A finite difference method for a non-local boundary value problem for two-dimensional heat equation
A second-order finite difference scheme is given for the numerical solution of a two-dimensional non-local boundary value problem for heat equation. Using a suitable transformation, the solution of this problem is equivalent to the solution of two other problems. The first problem which is a one-dim...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 112; číslo 1; s. 133 - 142 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
01.06.2000
Elsevier |
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A second-order finite difference scheme is given for the numerical solution of a two-dimensional non-local boundary value problem for heat equation. Using a suitable transformation, the solution of this problem is equivalent to the solution of two other problems. The first problem which is a one-dimensional non-local boundary value problem giving the value of
μ through using a second-order finite difference scheme. Using this result, the second problem will be changed to a classical two-dimensional problem with Nuemann's boundary condition which will be solved numerically. The stability properties and truncation error of the new method are discussed and the results of numerical experiments are presented. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/S0096-3003(99)00055-7 |