Matrices with banded inverses: inversion algorithms and factorization of Gauss-Markov processes

The paper considers the inversion of full matrices whose inverses are L-banded. We derive a nested inversion algorithm for such matrices. Applied to a tridiagonal matrix, the algorithm provides its explicit inverse as an element-wise product (Hadamard product) of three matrices. When related to Gaus...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 46; no. 4; pp. 1495 - 1509
Main Authors: Kavcic, A., Moura, J.M.F.
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The paper considers the inversion of full matrices whose inverses are L-banded. We derive a nested inversion algorithm for such matrices. Applied to a tridiagonal matrix, the algorithm provides its explicit inverse as an element-wise product (Hadamard product) of three matrices. When related to Gauss-Markov random processes (GMrp), this result provides a closed-form factored expression for the covariance matrix of a first-order GMrp. This factored form leads to the interpretation of a first-order GMrp as the product of three independent processes: a forward independent-increments process, a backward independent-increments process, and a variance-stationary process. We explore the nonuniqueness of the factorization and design it so that the forward and backward factor processes have minimum energy. We then consider the issue of approximating general nonstationary Gaussian processes by Gauss-Markov processes under two optimality criteria: the Kullback-Leibler distance and maximum entropy. The problem reduces to approximating general covariances by covariance matrices whose inverses are banded. Our inversion result is an efficient algorithmic solution to this problem. We evaluate the information loss between the original process and its Gauss-Markov approximation.
AbstractList The paper considers the inversion of full matrices whose inverses are L-banded. We derive a nested inversion algorithm for such matrices. Applied to a tridiagonal matrix, the algorithm provides its explicit inverse as an element-wise product (Hadamard product) of three matrices. When related to Gauss-Markov random processes (GMrp), this result provides a closed-form factored expression for the covariance matrix of a first-order GMrp. This factored form leads to the interpretation of a first-order GMrp as the product of three independent processes: a forward independent-increments process, a backward independent-increments process, and a variance-stationary process. We explore the nonuniqueness of the factorization and design it so that the forward and backward factor processes have minimum energy. We then consider the issue of approximating general nonstationary Gaussian processes by Gauss-Markov processes under two optimality criteria: the Kullback-Leibler distance and maximum entropy. The problem reduces to approximating general covariances by covariance matrices whose inverses are banded. Our inversion result is an efficient algorithmic solution to this problem. We evaluate the information loss between the original process and its Gauss-Markov approximation.
The paper considers the inversion of full matrices whose inverses are L-banded. We derive a nested inversion algorithm for such matrices. Applied to a tridiagonal matrix, the algorithm provides its explicit inverse as an element-wise product (Hadamard product) of three matrices. When related to Gauss-Markov random processes (GMrp), this result provides a closed-form factored expression for the covariance matrix of a first-order GMrp. This factored form leads to the interpretation of a first-order GMrp as the product of three independent processes: a forward independent-increments process, a backward independent-increments process, and a variance-stationary process. We explore the nonuniqueness of the factorization and design it so that the forward and backward factor processes have minimum energy. We then consider the issue of approximating general nonstationary Gaussian processes by Gauss-Markov processes under two optimality criteria: the Kullback-Leibler distance and maximum entropy. The problem reduces to approximating general covariances by covariance matrices whose inverses are banded. Our inversion result is an efficient algorithmic solution to this problem. We evaluate the information loss between the original process and its Gauss-Markov approximation
Author Kavcic, A.
Moura, J.M.F.
Author_xml – sequence: 1
  givenname: A.
  surname: Kavcic
  fullname: Kavcic, A.
  organization: Div. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA
– sequence: 2
  givenname: J.M.F.
  surname: Moura
  fullname: Moura, J.M.F.
BookMark eNp9kU1vGyEQQFHlSrXTHHrtadVDoxw2ZhbYhd6iKB-VbOWSnNF4PbSk68WFtaP01wfHVg9RlBMM8-YNMBM26kNPjH0BfgbAzRT0mVGykfoDG4NSTWlqJUdszDno0kipP7FJSg85lAqqMbNzHKJvKRWPfvhdLLBf0rLw_ZZiovTjsPOhL7D7FWJmVqnIUOGwHXL8D4ddMrjiGjcplXOMf8K2WMeQndnwmX102CU6PqxH7P7q8u7ippzdXv-8OJ-VrRD1UCIHECScrHUDRguHgNA4UMQXy0YIrJb5XqikI0S1qF0-BnCGU-0WjRLiiJ3svbnz3w2lwa58aqnrsKewSdaArCuloc7k93fJSsuq5mKn_PYKfAib2OdXWDDKVLwSMkOne6iNIaVIzq6jX2F8ssDtbiIWtN1PJLPTV2zrh5f_GyL67s2Kr_sKT0T_zYfkM57DmFQ
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TGRS_2019_2946752
crossref_primary_10_1016_j_cviu_2006_12_004
crossref_primary_10_1515_eqc_2010_002
crossref_primary_10_1109_TCOMM_2016_2536664
crossref_primary_10_1109_TSP_2013_2256900
crossref_primary_10_1002_nla_425
crossref_primary_10_1109_TIT_2003_819324
crossref_primary_10_1007_s11424_022_0015_1
crossref_primary_10_1007_s13398_019_00707_3
crossref_primary_10_1016_j_acha_2023_101579
crossref_primary_10_1109_TIT_2008_2009855
crossref_primary_10_1016_j_aml_2014_02_015
crossref_primary_10_4028_www_scientific_net_AMM_590_795
crossref_primary_10_1109_LGRS_2010_2089494
crossref_primary_10_1109_TSP_2004_840709
crossref_primary_10_1016_j_laa_2003_07_014
crossref_primary_10_1109_ACCESS_2018_2868266
crossref_primary_10_1109_TSP_2008_927480
crossref_primary_10_3390_fractalfract7060468
crossref_primary_10_1049_wss2_12074
crossref_primary_10_1109_TSP_2015_2502556
crossref_primary_10_1002_mma_3416
crossref_primary_10_1109_TCOMM_2005_861651
crossref_primary_10_1109_JSTSP_2017_2731599
crossref_primary_10_1109_JCN_2013_000068
crossref_primary_10_1587_transfun_E100_A_1037
crossref_primary_10_1002_nla_455
crossref_primary_10_1109_TSP_2009_2037350
crossref_primary_10_1016_j_camwa_2009_07_069
crossref_primary_10_1109_TSP_2006_890915
crossref_primary_10_1080_03081087_2021_1884180
crossref_primary_10_1016_j_jmva_2016_04_001
crossref_primary_10_1109_49_920180
crossref_primary_10_1007_s10596_017_9667_7
crossref_primary_10_1016_j_laa_2024_04_035
Cites_doi 10.1109/TIT.1972.1054786
10.1109/18.119691
10.1109/78.709549
10.1109/18.817531
10.1109/18.30972
10.1002/0471200611
10.1016/0024-3795(84)90207-6
10.1016/0005-1098(94)00069-U
10.1109/83.799887
ContentType Journal Article
Copyright Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2000
Copyright_xml – notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2000
DBID RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/18.954748
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1509
ExternalDocumentID 57255649
10_1109_18_954748
954748
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
F28
FR3
ID FETCH-LOGICAL-c336t-a0113e3f46871983fa1a17f15e0bd733a2ddeda54feaa5b6f0bd11f90e6fb7533
IEDL.DBID RIE
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000088206200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Sep 28 04:30:47 EDT 2025
Sun Sep 28 08:21:28 EDT 2025
Fri Jul 25 04:22:01 EDT 2025
Tue Nov 18 22:24:49 EST 2025
Sat Nov 29 02:54:40 EST 2025
Tue Aug 26 21:00:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-a0113e3f46871983fa1a17f15e0bd733a2ddeda54feaa5b6f0bd11f90e6fb7533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 195920234
PQPubID 23500
PageCount 15
ParticipantIDs proquest_journals_195920234
crossref_primary_10_1109_18_954748
crossref_citationtrail_10_1109_18_954748
proquest_miscellaneous_28426033
proquest_miscellaneous_914625816
ieee_primary_954748
PublicationCentury 2000
PublicationDate 2000-07-01
PublicationDateYYYYMMDD 2000-07-01
PublicationDate_xml – month: 07
  year: 2000
  text: 2000-07-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2000
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References golub (ref2) 1983
lev-ari (ref11) 1984
ref12
jain (ref5) 1968
ref10
van trees (ref13) 1968; i
ref1
ref8
ref7
ref9
ref4
ref3
ref6
rivlin (ref15) 1974
scharf (ref14) 1991
References_xml – ident: ref4
  doi: 10.1109/TIT.1972.1054786
– year: 1983
  ident: ref2
  publication-title: Matrix Computations Baltimore MD
– year: 1991
  ident: ref14
  publication-title: Statistical Signal Processing Detection Estimation and Time Series Analysis
– volume: i
  year: 1968
  ident: ref13
  publication-title: Detection Estimation and Modulation Theory
– ident: ref3
  doi: 10.1109/18.119691
– year: 1984
  ident: ref11
  article-title: Autoregressive models for nonstationary discrete time processes
  publication-title: IEEE Int Symp on Information Theory
– ident: ref1
  doi: 10.1109/78.709549
– year: 1968
  ident: ref5
  publication-title: Fundamentals of Digital Image Processing
– ident: ref6
  doi: 10.1109/18.817531
– ident: ref12
  doi: 10.1109/18.30972
– ident: ref9
  doi: 10.1002/0471200611
– ident: ref10
  doi: 10.1016/0024-3795(84)90207-6
– ident: ref8
  doi: 10.1016/0005-1098(94)00069-U
– year: 1974
  ident: ref15
  publication-title: The Chebyshev Polynomials
– ident: ref7
  doi: 10.1109/83.799887
SSID ssj0014512
Score 1.9242272
Snippet The paper considers the inversion of full matrices whose inverses are L-banded. We derive a nested inversion algorithm for such matrices. Applied to a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1495
SubjectTerms Algorithms
Approximation
Factorization
Inversions
Mathematical analysis
Matrices
Matrix inversion
Matrix methods
Maximum entropy
Title Matrices with banded inverses: inversion algorithms and factorization of Gauss-Markov processes
URI https://ieeexplore.ieee.org/document/954748
https://www.proquest.com/docview/195920234
https://www.proquest.com/docview/28426033
https://www.proquest.com/docview/914625816
Volume 46
WOSCitedRecordID wos000088206200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0V1EM5FLql6kKhVsWBSyCOndjmViGglyIOVOIWOc4YIUGC1rv8fvy1K6rSAzfLmciRJ-PxeDzvARwIWnfWUFn4vUJfcGlM0fmoo7BCV4xj4LzikWxCXF7Kmxt1lXG2Yy0MIsbLZ3gUmjGX349mEY7KjlXNBZdrsCZEk0q1VgkDXtMEDO6HVT7kyCBCtFTHVB6lF_9yPZFL5Z8FOHqV8803fc8WfMybR_IzafsTvMNhAptLYgaS7XQCGy9QBj9D-zvC8KMj4dCVdOHYuCd3Q7iQge4kt7x-iL6_HWde5sERL0QSF08u1CSjJRd64VwRynvGJ_KYSgzQbcOf87Pr019F5lUoDGPNvNDephkyyxsfLSnJrKaaCktrLLteMKYrv-b1uuYWta67xvpuSq0qsbGdD2_YF1gfxgG_AilZZ0rTYaAF5LaSutGMom4qUwljlJrC4XLKW5NBxwP3xX0bg49StVS2aRqn8GMl-piQNl4TmgQ1rASWvbtLNbbZBF0bUHMCNzyfwvfVU287ISGiBxwXrvWu2YdzjE2B_EdCeUdS1ZI2O68OvAsfUml-uL77DdbnswXuwXvzNL9zs_34hz4De1rnNA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQQIOLSxUbAvUqjhwSRvHTmL3hhCliHbVQ5F6sxxnjCq1SbXe7e_HX7uiohy4Wc5EjjwZj8fjeQ_gY0vrzhoqCr9X6AsujCk6H3UUttUV4xg4r3gkm2hnM3F5Kc8zznashUHEePkMD0Iz5vL70SzDUdmhrHnLxWN4UnNelalYa50y4DVN0OB-YOmDjgwjREt5SMVBevWe84lsKn8twdGvHG_91xe9hM28fSSfk75fwSMcJrC1omYg2VIn8OIPnMHXoM4iED86Eo5dSRcOjntyNYQrGeiOcstriOjrX-Pcy9w44oVIYuPJpZpktOSbXjpXhAKf8Y7cpiIDdG_g5_HXiy8nRWZWKAxjzaLQ3qoZMssbHy9JwaymmraW1lh2fcuYrvyq1-uaW9S67hrruym1ssTGdj7AYduwMYwDvgVSss6UpsNADMhtJXSjGUXdVKZqjZFyCp9WU65Mhh0P7BfXKoYfpVRUqDSNU9hfi94mrI2HhCZBDWuBVe_uSo0qG6FTATcnsMPzKeytn3rrCSkRPeC4dMo7Zx_QMTYF8g8J6V1JVQva7Dw48B48O7k4O1Wn32c_duF5KtQPl3nfwcZivsT38NTcLa7c_EP8W38DoLzqew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrices+with+banded+inverses%3A+inversion+algorithms+and+factorization+of+Gauss-Markov+processes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Kavcic%2C+A.&rft.au=Moura%2C+J.M.F.&rft.date=2000-07-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=46&rft.issue=4&rft.spage=1495&rft.epage=1509&rft_id=info:doi/10.1109%2F18.954748&rft.externalDocID=954748
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon