A finite difference method for a non-local boundary value problem for two-dimensional heat equation

A second-order finite difference scheme is given for the numerical solution of a two-dimensional non-local boundary value problem for heat equation. Using a suitable transformation, the solution of this problem is equivalent to the solution of two other problems. The first problem which is a one-dim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 112; číslo 1; s. 133 - 142
Hlavný autor: Dehghan, Mehdi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 01.06.2000
Elsevier
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A second-order finite difference scheme is given for the numerical solution of a two-dimensional non-local boundary value problem for heat equation. Using a suitable transformation, the solution of this problem is equivalent to the solution of two other problems. The first problem which is a one-dimensional non-local boundary value problem giving the value of μ through using a second-order finite difference scheme. Using this result, the second problem will be changed to a classical two-dimensional problem with Nuemann's boundary condition which will be solved numerically. The stability properties and truncation error of the new method are discussed and the results of numerical experiments are presented.
ISSN:0096-3003
1873-5649
DOI:10.1016/S0096-3003(99)00055-7