A finite difference method for a non-local boundary value problem for two-dimensional heat equation

A second-order finite difference scheme is given for the numerical solution of a two-dimensional non-local boundary value problem for heat equation. Using a suitable transformation, the solution of this problem is equivalent to the solution of two other problems. The first problem which is a one-dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 112; H. 1; S. 133 - 142
1. Verfasser: Dehghan, Mehdi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 01.06.2000
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A second-order finite difference scheme is given for the numerical solution of a two-dimensional non-local boundary value problem for heat equation. Using a suitable transformation, the solution of this problem is equivalent to the solution of two other problems. The first problem which is a one-dimensional non-local boundary value problem giving the value of μ through using a second-order finite difference scheme. Using this result, the second problem will be changed to a classical two-dimensional problem with Nuemann's boundary condition which will be solved numerically. The stability properties and truncation error of the new method are discussed and the results of numerical experiments are presented.
AbstractList A second-order finite difference scheme is given for the numerical solution of a two-dimensional non-local boundary value problem for heat equation. Using a suitable transformation, the solution of this problem is equivalent to the solution of two other problems. The first problem which is a one-dimensional non-local boundary value problem giving the value of μ through using a second-order finite difference scheme. Using this result, the second problem will be changed to a classical two-dimensional problem with Nuemann's boundary condition which will be solved numerically. The stability properties and truncation error of the new method are discussed and the results of numerical experiments are presented.
Author Dehghan, Mehdi
Author_xml – sequence: 1
  givenname: Mehdi
  surname: Dehghan
  fullname: Dehghan, Mehdi
  organization: Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Hafez Avenue, No. 424, Tehran 15914, Iran
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1351954$$DView record in Pascal Francis
BookMark eNqFkEtLAzEUhYMoWB8_QcjChS5GkybzwoWI-IKCC92HO3duaGQ6qUmq-O9NW3HhxlW48J2Tw3fAdkc_EmMnUlxIIavLFyHaqlBCqLO2PRdClGVR77CJbGpVlJVud9nkF9lnBzG-ZaiupJ4wvOHWjS4R7521FGhE4gtKc99z6wMHnj8rBo8w8M6vxh7CF_-AYUV8GXw30GKDpU9f9G5BY3R-zOicIHF6X0HK9xHbszBEOv55D9nr_d3r7WMxe354ur2ZFahUlQrQCknRtANFVakb1Ng3uiMQnYRGSdBNRRZLoXtBOK2VBiSBtlaIgFIdstNt7RJinmsDjOiiWQa3yKONVKVsS52xqy2GwccYyBp0abMzBXCDkcKsrZqNVbNWZtrWbKyaOqfLP-nf_n9y19scZQEfjoKJ6NayexcIk-m9-6fhGxmYk1w
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1002_num_1040
crossref_primary_10_1016_j_na_2007_02_006
crossref_primary_10_1016_S0096_3003_02_00140_6
crossref_primary_10_1016_S0096_3003_02_00165_0
crossref_primary_10_1016_S0168_9274_00_00057_X
crossref_primary_10_1016_S0898_1221_02_00113_X
crossref_primary_10_1186_1687_2770_2013_102
crossref_primary_10_1002_jnm_2049
crossref_primary_10_1016_S0096_3003_02_00369_7
crossref_primary_10_1007_s40065_021_00330_4
crossref_primary_10_1016_j_jksus_2010_06_003
crossref_primary_10_1016_S0378_4754_01_00434_7
crossref_primary_10_1080_00207160108805077
crossref_primary_10_1155_2023_5845263
crossref_primary_10_1016_S0096_3003_02_00293_X
crossref_primary_10_14529_jcem240302
crossref_primary_10_5269_bspm_44918
crossref_primary_10_1016_S0096_3003_01_00194_1
crossref_primary_10_1016_j_amc_2006_02_013
Cites_doi 10.1080/00036819308840181
10.1090/qam/160437
10.1090/qam/678203
10.2307/2007712
10.1016/0020-7225(93)90010-R
10.1016/0022-247X(86)90012-0
10.1090/qam/963580
10.1016/0020-7225(90)90056-O
10.1088/0266-5611/5/4/013
ContentType Journal Article
Copyright 2000 Elsevier Science Inc.
2000 INIST-CNRS
Copyright_xml – notice: 2000 Elsevier Science Inc.
– notice: 2000 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0096-3003(99)00055-7
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Chemistry
EISSN 1873-5649
EndPage 142
ExternalDocumentID 1351954
10_1016_S0096_3003_99_00055_7
S0096300399000557
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-a43ce3e2ba3e6548c4cd84bea0b1a831a486efc504d0ec2734ace0cf73ccac13
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000086672400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:16:08 EDT 2025
Tue Nov 18 20:35:59 EST 2025
Sat Nov 29 02:45:53 EST 2025
Fri Feb 23 02:19:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords The range of stability
Partial differential equations
Non-local boundary value problems
Heat conduction equation
Numerical integration procedures
Finite difference techniques
Nuemann's boundary conditions
Modified equivalent analysis
Neumann problem
Numerical integration
Boundary value problem
Stability
Heat equation
Numerical solution
Diffusion equation
Two dimensional model
Partial differential equation
Finite difference method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-a43ce3e2ba3e6548c4cd84bea0b1a831a486efc504d0ec2734ace0cf73ccac13
PageCount 10
ParticipantIDs pascalfrancis_primary_1351954
crossref_citationtrail_10_1016_S0096_3003_99_00055_7
crossref_primary_10_1016_S0096_3003_99_00055_7
elsevier_sciencedirect_doi_10_1016_S0096_3003_99_00055_7
PublicationCentury 2000
PublicationDate 2000-06-01
PublicationDateYYYYMMDD 2000-06-01
PublicationDate_xml – month: 06
  year: 2000
  text: 2000-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2000
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Wang, Lin (BIB6) 1989; 5
J.R. Cannon, J. van der Hoek, Implicit finite difference scheme for the diffusion of mass in porous media, in: B.J. Noye (Ed.), Numerical Solutions of Partial Differential Equations, North-Holland, Amsterdam, 1982, pp. 527–539
Capsso, Kunisch (BIB8) 1988; 46
Wang, Lin (BIB5) 1990; 28
A.R. Mitchell, D.F. Griffiths, The finite difference methods in partial differential equations, Wiley, New York, 1980
J.R. Cannon, A.L. Matheson, A numerical procedure for diffusion subject to the specification of mass, Int. J. Engng. Sci. 31 (1993) 347
Cannon, van der Hoek (BIB3) 1986; 115
Cannon, Lin, Matheson (BIB1) 1993; 50
Day (BIB7) 1982; 40
L. Lapidus, G.F. Pinder, Numerical solution of partial differential equations in science and engineering. Wiley, New York, 1982
C.F. Gerald, Applied Numerical Analysis, 5th ed., Addison–Wesley, Reading, MA, 1995
Wang (BIB11) 1990; 130
R.F. Warming, B.J. Hyett, The modified equation approach to the stability and accuracy analysis of finite difference methods, Journal of Computational Physics
Cannon (BIB4) 1963; 21
Wang (10.1016/S0096-3003(99)00055-7_BIB11) 1990; 130
Day (10.1016/S0096-3003(99)00055-7_BIB7) 1982; 40
Cannon (10.1016/S0096-3003(99)00055-7_BIB1) 1993; 50
Cannon (10.1016/S0096-3003(99)00055-7_BIB3) 1986; 115
10.1016/S0096-3003(99)00055-7_BIB10
Capsso (10.1016/S0096-3003(99)00055-7_BIB8) 1988; 46
Cannon (10.1016/S0096-3003(99)00055-7_BIB4) 1963; 21
10.1016/S0096-3003(99)00055-7_BIB9
10.1016/S0096-3003(99)00055-7_BIB14
10.1016/S0096-3003(99)00055-7_BIB13
10.1016/S0096-3003(99)00055-7_BIB12
Wang (10.1016/S0096-3003(99)00055-7_BIB5) 1990; 28
Wang (10.1016/S0096-3003(99)00055-7_BIB6) 1989; 5
10.1016/S0096-3003(99)00055-7_BIB2
References_xml – volume: 5
  start-page: 631
  year: 1989
  end-page: 640
  ident: BIB6
  article-title: A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equations
  publication-title: Inverse Problems
– volume: 46
  start-page: 431
  year: 1988
  end-page: 449
  ident: BIB8
  article-title: A reaction-diffusion system arising in modeling man-environment diseases
  publication-title: Q. Appl. Math.
– reference: R.F. Warming, B.J. Hyett, The modified equation approach to the stability and accuracy analysis of finite difference methods, Journal of Computational Physics
– reference: L. Lapidus, G.F. Pinder, Numerical solution of partial differential equations in science and engineering. Wiley, New York, 1982
– volume: 28
  start-page: 543
  year: 1990
  end-page: 546
  ident: BIB5
  article-title: A numerical method for the diffusion equation with non-local boundary specifications
  publication-title: Int. J. Engng. Sci.
– volume: 115
  start-page: 517
  year: 1986
  end-page: 529
  ident: BIB3
  article-title: Diffusion subject to specification of mass
  publication-title: J. Math. Anal. Appl.
– reference: A.R. Mitchell, D.F. Griffiths, The finite difference methods in partial differential equations, Wiley, New York, 1980
– reference: C.F. Gerald, Applied Numerical Analysis, 5th ed., Addison–Wesley, Reading, MA, 1995
– reference: J.R. Cannon, J. van der Hoek, Implicit finite difference scheme for the diffusion of mass in porous media, in: B.J. Noye (Ed.), Numerical Solutions of Partial Differential Equations, North-Holland, Amsterdam, 1982, pp. 527–539
– volume: 21
  start-page: 155
  year: 1963
  end-page: 160
  ident: BIB4
  article-title: The solution of the heat equation subject to the specification of energy
  publication-title: Q. Appl. Math.
– volume: 50
  start-page: 1
  year: 1993
  end-page: 19
  ident: BIB1
  article-title: The solution of the diffusion equation in two-space variables subject to the specification of mass
  publication-title: J. Appl. Anal.
– reference: J.R. Cannon, A.L. Matheson, A numerical procedure for diffusion subject to the specification of mass, Int. J. Engng. Sci. 31 (1993) 347
– volume: 130
  start-page: 35
  year: 1990
  end-page: 38
  ident: BIB11
  article-title: The numerical method for the conduction subject to moving boundary energy specification
  publication-title: Numer. Heat Transfer
– volume: 40
  start-page: 319
  year: 1982
  end-page: 330
  ident: BIB7
  article-title: Existence of a property of solutions of the heat equation to linear thermoelasticity and other theories
  publication-title: Q. Appl. Math.
– volume: 50
  start-page: 1
  year: 1993
  ident: 10.1016/S0096-3003(99)00055-7_BIB1
  article-title: The solution of the diffusion equation in two-space variables subject to the specification of mass
  publication-title: J. Appl. Anal.
  doi: 10.1080/00036819308840181
– volume: 21
  start-page: 155
  year: 1963
  ident: 10.1016/S0096-3003(99)00055-7_BIB4
  article-title: The solution of the heat equation subject to the specification of energy
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/160437
– volume: 40
  start-page: 319
  year: 1982
  ident: 10.1016/S0096-3003(99)00055-7_BIB7
  article-title: Existence of a property of solutions of the heat equation to linear thermoelasticity and other theories
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/678203
– ident: 10.1016/S0096-3003(99)00055-7_BIB12
  doi: 10.2307/2007712
– volume: 130
  start-page: 35
  year: 1990
  ident: 10.1016/S0096-3003(99)00055-7_BIB11
  article-title: The numerical method for the conduction subject to moving boundary energy specification
  publication-title: Numer. Heat Transfer
– ident: 10.1016/S0096-3003(99)00055-7_BIB13
  doi: 10.1016/0020-7225(93)90010-R
– ident: 10.1016/S0096-3003(99)00055-7_BIB9
– volume: 115
  start-page: 517
  year: 1986
  ident: 10.1016/S0096-3003(99)00055-7_BIB3
  article-title: Diffusion subject to specification of mass
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90012-0
– ident: 10.1016/S0096-3003(99)00055-7_BIB2
– volume: 46
  start-page: 431
  year: 1988
  ident: 10.1016/S0096-3003(99)00055-7_BIB8
  article-title: A reaction-diffusion system arising in modeling man-environment diseases
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/963580
– volume: 28
  start-page: 543
  issue: 6
  year: 1990
  ident: 10.1016/S0096-3003(99)00055-7_BIB5
  article-title: A numerical method for the diffusion equation with non-local boundary specifications
  publication-title: Int. J. Engng. Sci.
  doi: 10.1016/0020-7225(90)90056-O
– ident: 10.1016/S0096-3003(99)00055-7_BIB14
– volume: 5
  start-page: 631
  year: 1989
  ident: 10.1016/S0096-3003(99)00055-7_BIB6
  article-title: A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equations
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/5/4/013
– ident: 10.1016/S0096-3003(99)00055-7_BIB10
SSID ssj0007614
Score 1.7049704
Snippet A second-order finite difference scheme is given for the numerical solution of a two-dimensional non-local boundary value problem for heat equation. Using a...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 133
SubjectTerms Chemistry
Exact sciences and technology
Finite difference techniques
General and physical chemistry
Global analysis, analysis on manifolds
Heat conduction equation
Mathematical analysis
Mathematics
Modified equivalent analysis
Non-local boundary value problems
Nuemann's boundary conditions
Numerical analysis
Numerical analysis in abstract spaces
Numerical analysis. Scientific computation
Numerical integration procedures
Partial differential equations
Sciences and techniques of general use
The range of stability
Theory of reactions, general kinetics
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title A finite difference method for a non-local boundary value problem for two-dimensional heat equation
URI https://dx.doi.org/10.1016/S0096-3003(99)00055-7
Volume 112
WOSCitedRecordID wos000086672400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhwQIIRggBgz5gUmgKCOJncR-jEahIFEh0Yc-ESWOI00apfTHGP8955wdr5tQ4YGXqErtuOr32XfnnL8j5KWJY7mO2jBXTRryVtShkHEaVlzVQDBeixyLTeSTiZjN5OfB4Ks7C3N-ls_n4uJCLv4r1HAPwDZHZ_8B7v6hcAM-A-hwBdjh-lfAF0F7ahzJvvYJzFysE40ZkwEE_GFnwoK6q6m0_BUYyW9zYqorLoOZhz-_h41R_kfVDuNQrgP9Y-OBdNK11o391uu_rtxZucVm-z3_29H4_biY-D1Yt9sQ-awo3AKz9vrykipN8lzEtpbUOLnGHVwgY5S9sLY2RmWta8s47ih86Z99ZMLCo6QrcJqGubdd7n39FZPWJxpi_UF-g-wleSrFkOwVH0azj72tzjNUf3cD-TNeb_zor6R8bUf-k_dyd1GtALcWi6Fc8lCm98k9G1rQAinxgAz0fJ_cOnEV_fbJnU8eo4dEFRSJQj1RKBKFAgNoRXuiUEcU2hGFWqJ0za4QhRqiUEeUR2T6bjQ9GYe25EaoGMvWMEWZ0kwndcV0BsGs4qoRvNZVVMeVYHHFRaZblUa8ibQy0kiV0pFqcwYrgYrZYzKE36afENpCk0RmddZozZXMwLNveQyeEDTVsskOCHf_ZKmsHL2pinJW-rxDAKA0AJRSlh0AZX5AjvtuC9Rj2dVBOJhK61Sis1gC2XZ1PdyC1Q-IrHq64_tn5LafQs_JcL3c6ENyU52vT1fLF5aKvwE56ZzN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+finite+difference+method+for+a+non-local+boundary+value+problem+for+two-dimensional+heat+equation&rft.jtitle=Applied+mathematics+and+computation&rft.au=DEHGHAN%2C+M&rft.date=2000-06-01&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=112&rft.issue=1&rft.spage=133&rft.epage=142&rft_id=info:doi/10.1016%2FS0096-3003%2899%2900055-7&rft.externalDBID=n%2Fa&rft.externalDocID=1351954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon