An improvement in RBF learning algorithm based on PSO for real time applications
Radial basis function (RBF) neural networks have been broadly used for classification and interpolation regression. So the idea for trying to develop new learning algorithms for getting better performance of RBF neural networks is an interesting subject. This paper presents a new learning method for...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 111; S. 169 - 176 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
02.07.2013
Elsevier |
| Schlagworte: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Radial basis function (RBF) neural networks have been broadly used for classification and interpolation regression. So the idea for trying to develop new learning algorithms for getting better performance of RBF neural networks is an interesting subject. This paper presents a new learning method for RBF neural networks. A novel Particle Swarm Optimization (PSO) has been applied in the proposed method to optimize the Optimum Steepest Decent (OSD) algorithm. The OSD algorithm could be used in applications where need real-time capabilities for retraining neural networks. To initialize the RBF units more accurately, the new approach based on PSO has been developed and compared with a Conventional PSO clustering algorithm. The obtained results have shown better and same network response in fewer train iterations which is essential for fast retraining of the network. The PSO–OSD and Three-phased OSD algorithms have been applied on five benchmark problems and the results have been compared. Finally, employing the proposed method in a real-time problem has shown interesting outcomes as have come out in this paper. |
|---|---|
| AbstractList | Radial basis function (RBF) neural networks have been broadly used for classification and interpolation regression. So the idea for trying to develop new learning algorithms for getting better performance of RBF neural networks is an interesting subject. This paper presents a new learning method for RBF neural networks. A novel Particle Swarm Optimization (PSO) has been applied in the proposed method to optimize the Optimum Steepest Decent (OSD) algorithm. The OSD algorithm could be used in applications where need real-time capabilities for retraining neural networks. To initialize the RBF units more accurately, the new approach based on PSO has been developed and compared with a Conventional PSO clustering algorithm. The obtained results have shown better and same network response in fewer train iterations which is essential for fast retraining of the network. The PSO–OSD and Three-phased OSD algorithms have been applied on five benchmark problems and the results have been compared. Finally, employing the proposed method in a real-time problem has shown interesting outcomes as have come out in this paper. |
| Author | Montazer, Gholam Ali Fathi, Vahid |
| Author_xml | – sequence: 1 givenname: Vahid surname: Fathi fullname: Fathi, Vahid email: v.fathi@modares.ac.ir – sequence: 2 givenname: Gholam Ali surname: Montazer fullname: Montazer, Gholam Ali email: montazer@modares.ac.ir |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27322334$$DView record in Pascal Francis |
| BookMark | eNqFkEtLAzEUhYNUsK3-AxfZuJyaxzw6LoRarApCi491uM3c1JSZZEjGgv_eqRUXLhQO3M35DtxvRAbOOyTknLMJZzy_3E4cvmvfTATjYtKHifSIDPm0EMlUTPMBGbJSZImQXJyQUYxbxnjBRTkkq5mjtmmD32GDrqPW0aebBa0RgrNuQ6He-GC7t4auIWJFvaOr5yU1PtCAUNPONkihbWurobPexVNybKCOePZ9x-R1cfsyv08el3cP89ljoqXMuwQqNIbJgrPClIZlZZaKAniKDIADq4pcZtkakU-N1iI3nOUVW5sqL_NMmqySY3Jx2G0haqhNAKdtVG2wDYQPJQophJRp30sPPR18jAHNT4UztbentupgT-3tqT69vR67-oVp23192AWw9X_w9QHGXsDOYlBRW3QaKxtQd6ry9u-BTzdij6E |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3454296 crossref_primary_10_1016_j_neucom_2014_11_003 crossref_primary_10_1007_s11063_017_9614_6 crossref_primary_10_1016_j_asoc_2014_12_015 crossref_primary_10_1109_TCYB_2017_2764744 crossref_primary_10_1007_s11063_014_9404_3 crossref_primary_10_1016_j_asoc_2016_08_032 crossref_primary_10_1016_j_ijleo_2016_05_145 crossref_primary_10_1016_j_ymssp_2017_12_026 crossref_primary_10_1155_2015_129361 crossref_primary_10_1002_ep_12448 crossref_primary_10_1080_02726351_2022_2158970 crossref_primary_10_1155_2014_907386 crossref_primary_10_3390_jmse11071381 crossref_primary_10_3390_ai3030044 crossref_primary_10_3103_S1060992X18030062 crossref_primary_10_1016_j_imu_2016_12_001 crossref_primary_10_1016_j_neucom_2015_08_083 crossref_primary_10_1155_2019_6571092 crossref_primary_10_3389_fenvs_2023_1177891 crossref_primary_10_1016_j_advengsoft_2014_12_004 crossref_primary_10_1098_rsos_180529 crossref_primary_10_1016_j_neunet_2019_03_007 crossref_primary_10_3103_S1060992X19040088 crossref_primary_10_1007_s11063_025_11768_4 crossref_primary_10_1016_j_amc_2015_04_067 crossref_primary_10_1109_TIE_2018_2835402 crossref_primary_10_1016_j_neucom_2015_05_104 crossref_primary_10_1016_j_isatra_2017_10_001 crossref_primary_10_1007_s10064_015_0804_z crossref_primary_10_1016_j_comcom_2018_09_007 crossref_primary_10_1109_TCSII_2019_2895343 crossref_primary_10_1016_j_neucom_2015_01_028 crossref_primary_10_1371_journal_pone_0196871 crossref_primary_10_1016_j_marstruc_2022_103181 crossref_primary_10_1007_s10846_014_0152_4 crossref_primary_10_3390_en11040860 crossref_primary_10_1007_s10044_020_00868_7 crossref_primary_10_1016_j_procs_2018_10_398 crossref_primary_10_1109_TNNLS_2016_2616413 crossref_primary_10_1016_j_neucom_2014_07_017 crossref_primary_10_1016_j_jobe_2017_08_008 crossref_primary_10_3233_IDA_163392 crossref_primary_10_1007_s11768_024_00196_9 crossref_primary_10_3390_ai4040054 crossref_primary_10_3390_math11010242 |
| Cites_doi | 10.1007/BF01385607 10.1109/ICSMC.1997.637339 10.1109/5.58326 10.1162/neco.1989.1.2.281 10.1109/CEC.2003.1299577 10.1016/S0893-6080(01)00027-2 10.1109/PGEC.1965.264137 10.1016/j.neucom.2008.05.011 10.1016/j.future.2004.03.013 10.1162/neco.1991.3.4.579 10.1109/TCST.2004.841648 10.1142/S0129065700000223 10.1016/S0168-9274(02)00237-4 10.1016/j.neucom.2007.08.002 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.neucom.2012.12.024 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1872-8286 |
| EndPage | 176 |
| ExternalDocumentID | 27322334 10_1016_j_neucom_2012_12_024 S0925231213000611 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c336t-adeff037107f9f0595427a14e0aa1a0d76355bee18fcc26f106d0bfd69653f5d3 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319248000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Mon Jul 21 09:16:52 EDT 2025 Sat Nov 29 08:01:42 EST 2025 Tue Nov 18 22:38:26 EST 2025 Fri Feb 23 02:27:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Optimum Steepest Descent (OSD) Three-phase OSD PSO–OSD Radial basis function (RBF) Neural network Particle Swarm Optimization (PSO) Capability index Steepest descent method Cluster Real time Particle swarm optimization Radial basis function Classification Swarm intelligence PSO-OSD Learning algorithm Artificial intelligence |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c336t-adeff037107f9f0595427a14e0aa1a0d76355bee18fcc26f106d0bfd69653f5d3 |
| PageCount | 8 |
| ParticipantIDs | pascalfrancis_primary_27322334 crossref_primary_10_1016_j_neucom_2012_12_024 crossref_citationtrail_10_1016_j_neucom_2012_12_024 elsevier_sciencedirect_doi_10_1016_j_neucom_2012_12_024 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-02 |
| PublicationDateYYYYMMDD | 2013-07-02 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Tan, Tang (bib8) 2005; 13 Montazer, Sabzevari, Ghorbani (bib16) 2009; 72 T. Mu, Detection of breast cancer using v-SVM and RBF networks with self organized selection of centers, vol. 2005, 2005, pp. 47–52. Powell (bib2) 1987 L. Prechelt, PROBEN 1: a set of benchmarks and benchmarking rules for neural network training algorithms, Universität Fakultät für Informatik, 1994. Broomhead, Lowe (bib1) 1988 Neruda, Kudovà (bib5) 2005; 21 Orr, Hallam, Murray, Leonard (bib11) 2000; 10 Moody, Darken (bib4) 2011; 1 Leishman (bib25) 2006 Montazer, Sabzevari, Khatir (bib15) 2007; 71 Bishop (bib22) 1995 Schwenker, Kestler, Palm (bib23) 2001; 14 (accessed 25.09.12). Cancelliere, Gai (bib14) 2003; 45 Bishop (bib7) 1991; 3 Chen (bib13) 2007; vol. 4493 D.W. van der Merwe, A.P. Engelbrecht, Data clustering using particle swarm optimization, in: Proceedings of the 2003 Congress on Evolutionary Computation, CEC ′03, vol. 1, 2003, pp. 215–220. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1998, pp. 69–73. Lin, Liou (bib12) 2007; vol. 4669 Eberhart, Shi, Kennedy (bib17) 2001 Cover (bib21) 1965; EC-14 J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108. S. Chen, S.A. Billings, C.F.N. Cowan, P.M. Grant, Practical identification of NARMAX models using radial basis functions, 1990. Available from Dyn, Micchelli (bib3) 1990; 58 Poggio, Girosi (bib6) 1990; 78 Broomhead (10.1016/j.neucom.2012.12.024_bib1) 1988 Powell (10.1016/j.neucom.2012.12.024_bib2) 1987 Cover (10.1016/j.neucom.2012.12.024_bib21) 1965; EC-14 Chen (10.1016/j.neucom.2012.12.024_bib13) 2007; vol. 4493 10.1016/j.neucom.2012.12.024_bib10 Poggio (10.1016/j.neucom.2012.12.024_bib6) 1990; 78 Bishop (10.1016/j.neucom.2012.12.024_bib7) 1991; 3 10.1016/j.neucom.2012.12.024_bib19 10.1016/j.neucom.2012.12.024_bib18 Cancelliere (10.1016/j.neucom.2012.12.024_bib14) 2003; 45 10.1016/j.neucom.2012.12.024_bib9 Moody (10.1016/j.neucom.2012.12.024_bib4) 2011; 1 Neruda (10.1016/j.neucom.2012.12.024_bib5) 2005; 21 Dyn (10.1016/j.neucom.2012.12.024_bib3) 1990; 58 10.1016/j.neucom.2012.12.024_bib24 10.1016/j.neucom.2012.12.024_bib20 Tan (10.1016/j.neucom.2012.12.024_bib8) 2005; 13 Schwenker (10.1016/j.neucom.2012.12.024_bib23) 2001; 14 Eberhart (10.1016/j.neucom.2012.12.024_bib17) 2001 Leishman (10.1016/j.neucom.2012.12.024_bib25) 2006 Orr (10.1016/j.neucom.2012.12.024_bib11) 2000; 10 Montazer (10.1016/j.neucom.2012.12.024_bib15) 2007; 71 Montazer (10.1016/j.neucom.2012.12.024_bib16) 2009; 72 Lin (10.1016/j.neucom.2012.12.024_bib12) 2007; vol. 4669 Bishop (10.1016/j.neucom.2012.12.024_bib22) 1995 |
| References_xml | – reference: T. Mu, Detection of breast cancer using v-SVM and RBF networks with self organized selection of centers, vol. 2005, 2005, pp. 47–52. – reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1998, pp. 69–73. – year: 2001 ident: bib17 article-title: Swarm Intelligence – volume: 3 start-page: 579 year: 1991 end-page: 588 ident: bib7 article-title: Improving the generalization properties of radial basis function neural networks publication-title: Neural Comput. – volume: 72 start-page: 1797 year: 2009 end-page: 1802 ident: bib16 article-title: Three-phase strategy for the OSD learning method in RBF neural networks publication-title: Neurocomputing – volume: 58 start-page: 1 year: 1990 end-page: 9 ident: bib3 article-title: Interpolation by sums of radial functions publication-title: Numer. Math. – volume: 45 start-page: 87 year: 2003 end-page: 98 ident: bib14 article-title: A comparative analysis of neural network performances in astronomical imaging publication-title: Appl. Numer. Math. – reference: D.W. van der Merwe, A.P. Engelbrecht, Data clustering using particle swarm optimization, in: Proceedings of the 2003 Congress on Evolutionary Computation, CEC ′03, vol. 1, 2003, pp. 215–220. – year: 1995 ident: bib22 article-title: Neural Networks for Pattern Recognition – volume: vol. 4493 year: 2007 ident: bib13 article-title: Deformation measurement of the large flexible surface by improved RBFNN algorithm and BPNN algorithm publication-title: Advances in Neural Networks—ISNN – volume: 21 start-page: 1131 year: 2005 end-page: 1142 ident: bib5 article-title: Learning methods for radial basis function networks publication-title: Future Gener. Comput. Syst. – year: 2006 ident: bib25 article-title: Principles of Helicopter Aerodynamics – year: 1988 ident: bib1 article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks publication-title: R. Signals Radar Establ. – reference: J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108. – year: 1987 ident: bib2 article-title: Radial basis functions for multivariable interpolation: A review publication-title: Algorithms for Approximation – volume: 78 start-page: 1481 year: 1990 end-page: 1497 ident: bib6 article-title: Networks for approximation and learning publication-title: Proc. IEEE – volume: 1 start-page: 281 year: 2011 end-page: 294 ident: bib4 article-title: Fast learning in networks of locally-tuned processing units publication-title: Neural Comput. – volume: 10 start-page: 397 year: 2000 end-page: 415 ident: bib11 article-title: Assessing RBF networks using DELVE publication-title: Int. J. Neural Syst. – volume: EC-14 start-page: 326 year: 1965 end-page: 334 ident: bib21 article-title: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition publication-title: IEEE Trans. Electron. Comput. – volume: 14 start-page: 439 year: 2001 end-page: 458 ident: bib23 article-title: Three learning phases for radial-basis-function networks publication-title: Neural Networks – volume: vol. 4669 year: 2007 ident: bib12 article-title: Least-mean-square training of cluster-weighted modeling publication-title: Artificial Neural Networks—ICANN – volume: 71 start-page: 167 year: 2007 end-page: 173 ident: bib15 article-title: Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system publication-title: Neurocomputing – reference: S. Chen, S.A. Billings, C.F.N. Cowan, P.M. Grant, Practical identification of NARMAX models using radial basis functions, 1990. Available from: – volume: 13 start-page: 370 year: 2005 end-page: 377 ident: bib8 article-title: Adaptive online correction and interpolation of quadrature encoder signals using radial basis functions publication-title: IEEE Trans. Control Syst. Technol. – reference: L. Prechelt, PROBEN 1: a set of benchmarks and benchmarking rules for neural network training algorithms, Universität Fakultät für Informatik, 1994. – reference: . (accessed 25.09.12). – volume: 58 start-page: 1 year: 1990 ident: 10.1016/j.neucom.2012.12.024_bib3 article-title: Interpolation by sums of radial functions publication-title: Numer. Math. doi: 10.1007/BF01385607 – ident: 10.1016/j.neucom.2012.12.024_bib18 doi: 10.1109/ICSMC.1997.637339 – volume: 78 start-page: 1481 issue: 9 year: 1990 ident: 10.1016/j.neucom.2012.12.024_bib6 article-title: Networks for approximation and learning publication-title: Proc. IEEE doi: 10.1109/5.58326 – year: 1988 ident: 10.1016/j.neucom.2012.12.024_bib1 article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks publication-title: R. Signals Radar Establ. – volume: 1 start-page: 281 issue: 2 year: 2011 ident: 10.1016/j.neucom.2012.12.024_bib4 article-title: Fast learning in networks of locally-tuned processing units publication-title: Neural Comput. doi: 10.1162/neco.1989.1.2.281 – ident: 10.1016/j.neucom.2012.12.024_bib19 – ident: 10.1016/j.neucom.2012.12.024_bib20 doi: 10.1109/CEC.2003.1299577 – year: 2006 ident: 10.1016/j.neucom.2012.12.024_bib25 – volume: 14 start-page: 439 issue: 4–5 year: 2001 ident: 10.1016/j.neucom.2012.12.024_bib23 article-title: Three learning phases for radial-basis-function networks publication-title: Neural Networks doi: 10.1016/S0893-6080(01)00027-2 – volume: EC-14 start-page: 326 issue: 3 year: 1965 ident: 10.1016/j.neucom.2012.12.024_bib21 article-title: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition publication-title: IEEE Trans. Electron. Comput. doi: 10.1109/PGEC.1965.264137 – volume: 72 start-page: 1797 year: 2009 ident: 10.1016/j.neucom.2012.12.024_bib16 article-title: Three-phase strategy for the OSD learning method in RBF neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.05.011 – volume: 21 start-page: 1131 issue: 7 year: 2005 ident: 10.1016/j.neucom.2012.12.024_bib5 article-title: Learning methods for radial basis function networks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2004.03.013 – volume: 3 start-page: 579 issue: 4 year: 1991 ident: 10.1016/j.neucom.2012.12.024_bib7 article-title: Improving the generalization properties of radial basis function neural networks publication-title: Neural Comput. doi: 10.1162/neco.1991.3.4.579 – volume: 13 start-page: 370 year: 2005 ident: 10.1016/j.neucom.2012.12.024_bib8 article-title: Adaptive online correction and interpolation of quadrature encoder signals using radial basis functions publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2004.841648 – volume: 10 start-page: 397 year: 2000 ident: 10.1016/j.neucom.2012.12.024_bib11 article-title: Assessing RBF networks using DELVE publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065700000223 – year: 1995 ident: 10.1016/j.neucom.2012.12.024_bib22 – volume: vol. 4493 year: 2007 ident: 10.1016/j.neucom.2012.12.024_bib13 article-title: Deformation measurement of the large flexible surface by improved RBFNN algorithm and BPNN algorithm – ident: 10.1016/j.neucom.2012.12.024_bib10 – ident: 10.1016/j.neucom.2012.12.024_bib24 – year: 1987 ident: 10.1016/j.neucom.2012.12.024_bib2 article-title: Radial basis functions for multivariable interpolation: A review – year: 2001 ident: 10.1016/j.neucom.2012.12.024_bib17 – volume: 45 start-page: 87 issue: 1 year: 2003 ident: 10.1016/j.neucom.2012.12.024_bib14 article-title: A comparative analysis of neural network performances in astronomical imaging publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(02)00237-4 – volume: vol. 4669 year: 2007 ident: 10.1016/j.neucom.2012.12.024_bib12 article-title: Least-mean-square training of cluster-weighted modeling – volume: 71 start-page: 167 issue: 1–3 year: 2007 ident: 10.1016/j.neucom.2012.12.024_bib15 article-title: Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.08.002 – ident: 10.1016/j.neucom.2012.12.024_bib9 |
| SSID | ssj0017129 |
| Score | 2.3034165 |
| Snippet | Radial basis function (RBF) neural networks have been broadly used for classification and interpolation regression. So the idea for trying to develop new... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 169 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computer science; control theory; systems Connectionism. Neural networks Exact sciences and technology Neural network Optimum Steepest Descent (OSD) Particle Swarm Optimization (PSO) PSO–OSD Radial basis function (RBF) Theoretical computing Three-phase OSD |
| Title | An improvement in RBF learning algorithm based on PSO for real time applications |
| URI | https://dx.doi.org/10.1016/j.neucom.2012.12.024 |
| Volume | 111 |
| WOSCitedRecordID | wos000319248000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4fB2H2suxQ97M14WL77YQ_eSJaMrA1tNsJejGJLbUqiBCcp_fk7urnOysj2MDDGCDsKOp-OPh2dC0LvOeWM-DF3vZBQNyzL0k1DwiSWpxGlUchUsuofw-TkJJ1MslGnc25jYa7niRDpzU22-q-ihjYQtgyd_QdxNz8KDfAMQoc7iB3ufyX4XMjQx3qpEoGrAgBnn3q2OsSFQ-cXy3q2uVw4cgGr5GHB6PxUeRvWTMWQLJjTPtZu01eVyqNUhSCMiSFfyEwLlYRVY1Lo5eP-QDnQ0kvrML_9-KV_Osy_Oflw4IAeH-c_u2dtk4Ms_5C43u0G1cbCtI2JfuQCU9zVq0aLas1IdEUWs8gSXfTljv7WpoSrD4JtpTMPdO4ra62Os95Nl_3bMtY4FwIhA84ThPfQoZ9EGai6w3zQnXxtDpcS4usUjOZP24hK5fZ3t-c_MZaHK7qGecR1AZQWKxk_QY_MdgLnGgZPUYeJZ-ix2Vpgo7jX0GSrd9i252iUC9wCCp4JDEDBFii4AQpWQMFLgQEoGICCJVCwBApuA-UF-t7rjj_3XVNfwy2DIN64tGKcy5SNXsIzDjw7Cv2EkpB5lBLqVTJXYTRljKS8LGE-Ey-uvCmv4iyOAh5VwUt0IJaCvUI4jWHrOfWzaQWEVqaIA5qbwm418QnnMJZHKLBjWJQm-bysgTIvrJfhVaFHvpAjX8AFI3-E3OarlU6-suf9xIqnMARSE8MC8LXny-MdaTbdWTC93vfCG_Tgdqq8RQebesveofvl9Wa2ro8NBH8Bz2OXng |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improvement+in+RBF+learning+algorithm+based+on+PSO+for+real+time+applications&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=FATHI%2C+Vahid&rft.au=GHOLAM+ALI+MONTAZER&rft.date=2013-07-02&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=111&rft.spage=169&rft.epage=176&rft_id=info:doi/10.1016%2Fj.neucom.2012.12.024&rft.externalDBID=n%2Fa&rft.externalDocID=27322334 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |