Speeding up many-objective optimization by Monte Carlo approximations

Many state-of-the-art evolutionary vector optimization algorithms compute the contributing hypervolume for ranking candidate solutions. However, with an increasing number of objectives, calculating the volumes becomes intractable. Therefore, although hypervolume-based algorithms are often the method...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Artificial intelligence Ročník 204; s. 22 - 29
Hlavní autoři: Bringmann, Karl, Friedrich, Tobias, Igel, Christian, Voß, Thomas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier B.V 01.11.2013
Elsevier
Témata:
ISSN:0004-3702, 1872-7921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many state-of-the-art evolutionary vector optimization algorithms compute the contributing hypervolume for ranking candidate solutions. However, with an increasing number of objectives, calculating the volumes becomes intractable. Therefore, although hypervolume-based algorithms are often the method of choice for bi-criteria optimization, they are regarded as not suitable for many-objective optimization. Recently, Monte Carlo methods have been derived and analyzed for approximating the contributing hypervolume. Turning theory into practice, we employ these results in the ranking procedure of the multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) as an example of a state-of-the-art method for vector optimization. It is empirically shown that the approximation does not impair the quality of the obtained solutions given a budget of objective function evaluations, while considerably reducing the computation time in the case of multiple objectives. These results are obtained on common benchmark functions as well as on two design optimization tasks. Thus, employing Monte Carlo approximations makes hypervolume-based algorithms applicable to many-objective optimization.
AbstractList Many state-of-the-art evolutionary vector optimization algorithms compute the contributing hypervolume for ranking candidate solutions. However, with an increasing number of objectives, calculating the volumes becomes intractable. Therefore, although hypervolume-based algorithms are often the method of choice for bi-criteria optimization, they are regarded as not suitable for many-objective optimization. Recently, Monte Carlo methods have been derived and analyzed for approximating the contributing hypervolume. Turning theory into practice, we employ these results in the ranking procedure of the multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) as an example of a state-of-the-art method for vector optimization. It is empirically shown that the approximation does not impair the quality of the obtained solutions given a budget of objective function evaluations, while considerably reducing the computation time in the case of multiple objectives. These results are obtained on common benchmark functions as well as on two design optimization tasks. Thus, employing Monte Carlo approximations makes hypervolume-based algorithms applicable to many-objective optimization.
Author Bringmann, Karl
Voß, Thomas
Friedrich, Tobias
Igel, Christian
Author_xml – sequence: 1
  givenname: Karl
  surname: Bringmann
  fullname: Bringmann, Karl
  organization: Max-Planck-Institut für Informatik, Saarbrücken, Germany
– sequence: 2
  givenname: Tobias
  surname: Friedrich
  fullname: Friedrich, Tobias
  email: friedrich@uni-jena.de
  organization: Friedrich-Schiller-Universität Jena, Germany
– sequence: 3
  givenname: Christian
  surname: Igel
  fullname: Igel, Christian
  organization: Department of Computer Science, University of Copenhagen, Denmark
– sequence: 4
  givenname: Thomas
  surname: Voß
  fullname: Voß, Thomas
  organization: Institut für Neuroinformatik, Ruhr-Universität, Bochum, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27880255$$DView record in Pascal Francis
BookMark eNqFkD1PwzAQhi1UJNrCP2DIwphgx_lwGZBQVT6kIgZgti6OjRyldmSbivLrcRvEwADT6e7e9_TeM0MTY41E6JzgjGBSXXYZuKBNyHJMaIZZhjE5QlPC6jytFzmZoCnGuEhpjfMTNPO-iy1dLMgUrZ4HKVtt3pL3IdmA2aW26aQIeisTOwS90Z8QtDVJs0serQkyWYLrbQLD4OyH3hyW_hQdK-i9PPuuc_R6u3pZ3qfrp7uH5c06FZRWIQUBDampYqUqZUlBVrJeMGBMVRDHCtqYuCSkwYoVSmBWNKUiZQE5tJLgks7RxXh3AC-gVw6M0J4PLgZxO57XjOG83OuKUSec9d5J9SMhmO-R8Y6PyPgeGceMR2TRdvXLJnQ4fBgc6P4_8_VolhHAVkvHvdDSiEjXRaC8tfrvA1-YVo1t
CODEN AINTBB
CitedBy_id crossref_primary_10_1016_j_asoc_2015_01_062
crossref_primary_10_1016_j_energy_2024_131008
crossref_primary_10_1007_s00500_014_1570_8
crossref_primary_10_1016_j_ejor_2014_11_032
crossref_primary_10_1016_j_knosys_2023_111193
crossref_primary_10_1109_TEVC_2016_2600642
crossref_primary_10_1145_3300148
crossref_primary_10_1109_TSMC_2019_2930737
crossref_primary_10_1007_s12293_016_0202_5
crossref_primary_10_1039_D1RE00549A
crossref_primary_10_1016_j_enbuild_2021_111590
crossref_primary_10_1016_j_artint_2015_06_007
crossref_primary_10_3233_ICA_160529
crossref_primary_10_1109_TPDS_2024_3437688
crossref_primary_10_1016_j_ins_2016_06_007
crossref_primary_10_1109_TCYB_2018_2870487
crossref_primary_10_1016_j_buildenv_2025_112686
crossref_primary_10_1016_j_swevo_2021_100915
crossref_primary_10_1016_j_ejor_2019_09_032
crossref_primary_10_1109_TEVC_2023_3319640
crossref_primary_10_1007_s11721_017_0134_9
crossref_primary_10_1016_j_swevo_2016_12_002
crossref_primary_10_1016_j_jobe_2021_102832
crossref_primary_10_1016_j_knosys_2015_04_025
crossref_primary_10_1007_s00500_023_09380_6
crossref_primary_10_1016_j_asoc_2019_105588
Cites_doi 10.1016/j.ejor.2006.08.008
10.1109/4235.996017
10.1109/TEVC.2010.2077298
10.1162/EVCO_a_00012
10.1016/j.tcs.2010.09.026
10.1023/B:NACO.0000023416.59689.4e
10.1007/s10994-009-5102-1
10.1109/TEVC.2003.810758
10.1016/j.comgeo.2011.12.001
10.1162/evco.2007.15.1.1
10.1109/TEVC.2008.919001
10.4249/scholarpedia.1965
10.1109/4235.797969
10.1162/106365601750190398
10.1016/j.artint.2012.09.005
10.1162/EVCO_a_00009
10.1016/j.comgeo.2010.03.004
10.1162/evco.2009.17.4.17402
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.artint.2013.08.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-7921
EndPage 29
ExternalDocumentID 27880255
10_1016_j_artint_2013_08_001
S0004370213000738
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAKPC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACWUS
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
KQ8
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
TR2
TWZ
UPT
UQL
VQA
WH7
WUQ
XFK
XJE
XJT
XPP
XSW
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-acab173f85f5e53ae6e798a88f6a73ffad872511b0f84fc084b5f154a2ade1053
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326414500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-3702
IngestDate Wed Apr 02 07:17:46 EDT 2025
Sat Nov 29 06:08:08 EST 2025
Tue Nov 18 21:43:59 EST 2025
Fri Feb 23 02:31:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pareto-front approximation
Multi-objective optimization
Hypervolume indicator
Evolutionary algorithm
Monte Carlo method
Dominating set
Pareto optimum
Hierarchical classification
Objective analysis
Multiobjective programming
Covariance matrix
Approximation algorithm
Vector method
Modeling
Function evaluation
Computation time
Budget
Objective function
Vector optimization
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-acab173f85f5e53ae6e798a88f6a73ffad872511b0f84fc084b5f154a2ade1053
OpenAccessLink https://dx.doi.org/10.1016/j.artint.2013.08.001
PageCount 8
ParticipantIDs pascalfrancis_primary_27880255
crossref_primary_10_1016_j_artint_2013_08_001
crossref_citationtrail_10_1016_j_artint_2013_08_001
elsevier_sciencedirect_doi_10_1016_j_artint_2013_08_001
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Artificial intelligence
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Deb (br0160) 2001
Bringmann, Friedrich (br0120) 2013
Auger, Hansen (br0010) 2005
Bringmann (br0070) 2012; 45
Bringmann, Friedrich (br0090) 2010; 43
Deb, Thiele, Laumanns, Zitzler (br0180) 2002
Zitzler, Thiele, Laumanns, Fonseca, Grunert da Fonseca (br0430) 2003; 7
Deb, Pratap, Agarwal, Meyarivan (br0170) 2002; 6
Eiben, Smith (br0200) 2008
Bradstreet, While, Barone (br0060) 2008; 12
Zitzler, Künzli (br0410) 2004; vol. 3242
Emmerich, Fonseca (br0210) 2011; vol. 6576
(br0220) 2004; vol. 78
Miettinen (br0320) 1999; vol. 12
Bringmann, Friedrich (br0100) 2010; 18
Bader, Zitzler (br0020) 2011; 19
Beyer (br0050) 2007; 2
Wickramasinghe, Carrese, Li (br0390) 2010
Kern, Müller, Hansen, Büche, Ocenasek, Koumoutsakos (br0310) 2004; 3
Beume, Naujoks, Emmerich (br0040) 2007; 181
Yıldız, Suri (br0400) 2012
Bringmann, Friedrich (br0110) 2012; 425
While, Bradstreet, Barone (br0380) 2012; 16
Coello Coello, Lamont, van Veldhuizen (br0150) 2007
Huband, Hingston, While, Barone (br0260) 2003
Igel, Glasmachers, Heidrich-Meisner (br0290) 2008; 9
Ehrgott (br0190) 2010
Suttorp, Hansen, Igel (br0340) 2009; 75
Sawaragi, Nakayama, Tanino (br0330) 1985; vol. 176
Voß, Friedrich, Bringmann, Igel (br0360) 2010
Igel, Hansen, Roth (br0270) 2007; 15
Igel, Suttorp, Hansen (br0280) 2007; vol. 4403
Friedrich, Bringmann, Voß, Igel (br0230) 2011
Impagliazzo, Paturi (br0300) 1999
Bringmann, Friedrich (br0080) 2009; vol. 5467
Bringmann, Friedrich (br0130) 2013; 195
Voß, Hansen, Igel (br0370) 2010
Zitzler, Thiele (br0420) 1999; 3
Ursem (br0350) 2010
Brockhoff (br0140) 2011
Hansen, Ostermeier (br0240) 2001; 9
Beume (br0030) 2009; 17
Hansen, Auger, Ros, Finck, Pošík (br0250) 2010
Zitzler (10.1016/j.artint.2013.08.001_br0420) 1999; 3
Bringmann (10.1016/j.artint.2013.08.001_br0120) 2013
Emmerich (10.1016/j.artint.2013.08.001_br0210) 2011; vol. 6576
Ursem (10.1016/j.artint.2013.08.001_br0350) 2010
Zitzler (10.1016/j.artint.2013.08.001_br0430) 2003; 7
Voß (10.1016/j.artint.2013.08.001_br0360) 2010
Zitzler (10.1016/j.artint.2013.08.001_br0410) 2004; vol. 3242
Bringmann (10.1016/j.artint.2013.08.001_br0080) 2009; vol. 5467
Igel (10.1016/j.artint.2013.08.001_br0270) 2007; 15
Bringmann (10.1016/j.artint.2013.08.001_br0130) 2013; 195
Eiben (10.1016/j.artint.2013.08.001_br0200) 2008
Kern (10.1016/j.artint.2013.08.001_br0310) 2004; 3
Bringmann (10.1016/j.artint.2013.08.001_br0090) 2010; 43
Miettinen (10.1016/j.artint.2013.08.001_br0320) 1999; vol. 12
Bringmann (10.1016/j.artint.2013.08.001_br0110) 2012; 425
Deb (10.1016/j.artint.2013.08.001_br0160) 2001
(10.1016/j.artint.2013.08.001_br0220) 2004; vol. 78
Huband (10.1016/j.artint.2013.08.001_br0260) 2003
Bringmann (10.1016/j.artint.2013.08.001_br0070) 2012; 45
Deb (10.1016/j.artint.2013.08.001_br0170) 2002; 6
Beume (10.1016/j.artint.2013.08.001_br0030) 2009; 17
Igel (10.1016/j.artint.2013.08.001_br0280) 2007; vol. 4403
Wickramasinghe (10.1016/j.artint.2013.08.001_br0390) 2010
Bradstreet (10.1016/j.artint.2013.08.001_br0060) 2008; 12
Hansen (10.1016/j.artint.2013.08.001_br0240) 2001; 9
Hansen (10.1016/j.artint.2013.08.001_br0250) 2010
Bringmann (10.1016/j.artint.2013.08.001_br0100) 2010; 18
Deb (10.1016/j.artint.2013.08.001_br0180) 2002
Suttorp (10.1016/j.artint.2013.08.001_br0340) 2009; 75
Beume (10.1016/j.artint.2013.08.001_br0040) 2007; 181
Brockhoff (10.1016/j.artint.2013.08.001_br0140) 2011
Sawaragi (10.1016/j.artint.2013.08.001_br0330) 1985; vol. 176
Yıldız (10.1016/j.artint.2013.08.001_br0400) 2012
Friedrich (10.1016/j.artint.2013.08.001_br0230) 2011
Coello Coello (10.1016/j.artint.2013.08.001_br0150) 2007
Impagliazzo (10.1016/j.artint.2013.08.001_br0300) 1999
While (10.1016/j.artint.2013.08.001_br0380) 2012; 16
Igel (10.1016/j.artint.2013.08.001_br0290) 2008; 9
Bader (10.1016/j.artint.2013.08.001_br0020) 2011; 19
Beyer (10.1016/j.artint.2013.08.001_br0050) 2007; 2
Ehrgott (10.1016/j.artint.2013.08.001_br0190) 2010
Voß (10.1016/j.artint.2013.08.001_br0370) 2010
Auger (10.1016/j.artint.2013.08.001_br0010) 2005
References_xml – volume: vol. 5467
  start-page: 6
  year: 2009
  end-page: 20
  ident: br0080
  article-title: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice
  publication-title: Proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization (EMO)
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: br0240
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
– start-page: 1689
  year: 2010
  end-page: 1696
  ident: br0250
  article-title: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009
  publication-title: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO)
– year: 2008
  ident: br0200
  article-title: Introduction to Evolutionary Computing. Natural Computing
– volume: 16
  start-page: 86
  year: 2012
  end-page: 95
  ident: br0380
  article-title: A fast way of calculating exact hypervolumes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: br0020
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
– volume: 18
  start-page: 383
  year: 2010
  end-page: 402
  ident: br0100
  article-title: An efficient algorithm for computing hypervolume contributions
  publication-title: Evol. Comput.
– volume: vol. 12
  year: 1999
  ident: br0320
  article-title: Nonlinear Multiobjective Optimization
  publication-title: Kluwerʼs International Series in Operations Research & Management Science
– start-page: 1777
  year: 2005
  end-page: 1784
  ident: br0010
  article-title: Performance evaluation of an advanced local search evolutionary algorithm
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– start-page: 237
  year: 1999
  end-page: 240
  ident: br0300
  article-title: The complexity of
  publication-title: Proceedings of the 14th IEEE Conference on Computational Complexity (CCC)
– volume: 15
  start-page: 1
  year: 2007
  end-page: 28
  ident: br0270
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evol. Comput.
– volume: 425
  start-page: 104
  year: 2012
  end-page: 116
  ident: br0110
  article-title: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice
  publication-title: Theor. Comput. Sci.
– volume: vol. 3242
  start-page: 832
  year: 2004
  end-page: 842
  ident: br0410
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN)
– volume: 12
  start-page: 714
  year: 2008
  end-page: 723
  ident: br0060
  article-title: A fast incremental hypervolume algorithm
  publication-title: IEEE Trans. Evol. Comput.
– year: 2010
  ident: br0350
  article-title: Centrifugal pump design: Three benchmark problems for many-objective optimization
– volume: vol. 78
  year: 2004
  ident: br0220
  publication-title: Multiple Criteria Decision Analysis: State of the Art Surveys
– volume: vol. 176
  year: 1985
  ident: br0330
  article-title: Theory of Multiobjective Optimization
  publication-title: Mathematics in Science and Engineering
– volume: 2
  start-page: 1965
  year: 2007
  ident: br0050
  article-title: Evolution strategies
  publication-title: Scholarpedia
– start-page: 487
  year: 2010
  end-page: 494
  ident: br0370
  article-title: Improved step size adaptation for the MO-CMA-ES
  publication-title: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO)
– volume: 43
  start-page: 601
  year: 2010
  end-page: 610
  ident: br0090
  article-title: Approximating the volume of unions and intersections of high-dimensional geometric objects
  publication-title: Comput. Geom.
– year: 2007
  ident: br0150
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– start-page: 1857
  year: 2010
  end-page: 1864
  ident: br0390
  article-title: Designing airfoils using a reference point based evolutionary many-objective particle swarm optimization
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– volume: vol. 6576
  start-page: 121
  year: 2011
  end-page: 135
  ident: br0210
  article-title: Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm and complexity results
  publication-title: Proceedings of the Evolutionary Multi-Criterion Optimization (EMO)
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: br0430
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
– volume: 17
  start-page: 477
  year: 2009
  end-page: 492
  ident: br0030
  article-title: S-metric calculation by considering dominated hypervolume as Kleeʼs measure problem
  publication-title: Evol. Comput.
– volume: 45
  start-page: 225
  year: 2012
  end-page: 233
  ident: br0070
  article-title: An improved algorithm for Kleeʼs measure problem on fat boxes
  publication-title: Comput. Geom.
– start-page: 111
  year: 2012
  end-page: 120
  ident: br0400
  article-title: On Kleeʼs measure problem for grounded boxes
  publication-title: Proceedings of the ACM Symposium on Computational Geometry (SoCG)
– volume: 75
  start-page: 167
  year: 2009
  end-page: 197
  ident: br0340
  article-title: Efficient covariance matrix update for variable metric evolution strategies
  publication-title: Mach. Learn.
– year: 2010
  ident: br0190
  article-title: Multicriteria Optimization
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: br0420
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 81
  year: 2011
  end-page: 92
  ident: br0230
  article-title: The logarithmic hypervolume indicator
  publication-title: Proceedings of the 11th International Workshop on Foundations of Genetic Algorithms (FOGA)
– start-page: 2284
  year: 2003
  end-page: 2291
  ident: br0260
  article-title: An evolution strategy with probabilistic mutation for multi-objective optimisation
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), vol. 4
– start-page: 1975
  year: 2010
  end-page: 1978
  ident: br0360
  article-title: Scaling up indicator-based MOEAs by approximating the least hypervolume contributor: A preliminary study
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO): Workshop on Theoretical Aspects of Evolutionary Multiobjective Optimization
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: br0040
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: Eur. J. Oper. Res.
– volume: vol. 4403
  start-page: 171
  year: 2007
  end-page: 185
  ident: br0280
  article-title: Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES
  publication-title: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO)
– volume: 9
  start-page: 993
  year: 2008
  end-page: 996
  ident: br0290
  article-title: Shark
  publication-title: J. Mach. Learn. Res.
– volume: 195
  start-page: 265
  year: 2013
  end-page: 290
  ident: br0130
  article-title: Approximation quality of the hypervolume indicator
  publication-title: Artif. Intell.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: br0170
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 825
  year: 2002
  end-page: 830
  ident: br0180
  article-title: Scalable multi-objective optimization test problems
  publication-title: Proceedings of the Congress on Evolutionary Computation (CEC)
– start-page: 575
  year: 2013
  end-page: 582
  ident: br0120
  article-title: Parameterized average-case complexity of the hypervolume indicator
  publication-title: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO)
– start-page: 101
  year: 2011
  end-page: 139
  ident: br0140
  article-title: Theoretical aspects of evolutionary multiobjective optimization
  publication-title: Theory of Randomized Search Heuristics: Foundations and Recent Developments
– year: 2001
  ident: br0160
  article-title: Multi-Objective Optimization using Evolutionary Algorithms
– volume: 3
  start-page: 77
  year: 2004
  end-page: 112
  ident: br0310
  article-title: Learning probability distributions in continuous evolutionary algorithms – A comparative review
  publication-title: Nat. Comput.
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.artint.2013.08.001_br0040
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.008
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.artint.2013.08.001_br0170
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 16
  start-page: 86
  issue: 1
  year: 2012
  ident: 10.1016/j.artint.2013.08.001_br0380
  article-title: A fast way of calculating exact hypervolumes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2077298
– volume: 9
  start-page: 993
  year: 2008
  ident: 10.1016/j.artint.2013.08.001_br0290
  article-title: Shark
  publication-title: J. Mach. Learn. Res.
– volume: vol. 78
  year: 2004
  ident: 10.1016/j.artint.2013.08.001_br0220
– start-page: 1857
  year: 2010
  ident: 10.1016/j.artint.2013.08.001_br0390
  article-title: Designing airfoils using a reference point based evolutionary many-objective particle swarm optimization
– year: 2010
  ident: 10.1016/j.artint.2013.08.001_br0350
– volume: 18
  start-page: 383
  issue: 3
  year: 2010
  ident: 10.1016/j.artint.2013.08.001_br0100
  article-title: An efficient algorithm for computing hypervolume contributions
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00012
– volume: 425
  start-page: 104
  year: 2012
  ident: 10.1016/j.artint.2013.08.001_br0110
  article-title: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.09.026
– volume: 3
  start-page: 77
  year: 2004
  ident: 10.1016/j.artint.2013.08.001_br0310
  article-title: Learning probability distributions in continuous evolutionary algorithms – A comparative review
  publication-title: Nat. Comput.
  doi: 10.1023/B:NACO.0000023416.59689.4e
– volume: 75
  start-page: 167
  issue: 2
  year: 2009
  ident: 10.1016/j.artint.2013.08.001_br0340
  article-title: Efficient covariance matrix update for variable metric evolution strategies
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-009-5102-1
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.artint.2013.08.001_br0430
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– year: 2001
  ident: 10.1016/j.artint.2013.08.001_br0160
– start-page: 575
  year: 2013
  ident: 10.1016/j.artint.2013.08.001_br0120
  article-title: Parameterized average-case complexity of the hypervolume indicator
– volume: vol. 6576
  start-page: 121
  year: 2011
  ident: 10.1016/j.artint.2013.08.001_br0210
  article-title: Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm and complexity results
– start-page: 1777
  year: 2005
  ident: 10.1016/j.artint.2013.08.001_br0010
  article-title: Performance evaluation of an advanced local search evolutionary algorithm
– volume: 45
  start-page: 225
  issue: 5–6
  year: 2012
  ident: 10.1016/j.artint.2013.08.001_br0070
  article-title: An improved algorithm for Kleeʼs measure problem on fat boxes
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2011.12.001
– start-page: 1689
  year: 2010
  ident: 10.1016/j.artint.2013.08.001_br0250
  article-title: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009
– volume: vol. 3242
  start-page: 832
  year: 2004
  ident: 10.1016/j.artint.2013.08.001_br0410
  article-title: Indicator-based selection in multiobjective search
– volume: vol. 4403
  start-page: 171
  year: 2007
  ident: 10.1016/j.artint.2013.08.001_br0280
  article-title: Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES
– start-page: 487
  year: 2010
  ident: 10.1016/j.artint.2013.08.001_br0370
  article-title: Improved step size adaptation for the MO-CMA-ES
– start-page: 111
  year: 2012
  ident: 10.1016/j.artint.2013.08.001_br0400
  article-title: On Kleeʼs measure problem for grounded boxes
– start-page: 81
  year: 2011
  ident: 10.1016/j.artint.2013.08.001_br0230
  article-title: The logarithmic hypervolume indicator
– volume: vol. 5467
  start-page: 6
  year: 2009
  ident: 10.1016/j.artint.2013.08.001_br0080
  article-title: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice
– year: 2007
  ident: 10.1016/j.artint.2013.08.001_br0150
– volume: 15
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.artint.2013.08.001_br0270
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2007.15.1.1
– volume: vol. 12
  year: 1999
  ident: 10.1016/j.artint.2013.08.001_br0320
  article-title: Nonlinear Multiobjective Optimization
– volume: 12
  start-page: 714
  issue: 6
  year: 2008
  ident: 10.1016/j.artint.2013.08.001_br0060
  article-title: A fast incremental hypervolume algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919001
– start-page: 1975
  year: 2010
  ident: 10.1016/j.artint.2013.08.001_br0360
  article-title: Scaling up indicator-based MOEAs by approximating the least hypervolume contributor: A preliminary study
– start-page: 825
  year: 2002
  ident: 10.1016/j.artint.2013.08.001_br0180
  article-title: Scalable multi-objective optimization test problems
– year: 2008
  ident: 10.1016/j.artint.2013.08.001_br0200
– start-page: 2284
  year: 2003
  ident: 10.1016/j.artint.2013.08.001_br0260
  article-title: An evolution strategy with probabilistic mutation for multi-objective optimisation
– volume: 2
  start-page: 1965
  issue: 8
  year: 2007
  ident: 10.1016/j.artint.2013.08.001_br0050
  article-title: Evolution strategies
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1965
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.artint.2013.08.001_br0420
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– year: 2010
  ident: 10.1016/j.artint.2013.08.001_br0190
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 10.1016/j.artint.2013.08.001_br0240
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 195
  start-page: 265
  year: 2013
  ident: 10.1016/j.artint.2013.08.001_br0130
  article-title: Approximation quality of the hypervolume indicator
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2012.09.005
– start-page: 237
  year: 1999
  ident: 10.1016/j.artint.2013.08.001_br0300
  article-title: The complexity of k-SAT
– volume: vol. 176
  year: 1985
  ident: 10.1016/j.artint.2013.08.001_br0330
  article-title: Theory of Multiobjective Optimization
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.artint.2013.08.001_br0020
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– start-page: 101
  year: 2011
  ident: 10.1016/j.artint.2013.08.001_br0140
  article-title: Theoretical aspects of evolutionary multiobjective optimization
– volume: 43
  start-page: 601
  year: 2010
  ident: 10.1016/j.artint.2013.08.001_br0090
  article-title: Approximating the volume of unions and intersections of high-dimensional geometric objects
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2010.03.004
– volume: 17
  start-page: 477
  issue: 4
  year: 2009
  ident: 10.1016/j.artint.2013.08.001_br0030
  article-title: S-metric calculation by considering dominated hypervolume as Kleeʼs measure problem
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2009.17.4.17402
SSID ssj0003991
Score 2.2616434
Snippet Many state-of-the-art evolutionary vector optimization algorithms compute the contributing hypervolume for ranking candidate solutions. However, with an...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science; control theory; systems
Decision theory. Utility theory
Evolutionary algorithm
Exact sciences and technology
Hypervolume indicator
Mathematical programming
Multi-objective optimization
Operational research and scientific management
Operational research. Management science
Pareto-front approximation
Theoretical computing
Title Speeding up many-objective optimization by Monte Carlo approximations
URI https://dx.doi.org/10.1016/j.artint.2013.08.001
Volume 204
WOSCitedRecordID wos000326414500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdZusNg7Hus3VZ02K1oWHZsSccyUtaNlUGzkZuRbGkkJLZpk5Ke9q_36cOuszC6DXYxwcSS0Pvpp6en94HQOxYZyYuUkixVigDhUcILWZIsNmUcUyUZM67YBDs749Op-DoY_GxjYa4WrKr4ZiOa_ypqeAfCtqGzfyHurlF4Ab9B6PAEscPzjwR_3vgN6WjdWN_Ua1KruWe1oxr4YRkCL63e-cWmprI-H4vaJxffzJY9C16XnNb5E7nqHr0EnrcHeehsGWotf4a2OkjAKbwEmnWGm0mtZrLT309_eOcAn9qgh9Dvtb25Fye_-C4FswRNQnxeZyvbiZcJ_DsCSos8_2pPuZyBji98nHTLyXE06rNq3NufvYFkh_m9EWL-3iVfsE6yNHG5WcOYtnNqn7sbUBiHvcwDkuP30F7MUsGHaO_4dDz91G3moL-Foot-4G30pXMR3O3rd9rNw0ZewpozvlhKT4OZPEGPwtEDH3vIPEUDXT1Dj9uyHjiw_HM0bhGE1w3eRhDuIwira-wQhB2C8DaCXqBvJ-PJh48kVNsgRZJkKyILqShLDE9NqtNE6kwzwSXnJpPw2sgSBAXquYoMH5ki4iOVGlDAZSxLDVp68hINq7rSrxAWsNypybjQcNpWkguVSc00LRk0WVK5j5J2lvIipKK3FVEWeetzOM_93OZ2bnNbKDWi-4h0XzU-Fcsd_2etAPKgTno1MQfM3PHl4Za8uu5iBtsdHMIP_rnp1-jB7Wp5g4ari7V-i-4XV6vZ5cVhQN8NB72pIw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speeding+up+many-objective+optimization+by+Monte+Carlo+approximations&rft.jtitle=Artificial+intelligence&rft.au=Bringmann%2C+Karl&rft.au=Friedrich%2C+Tobias&rft.au=Igel%2C+Christian&rft.au=Vo%C3%9F%2C+Thomas&rft.date=2013-11-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=204&rft.spage=22&rft.epage=29&rft_id=info:doi/10.1016%2Fj.artint.2013.08.001&rft.externalDocID=S0004370213000738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon