2005
  end-page: 1142
  ident: bib5
  article-title: Learning methods for radial basis function networks
  publication-title: Future Gener. Comput. Syst.
– year: 2006
  ident: bib25
  article-title: Principles of Helicopter Aerodynamics
– year: 1988
  ident: bib1
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
  publication-title: R. Signals Radar Establ.
– reference: J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108.
– year: 1987
  ident: bib2
  article-title: Radial basis functions for multivariable interpolation: A review
  publication-title: Algorithms for Approximation
– volume: 78
  start-page: 1481
  year: 1990
  end-page: 1497
  ident: bib6
  article-title: Networks for approximation and learning
  publication-title: Proc. IEEE
– volume: 1
  start-page: 281
  year: 2011
  end-page: 294
  ident: bib4
  article-title: Fast learning in networks of locally-tuned processing units
  publication-title: Neural Comput.
– volume: 10
  start-page: 397
  year: 2000
  end-page: 415
  ident: bib11
  article-title: Assessing RBF networks using DELVE
  publication-title: Int. J. Neural Syst.
– volume: EC-14
  start-page: 326
  year: 1965
  end-page: 334
  ident: bib21
  article-title: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
  publication-title: IEEE Trans. Electron. Comput.
– volume: 14
  start-page: 439
  year: 2001
  end-page: 458
  ident: bib23
  article-title: Three learning phases for radial-basis-function networks
  publication-title: Neural Networks
– volume: vol. 4669
  year: 2007
  ident: bib12
  article-title: Least-mean-square training of cluster-weighted modeling
  publication-title: Artificial Neural Networks—ICANN
– volume: 71
  start-page: 167
  year: 2007
  end-page: 173
  ident: bib15
  article-title: Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system
  publication-title: Neurocomputing
– reference: S. Chen, S.A. Billings, C.F.N. Cowan, P.M. Grant, Practical identification of NARMAX models using radial basis functions, 1990. Available from:
– volume: 13
  start-page: 370
  year: 2005
  end-page: 377
  ident: bib8
  article-title: Adaptive online correction and interpolation of quadrature encoder signals using radial basis functions
  publication-title: IEEE Trans. Control Syst. Technol.
– reference: L. Prechelt, PROBEN 1: a set of benchmarks and benchmarking rules for neural network training algorithms, Universität Fakultät für Informatik, 1994.
– reference: . (accessed 25.09.12).
– volume: 58
  start-page: 1
  year: 1990
  ident: 10.1016/j.neucom.2012.12.024_bib3
  article-title: Interpolation by sums of radial functions
  publication-title: Numer. Math.
  doi: 10.1007/BF01385607
– ident: 10.1016/j.neucom.2012.12.024_bib18
  doi: 10.1109/ICSMC.1997.637339
– volume: 78
  start-page: 1481
  issue: 9
  year: 1990
  ident: 10.1016/j.neucom.2012.12.024_bib6
  article-title: Networks for approximation and learning
  publication-title: Proc. IEEE
  doi: 10.1109/5.58326
– year: 1988
  ident: 10.1016/j.neucom.2012.12.024_bib1
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
  publication-title: R. Signals Radar Establ.
– volume: 1
  start-page: 281
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2012.12.024_bib4
  article-title: Fast learning in networks of locally-tuned processing units
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.281
– ident: 10.1016/j.neucom.2012.12.024_bib19
– ident: 10.1016/j.neucom.2012.12.024_bib20
  doi: 10.1109/CEC.2003.1299577
– year: 2006
  ident: 10.1016/j.neucom.2012.12.024_bib25
– volume: 14
  start-page: 439
  issue: 4–5
  year: 2001
  ident: 10.1016/j.neucom.2012.12.024_bib23
  article-title: Three learning phases for radial-basis-function networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(01)00027-2
– volume: EC-14
  start-page: 326
  issue: 3
  year: 1965
  ident: 10.1016/j.neucom.2012.12.024_bib21
  article-title: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
  publication-title: IEEE Trans. Electron. Comput.
  doi: 10.1109/PGEC.1965.264137
– volume: 72
  start-page: 1797
  year: 2009
  ident: 10.1016/j.neucom.2012.12.024_bib16
  article-title: Three-phase strategy for the OSD learning method in RBF neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.05.011
– volume: 21
  start-page: 1131
  issue: 7
  year: 2005
  ident: 10.1016/j.neucom.2012.12.024_bib5
  article-title: Learning methods for radial basis function networks
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2004.03.013
– volume: 3
  start-page: 579
  issue: 4
  year: 1991
  ident: 10.1016/j.neucom.2012.12.024_bib7
  article-title: Improving the generalization properties of radial basis function neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.4.579
– volume: 13
  start-page: 370
  year: 2005
  ident: 10.1016/j.neucom.2012.12.024_bib8
  article-title: Adaptive online correction and interpolation of quadrature encoder signals using radial basis functions
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2004.841648
– volume: 10
  start-page: 397
  year: 2000
  ident: 10.1016/j.neucom.2012.12.024_bib11
  article-title: Assessing RBF networks using DELVE
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065700000223
– year: 1995
  ident: 10.1016/j.neucom.2012.12.024_bib22
– volume: vol. 4493
  year: 2007
  ident: 10.1016/j.neucom.2012.12.024_bib13
  article-title: Deformation measurement of the large flexible surface by improved RBFNN algorithm and BPNN algorithm
– ident: 10.1016/j.neucom.2012.12.024_bib10
– ident: 10.1016/j.neucom.2012.12.024_bib24
– year: 1987
  ident: 10.1016/j.neucom.2012.12.024_bib2
  article-title: Radial basis functions for multivariable interpolation: A review
– year: 2001
  ident: 10.1016/j.neucom.2012.12.024_bib17
– volume: 45
  start-page: 87
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2012.12.024_bib14
  article-title: A comparative analysis of neural network performances in astronomical imaging
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(02)00237-4
– volume: vol. 4669
  year: 2007
  ident: 10.1016/j.neucom.2012.12.024_bib12
  article-title: Least-mean-square training of cluster-weighted modeling
– volume: 71
  start-page: 167
  issue: 1–3
  year: 2007
  ident: 10.1016/j.neucom.2012.12.024_bib15
  article-title: Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.08.002
– ident: 10.1016/j.neucom.2012.12.024_bib9
SSID ssj0017129
Score 2.3034165
Snippet Radial basis function (RBF) neural networks have been broadly used for classification and interpolation regression. So the idea for trying to develop new...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Connectionism. Neural networks
Exact sciences and technology
Neural network
Optimum Steepest Descent (OSD)
Particle Swarm Optimization (PSO)
PSO–OSD
Radial basis function (RBF)
Theoretical computing
Three-phase OSD
Title An improvement in RBF learning algorithm based on PSO for real time applications
URI https://dx.doi.org/10.1016/j.neucom.2012.12.024
Volume 111
WOSCitedRecordID wos000319248000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7cpIdC6Ts0fYQ99GZUpJVWj0MParFrlzQxiQumF7HS7iYOtmz8CPn5nX0pSkNxeygYYRbJa3Y-zczOzsyH0AcSxUSwknkhj7kXxWXpZZQmHgPbxkOwH1nMNdlEcnKSTibZqNM5d7Uw17OkrtObm2z5X0UNYyBsVTr7D-JufhQG4DsIHa4gdrj-leDzWpU-rha6EbgmADj73HfsEBddNrtYrKaby3lXGTCuDgtG56c623AldA3JXHTbx9pt91W38qg0EYQNMeRz1WmBK1g1IYV-Ph4MdQItu3QJ89tPXwenx_n3bn487IIeH-c_e2ftkIOif0g8_3aD6mph2sFEQj3wFO_qVatFjWYMDCOLNbKBIX25p79NKOHqYy22KpkHJic6WmvqrO-2y_7NjDXJheCQgc8TRg_QPkloBqpuPx_2Jt-aw6UkIKYFo_3TrqJSp_3dn_lPHsvjJVvDeyQNAUrLKxk_Q0_sdgLnBgbPUUfUL9BTu7XAVnGvYcixd7ixl2iU17gFFDytMQAFO6DgBihYAwUvagxAwQAUrICCFVBwGyiv0I9-b_xl4Fl-Da8Kw3jjMS6kVC0b_URmEvxsGpGEBZHwGQuYz1WvQloKEaSyqkgsAz_mfil5nMU0lPAqH6C9elGL1whLKjkhgtI05RGlpMzKKCjToJIhBYuSHKLQrWFR2ebzigNlVrgsw6vCrHyhVr6AD6z8IfKap5am-cqO-xMnnsI6kMYxLABfO548uiPNZjoHpje7bniLHt2-Ku_Q3ma1Fe_Rw-p6M12vjiwEfwEsd5f-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improvement+in+RBF+learning+algorithm+based+on+PSO+for+real+time+applications&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=FATHI%2C+Vahid&rft.au=GHOLAM+ALI+MONTAZER&rft.date=2013-07-02&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=111&rft.spage=169&rft.epage=176&rft_id=info:doi/10.1016%2Fj.neucom.2012.12.024&rft.externalDBID=n%2Fa&rft.externalDocID=27322334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon