HNIO: A Hybrid Nature-Inspired Optimization Algorithm for Energy Minimization in UAV-Assisted Mobile Edge Computing

Mobile edge computing (MEC) is an emerging computing paradigm that decreases the computing time and extends the lifespan of user equipments (UEs). In MEC, the computational tasks are offloaded from UEs to the base station (BS) at the edge of the network for processing. However, MEC cannot cope with...

Full description

Saved in:
Bibliographic Details
Published in:IEEE eTransactions on network and service management Vol. 19; no. 3; pp. 3264 - 3275
Main Authors: Chen, Yang, Pi, Dechang, Yang, Shengxiang, Xu, Yue, Chen, Junfu, Mohamed, Ali Wagdy
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1932-4537, 1932-4537
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mobile edge computing (MEC) is an emerging computing paradigm that decreases the computing time and extends the lifespan of user equipments (UEs). In MEC, the computational tasks are offloaded from UEs to the base station (BS) at the edge of the network for processing. However, MEC cannot cope with environments where there are no BS or where communication facilities have been destroyed. In this paper, we study the problem of minimizing the energy consumption of UAV equipped with MEC servers as a mobile base station to serve users. The problem involves user offloading decision, UAV location and allocation with computational resources, and is a hybrid optimization problem with continuous and discrete variables. To address this problem, we propose a hybrid nature-inspired optimization algorithm (HNIO) and its version for discrete optimization, where HNIO incorporates mutation and population diversity detection mechanisms to boost its global optimization capability, and we design a probabilistic selection-based coding strategy for the discrete optimization version. The experimental study is conducted based on ten cases with different numbers of UEs. Comparing HNIO with several other state-of-the-art optimization algorithms, it is concluded from the Friedman and Wilcoxon's test of the experimental results that HNIO shows better precision and stability in nine out of the ten cases with higher number of UEs.
AbstractList Mobile edge computing (MEC) is an emerging computing paradigm that decreases the computing time and extends the lifespan of user equipments (UEs). In MEC, the computational tasks are offloaded from UEs to the base station (BS) at the edge of the network for processing. However, MEC cannot cope with environments where there are no BS or where communication facilities have been destroyed. In this paper, we study the problem of minimizing the energy consumption of UAV equipped with MEC servers as a mobile base station to serve users. The problem involves user offloading decision, UAV location and allocation with computational resources, and is a hybrid optimization problem with continuous and discrete variables. To address this problem, we propose a hybrid nature-inspired optimization algorithm (HNIO) and its version for discrete optimization, where HNIO incorporates mutation and population diversity detection mechanisms to boost its global optimization capability, and we design a probabilistic selection-based coding strategy for the discrete optimization version. The experimental study is conducted based on ten cases with different numbers of UEs. Comparing HNIO with several other state-of-the-art optimization algorithms, it is concluded from the Friedman and Wilcoxon's test of the experimental results that HNIO shows better precision and stability in nine out of the ten cases with higher number of UEs.
Author Chen, Yang
Chen, Junfu
Yang, Shengxiang
Pi, Dechang
Mohamed, Ali Wagdy
Xu, Yue
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-5239-9816
  surname: Chen
  fullname: Chen, Yang
  email: shawn.cy@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Dechang
  orcidid: 0000-0002-6593-4563
  surname: Pi
  fullname: Pi, Dechang
  email: dc.pi@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: School of Computer Science and Informatics, De Montfort University, Leicester, U.K
– sequence: 4
  givenname: Yue
  orcidid: 0000-0001-7577-1756
  surname: Xu
  fullname: Xu, Yue
  email: ayue@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 5
  givenname: Junfu
  orcidid: 0000-0002-6106-6121
  surname: Chen
  fullname: Chen, Junfu
  email: cjf@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 6
  givenname: Ali Wagdy
  orcidid: 0000-0002-5895-2632
  surname: Mohamed
  fullname: Mohamed, Ali Wagdy
  email: aliwagdy@gmail.com
  organization: Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt
BookMark eNp9kEtPAjEUhRuDiYD-AOOmievBPmamU3cTgkIisPCxnbQzFyyBdmzLAn-9IEaNC1f3Ls53TvL1UMc6CwhdUjKglMibp9njdMAIYwNORV4weYK6VHKWpBkXnV__GeqFsCIkK6hkXRTGs8n8Fpd4vNPeNHim4tZDMrGhNR4aPG-j2Zh3FY2zuFwvnTfxdYMXzuORBb_c4amxPwlj8XP5kpQhmBD3-NRpswY8apaAh27TbqOxy3N0ulDrABdft4-e70ZPw3HyML-fDMuHpOY8j4nSQqcpyFrUbJHrmmolNctTEJpToAU0QhMqiciaXBHIBGSFApVKpmqqNOd9dH3sbb1720KI1cptvd1PVkwwXkgpOd2n6DFVexeCh0XVerNRfldRUh3cVge31cFt9eV2z4g_TG3ip4HolVn_S14dSQMA30tSCMlTyT8AzjeJ-Q
CODEN ITNSC4
CitedBy_id crossref_primary_10_1109_TNET_2024_3450489
crossref_primary_10_1109_TVT_2024_3429507
crossref_primary_10_1007_s11063_023_11146_y
crossref_primary_10_1016_j_adhoc_2025_103981
crossref_primary_10_1109_TVT_2025_3546026
crossref_primary_10_1038_s41598_025_96814_w
crossref_primary_10_1109_JIOT_2024_3426312
crossref_primary_10_1109_ACCESS_2024_3386570
crossref_primary_10_4018_IJSWIS_368839
crossref_primary_10_1109_ACCESS_2024_3362059
crossref_primary_10_1007_s00521_024_09722_x
crossref_primary_10_1016_j_swevo_2024_101748
crossref_primary_10_1016_j_engappai_2023_106331
crossref_primary_10_1109_ACCESS_2024_3431922
crossref_primary_10_1109_TMC_2024_3446819
crossref_primary_10_1016_j_jnca_2025_104290
crossref_primary_10_1016_j_suscom_2024_101080
Cites_doi 10.1109/TNNLS.2016.2616413
10.1016/j.future.2019.03.032
10.1109/JIOT.2020.2987600
10.1109/JIOT.2018.2890133
10.1007/s11071-019-05052-z
10.1016/j.cad.2010.12.015
10.1016/j.amc.2010.01.088
10.1007/s10462-012-9328-0
10.1109/ICC.2019.8761372
10.1016/j.knosys.2020.106032
10.1016/j.comnet.2020.107577
10.1016/j.jcp.2007.06.008
10.1109/LCOMM.2021.3064067
10.1016/j.eswa.2020.114368
10.1177/003754970107600201
10.1007/s00521-020-04832-8
10.1109/TEVC.2010.2059031
10.1109/ICNN.1995.488968
10.1109/MCOM.2016.7470933
10.1016/j.comcom.2019.10.014
10.1287/moor.6.1.19
10.1007/978-3-642-32894-7_27
10.1109/JSAC.2018.2864426
10.1002/esp.5135
10.1109/ICOIN48656.2020.9016537
10.1109/TVT.2018.2881191
10.1109/JIOT.2020.3020819
10.1109/TII.2018.2843365
10.1109/4235.797971
10.1007/978-1-4612-4380-9_16
10.1109/TII.2017.2786782
10.1109/JIOT.2020.3005117
10.1016/j.apm.2020.02.023
10.1016/j.apm.2019.07.046
10.1109/JIOT.2018.2878876
10.1109/TVT.2021.3088129
10.1109/GLOBECOM46510.2021.9685991
10.1109/NAS.2018.8515736
10.1007/s12293-015-0163-0
10.1016/j.eswa.2020.114505
10.1109/TVT.2020.3016840
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2022.3176829
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1932-4537
EndPage 3275
ExternalDocumentID 10_1109_TNSM_2022_3176829
9779349
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence”
  grantid: 2021ZD0113103
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  grantid: KYCX21_0226
– fundername: China Scholarship Council Public Graduate Program at High Level Universities
  grantid: 202006830128
  funderid: 10.13039/501100004543
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c336t-ab7b44e9c7c2f6bc1ba9b264e7b31e18ed7b019075d6a0e57e58aea492ac1ab33
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866556800092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4537
IngestDate Sun Nov 30 04:37:19 EST 2025
Sat Nov 29 03:13:16 EST 2025
Tue Nov 18 22:31:03 EST 2025
Wed Aug 27 02:18:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-ab7b44e9c7c2f6bc1ba9b264e7b31e18ed7b019075d6a0e57e58aea492ac1ab33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7577-1756
0000-0002-6106-6121
0000-0002-6593-4563
0000-0002-5895-2632
0000-0001-7222-4917
0000-0001-5239-9816
OpenAccessLink https://dora.dmu.ac.uk/bitstreams/fd3a279f-5e2b-4233-a0f0-ce9ec520e6e8/download
PQID 2723899931
PQPubID 85504
PageCount 12
ParticipantIDs proquest_journals_2723899931
crossref_citationtrail_10_1109_TNSM_2022_3176829
crossref_primary_10_1109_TNSM_2022_3176829
ieee_primary_9779349
PublicationCentury 2000
PublicationDate 2022-Sept.
2022-9-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
shah (ref1) 2015
fadeyi (ref44) 2021
zhang (ref41) 2003
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
rao (ref30) 2016; 7
References_xml – ident: ref15
  doi: 10.1109/TNNLS.2016.2616413
– ident: ref28
  doi: 10.1016/j.future.2019.03.032
– ident: ref17
  doi: 10.1109/JIOT.2020.2987600
– ident: ref4
  doi: 10.1109/JIOT.2018.2890133
– ident: ref38
  doi: 10.1007/s11071-019-05052-z
– ident: ref29
  doi: 10.1016/j.cad.2010.12.015
– ident: ref33
  doi: 10.1016/j.amc.2010.01.088
– ident: ref27
  doi: 10.1007/s10462-012-9328-0
– ident: ref8
  doi: 10.1109/ICC.2019.8761372
– ident: ref35
  doi: 10.1016/j.knosys.2020.106032
– ident: ref20
  doi: 10.1016/j.comnet.2020.107577
– ident: ref40
  doi: 10.1016/j.jcp.2007.06.008
– ident: ref5
  doi: 10.1109/LCOMM.2021.3064067
– year: 2021
  ident: ref44
  article-title: Robustness and comparative statistical power of the repeated measures anova and friedman test with real data
– ident: ref42
  doi: 10.1016/j.eswa.2020.114368
– ident: ref32
  doi: 10.1177/003754970107600201
– ident: ref26
  doi: 10.1007/s00521-020-04832-8
– ident: ref12
  doi: 10.1109/TEVC.2010.2059031
– ident: ref14
  doi: 10.1109/ICNN.1995.488968
– ident: ref16
  doi: 10.1109/MCOM.2016.7470933
– ident: ref7
  doi: 10.1016/j.comcom.2019.10.014
– ident: ref43
  doi: 10.1287/moor.6.1.19
– ident: ref36
  doi: 10.1007/978-3-642-32894-7_27
– ident: ref24
  doi: 10.1109/JSAC.2018.2864426
– ident: ref10
  doi: 10.1002/esp.5135
– volume: 7
  start-page: 19
  year: 2016
  ident: ref30
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– ident: ref19
  doi: 10.1109/ICOIN48656.2020.9016537
– start-page: 643
  year: 2015
  ident: ref1
  article-title: Big data and cloud computing: Pitfalls and advantages in data management
  publication-title: Proc 2nd Int Conf Comput Sustain Global Develop (INDIACom)
– ident: ref18
  doi: 10.1109/TVT.2018.2881191
– ident: ref9
  doi: 10.1109/JIOT.2020.3020819
– ident: ref2
  doi: 10.1109/TII.2018.2843365
– ident: ref13
  doi: 10.1109/4235.797971
– ident: ref45
  doi: 10.1007/978-1-4612-4380-9_16
– ident: ref25
  doi: 10.1109/TII.2017.2786782
– ident: ref23
  doi: 10.1109/JIOT.2020.3005117
– ident: ref37
  doi: 10.1016/j.apm.2020.02.023
– ident: ref34
  doi: 10.1016/j.apm.2019.07.046
– ident: ref22
  doi: 10.1109/JIOT.2018.2878876
– ident: ref6
  doi: 10.1109/TVT.2021.3088129
– ident: ref11
  doi: 10.1109/GLOBECOM46510.2021.9685991
– ident: ref3
  doi: 10.1109/NAS.2018.8515736
– ident: ref31
  doi: 10.1007/s12293-015-0163-0
– start-page: 67
  year: 2003
  ident: ref41
  article-title: Defifinition and properties of Markov chain
  publication-title: Mathematics of Operations Research
– ident: ref39
  doi: 10.1016/j.eswa.2020.114505
– ident: ref21
  doi: 10.1109/TVT.2020.3016840
SSID ssj0058192
Score 2.3720815
Snippet Mobile edge computing (MEC) is an emerging computing paradigm that decreases the computing time and extends the lifespan of user equipments (UEs). In MEC, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3264
SubjectTerms Algorithms
Autonomous aerial vehicles
Computational modeling
computational task offloading
Computing time
Continuity (mathematics)
convergence analysis
Design optimization
discrete optimization
Edge computing
Energy consumption
Global optimization
Mobile computing
Mobile edge computing
Mutation
nature-inspired algorithms
Optimization
Optimization algorithms
Radio equipment
Servers
Sociology
Statistics
Task analysis
UAV
Title HNIO: A Hybrid Nature-Inspired Optimization Algorithm for Energy Minimization in UAV-Assisted Mobile Edge Computing
URI https://ieeexplore.ieee.org/document/9779349
https://www.proquest.com/docview/2723899931
Volume 19
WOSCitedRecordID wos000866556800092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1932-4537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058192
  issn: 1932-4537
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBt1hf5OBJXN1kt8nGW5FKBbsKPvC25DGtBd1KrYL_3iS7rYIieNvDJAS-zOSbTeYbgAOumMwymUbIeiJKe9REkgnn7pxrnlouWBDSvr8UeZ49PMjrGTia1sIgYnh8hsf-M9zl26F587_KThxXkUkqZ2FWCF7Vak2ibtMLe9W3ljSWJ7f5Tddlf4y5pNQx6sAgv86d0EjlR_QNR8r58v8WswJLNXUkrQrrVZjBcg0WvwkKrsGC546V9PI6vHbyi6tT0iKdD1-WRfKg4RldlP5yHS25ctHiuS7DJK2n_nA0GD8-E8diSTtUBJLuoPyyGJTkrnUfOTz9zrCkO9QuopC27SOpekO4JWzA3Xn79qwT1T0WIpMkfBwpLXSaojTCsB7XhmoltSNJKHRCkWZohfbl5qJpuYqxKbCZKVSpZMpQpZNkE-bKYYlbQBzVoshiqxTKVCitMtVLMkcZkVrm_LwB8QSBwtQC5L4PxlMREpFYFh60woNW1KA14HA65KVS3_jLeN2jNDWsAWrA7gTmovbP14L5XmuOGyd0-_dRO7Dg565ek-3C3Hj0hnswb94diKP9sPU-Aflk2JA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xhjR4YBsMUWCbH_aElhE7ThzzVqGiVmvDJAriLfKPK6sEKSoFif8e20kLEgiJtzycZUuf7_xd7PsO4FemmMxzySNkIxHxETWRZMK5e5bpjNtMsCCkfd4XRZFfXMh_S_B7UQuDiOHxGf7xn-Eu307Mnf9VduC4iky4_AAfU85ZXFdrzeNu6qW9mntLGsuDYXE6cPkfYy4tdZw6cMinkye0UnkRf8Ohcvz5fcv5AusNeSTtGu2vsITVBqw9kxTcgFXPHmvx5U247Ra9k0PSJt0HX5hFiqDiGfUqf72Olpy4eHHdFGKS9tXlZDqe_b8mjseSTqgJJINx9WQxrshZ-zxyiPq9Yclgol1MIR17iaTuDuGW8A3OjjvDo27UdFmITJJks0hpoTlHaYRho0wbqpXUjiah0AlFmqMV2heci9RmKsZUYJorVFwyZajSSbIFy9Wkwm0gjmxRZLFVCiUXSqtcjZLckUakljlPb0E8R6A0jQS574RxVYZUJJalB630oJUNaC3YXwy5qfU33jLe9CgtDBuAWrA3h7lsPPS2ZL7bmmPHCd15fdRP-NQdDvplv1f83YVVP0_9tmwPlmfTO_wOK-beATr9EbbhI2Ab29c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HNIO%3A+A+Hybrid+Nature-Inspired+Optimization+Algorithm+for+Energy+Minimization+in+UAV-Assisted+Mobile+Edge+Computing&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Chen%2C+Yang&rft.au=Pi%2C+Dechang&rft.au=Yang%2C+Shengxiang&rft.au=Xu%2C+Yue&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1932-4537&rft.volume=19&rft.issue=3&rft.spage=3264&rft_id=info:doi/10.1109%2FTNSM.2022.3176829&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon