Modeling an Uncertain Productivity Learning Process Using an Interval Fuzzy Methodology

Existing methods for forecasting the productivity of a factory are subject to a major drawback—the lower and upper bounds of productivity are usually determined by a few extreme cases, which unacceptably widens the productivity range. To address this drawback, an interval fuzzy number (IFN)-based mi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 8; číslo 6; s. 998
Hlavní autoři: Chiu, Min-Chi, Chen, Tin-Chih Toly, Hsu, Keng-Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI AG 01.06.2020
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Existing methods for forecasting the productivity of a factory are subject to a major drawback—the lower and upper bounds of productivity are usually determined by a few extreme cases, which unacceptably widens the productivity range. To address this drawback, an interval fuzzy number (IFN)-based mixed binary quadratic programming (MBQP)–ordered weighted average (OWA) approach is proposed in this study for modeling an uncertain productivity learning process. In the proposed methodology, the productivity range is divided into the inner and outer sections, which correspond to the lower and upper membership functions of an IFN-based fuzzy productivity forecast, respectively. In this manner, all actual values are included in the outer section, whereas most of the values are included within the inner section to fulfill different managerial purposes. According to the percentages of outlier cases, a suitable forecasting strategy can be selected. To derive the values of parameters in the IFN-based fuzzy productivity learning model, an MBQP model is proposed and optimized. Subsequently, according to the selected forecasting strategy, the OWA method is applied to defuzzify a fuzzy productivity forecast. The proposed methodology has been applied to the real case of a dynamic random access memory factory to evaluate its effectiveness. The experimental results indicate that the proposed methodology was superior to several existing methods, especially in terms of mean absolute error, mean absolute percentage error, and root mean square error in evaluating the forecasting accuracy. The forecasting precision achieved using the proposed methodology was also satisfactory.
AbstractList Existing methods for forecasting the productivity of a factory are subject to a major drawback—the lower and upper bounds of productivity are usually determined by a few extreme cases, which unacceptably widens the productivity range. To address this drawback, an interval fuzzy number (IFN)-based mixed binary quadratic programming (MBQP)–ordered weighted average (OWA) approach is proposed in this study for modeling an uncertain productivity learning process. In the proposed methodology, the productivity range is divided into the inner and outer sections, which correspond to the lower and upper membership functions of an IFN-based fuzzy productivity forecast, respectively. In this manner, all actual values are included in the outer section, whereas most of the values are included within the inner section to fulfill different managerial purposes. According to the percentages of outlier cases, a suitable forecasting strategy can be selected. To derive the values of parameters in the IFN-based fuzzy productivity learning model, an MBQP model is proposed and optimized. Subsequently, according to the selected forecasting strategy, the OWA method is applied to defuzzify a fuzzy productivity forecast. The proposed methodology has been applied to the real case of a dynamic random access memory factory to evaluate its effectiveness. The experimental results indicate that the proposed methodology was superior to several existing methods, especially in terms of mean absolute error, mean absolute percentage error, and root mean square error in evaluating the forecasting accuracy. The forecasting precision achieved using the proposed methodology was also satisfactory.
Author Chiu, Min-Chi
Hsu, Keng-Wei
Chen, Tin-Chih Toly
Author_xml – sequence: 1
  givenname: Min-Chi
  orcidid: 0000-0001-6938-2391
  surname: Chiu
  fullname: Chiu, Min-Chi
– sequence: 2
  givenname: Tin-Chih Toly
  surname: Chen
  fullname: Chen, Tin-Chih Toly
– sequence: 3
  givenname: Keng-Wei
  surname: Hsu
  fullname: Hsu, Keng-Wei
BookMark eNptkE9LAzEUxIMoWGtPfoG9y2o2_3ZzlGK10KIHi8flbTZpU7aJZNPC9tO7tUWK-C7zGGZ-h7lBl847jdBdhh8olfhxA3FVYIGlLC7QgBCSp3nvX57912jUtmvcn8xoweQAfc59rRvrlgm4ZOGUDhGsS96Dr7cq2p2NXTLTENwh0rtKt22yaE-FqYs67KBJJtv9vkvmOq587Ru_7G7RlYGm1aOTDtFi8vwxfk1nby_T8dMsVZSKmMqq4JRU2GRM1ZjWRZ7VmhFQQhPFgNccKkG04hWlGRcmzwyjBBNqiJCMcjpE0yO39rAuv4LdQOhKD7b8MXxYlhCiVY0uRSEZz7HJq0IwxTEQoikx0iicEy6hZ90fWSr4tg3a_PIyXB4mLs8m7tPZn7SyEaL1Lgawzb-db2lsgTQ
CitedBy_id crossref_primary_10_1007_s40747_021_00416_8
crossref_primary_10_3390_math9101101
crossref_primary_10_3390_math9161892
crossref_primary_10_1007_s00500_023_09136_2
crossref_primary_10_3390_joitmc7010079
crossref_primary_10_3390_math9233009
crossref_primary_10_1177_21582440241241410
crossref_primary_10_3390_en14238107
crossref_primary_10_1007_s12652_020_02435_8
crossref_primary_10_1038_s41598_023_31518_7
crossref_primary_10_1109_TEM_2024_3374517
Cites_doi 10.1007/s40747-020-00130-x
10.1007/s12351-019-00489-x
10.1007/s00170-019-03691-5
10.1007/s00521-016-2270-3
10.1142/S0218488508005030
10.1016/j.eswa.2012.07.066
10.1016/0165-0114(94)90144-9
10.1007/s00521-018-03988-8
10.1016/j.knosys.2013.03.004
10.1016/j.neucom.2017.10.051
10.1007/s40747-018-0081-0
10.1007/s40747-018-0076-x
10.1016/j.asoc.2020.106455
10.1016/j.knosys.2012.11.007
10.1109/WEIT.2011.19
10.1016/j.fss.2007.04.013
10.3390/sym10020045
10.1007/s10588-017-9242-8
10.1016/j.mcm.2011.07.003
10.1109/TIM.2009.2036347
10.1016/j.asoc.2014.08.003
10.1007/s12652-019-01302-5
10.1007/s10588-017-9262-4
10.2991/ijcis.d.190712.001
10.1016/S0165-0114(96)00368-5
10.1007/s00521-017-3093-6
10.1016/0165-0114(89)90205-4
10.1007/s12351-019-00483-3
10.1007/978-3-642-23960-1_9
10.1016/0020-0255(75)90046-8
10.5539/ijbm.v6n7p164
10.1155/2013/234571
10.1016/0165-0114(88)90054-1
10.1016/j.cie.2013.07.014
10.1080/08956308.2002.11671501
10.1007/s00500-019-04394-5
10.1002/int.21866
10.1016/j.cie.2018.07.002
10.1016/j.fss.2004.10.022
10.1007/s00170-019-03998-3
10.5220/0007830700400050
10.3386/w24001
10.1002/int.22033
10.1016/j.promfg.2017.04.022
10.1007/s12652-017-0504-6
10.3390/su6129441
10.1007/s40747-019-0098-z
10.1109/TFUZZ.2013.2250290
10.1016/j.asoc.2009.03.006
10.1007/s10588-018-09287-w
10.1007/s00521-018-3492-3
10.1007/BF00159729
10.1007/978-3-642-17910-5
10.1007/s12652-018-0912-2
10.1016/j.promfg.2018.10.021
10.1007/s00170-013-5100-0
10.1177/0954405419896117
10.1002/jtr.2168
10.1126/science.1091277
10.1007/s12190-018-1193-9
10.1007/s10588-018-09284-z
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/math8060998
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_6894570f7b864c50a22e32f9fc07259a
10_3390_math8060998
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
ID FETCH-LOGICAL-c336t-9b8532b0f14cd03d871de42ac6e2c4a5d5ab62ec5b33156f71f432023f2694353
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000554695400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:05:08 EDT 2025
Tue Nov 18 20:57:10 EST 2025
Sat Nov 29 07:15:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-9b8532b0f14cd03d871de42ac6e2c4a5d5ab62ec5b33156f71f432023f2694353
ORCID 0000-0001-6938-2391
OpenAccessLink https://doaj.org/article/6894570f7b864c50a22e32f9fc07259a
ParticipantIDs doaj_primary_oai_doaj_org_article_6894570f7b864c50a22e32f9fc07259a
crossref_primary_10_3390_math8060998
crossref_citationtrail_10_3390_math8060998
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lin (ref_50) 2019; 105
Zhang (ref_69) 2018; 20
Hu (ref_28) 2013; 43
Rahman (ref_64) 2019; 5
ref_13
ref_11
Xu (ref_27) 2019; 34
Lin (ref_47) 2020; 234
ref_54
ref_52
Zeng (ref_30) 2013; 40
Hashemian (ref_12) 2011; 60
Chen (ref_68) 2020; 94
Chen (ref_72) 2017; 32
Chen (ref_35) 2019; 131
Muhuri (ref_25) 2017; 26
Broumi (ref_23) 2019; 5
ref_61
Chen (ref_42) 2012; 8
Chen (ref_53) 2008; 16
Hidalgo (ref_56) 2018; 275
Asemi (ref_8) 2011; 6
Lee (ref_31) 2016; 24
ref_24
Atanassov (ref_59) 1989; 31
Emrouznejad (ref_18) 2011; 54
Chen (ref_21) 2019; 25
Zeng (ref_67) 2019; 12
Blancett (ref_63) 2002; 45
Mendel (ref_34) 2007; 2
ref_29
ref_26
Lin (ref_65) 2019; 5
Wei (ref_60) 2013; 46
(ref_46) 2018; 24
Guijun (ref_22) 1998; 98
Chen (ref_71) 2007; 158
Shamsuddin (ref_9) 2014; 1
Wang (ref_70) 2018; 17
Appelbaum (ref_14) 1991; 2
Hougaard (ref_17) 2005; 152
ref_39
Samanta (ref_40) 2019; 31
Chen (ref_57) 2009; 9
ref_38
(ref_5) 2001; 47
Chen (ref_6) 2013; 66
Akano (ref_58) 2017; 3
Zadeh (ref_16) 1975; 8
Chen (ref_55) 2013; 22
Wang (ref_19) 2013; 5
Tsai (ref_49) 2014; 6
Chen (ref_15) 2014; 24
Chen (ref_20) 2016; 87
ref_45
Javanmard (ref_33) 2019; 59
ref_44
Chen (ref_32) 2020; 11
ref_43
Jaeger (ref_66) 2004; 304
Peters (ref_51) 1994; 63
Garg (ref_62) 2017; 23
ref_1
Baena (ref_36) 2017; 9
Tanaka (ref_41) 1988; 272
ref_3
Gerogiannis (ref_10) 2010; 2
Chen (ref_37) 2018; 9
Chen (ref_2) 2017; 28
Chen (ref_48) 2019; 103
ref_4
ref_7
References_xml – ident: ref_24
  doi: 10.1007/s40747-020-00130-x
– volume: 2
  start-page: 361
  year: 2010
  ident: ref_10
  article-title: A case study for project and portfolio management information system selection: A group AHP-scoring model approach
  publication-title: Int. J. Proj. Organ. Manag.
– ident: ref_3
  doi: 10.1007/s12351-019-00489-x
– volume: 103
  start-page: 1721
  year: 2019
  ident: ref_48
  article-title: An advanced IoT system for assisting ubiquitous manufacturing with 3D printing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-03691-5
– volume: 28
  start-page: 3507
  year: 2017
  ident: ref_2
  article-title: New fuzzy method for improving the precision of productivity pre-dictions for a factory
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2270-3
– volume: 16
  start-page: 35
  year: 2008
  ident: ref_53
  article-title: A fuzzy-neural system incorporating unequally important expert opinions for semiconductor yield forecasting
  publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S0218488508005030
– volume: 40
  start-page: 543
  year: 2013
  ident: ref_30
  article-title: Group multi-criteria decision making based upon interval-valued fuzzy numbers: An extension of the MULTIMOORA method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.066
– volume: 63
  start-page: 45
  year: 1994
  ident: ref_51
  article-title: Fuzzy linear regression with fuzzy intervals
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(94)90144-9
– ident: ref_39
  doi: 10.1007/s00521-018-03988-8
– volume: 46
  start-page: 43
  year: 2013
  ident: ref_60
  article-title: Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.03.004
– volume: 275
  start-page: 1954
  year: 2018
  ident: ref_56
  article-title: Wilcoxon rank sum test drift detector
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.051
– volume: 5
  start-page: 303
  year: 2019
  ident: ref_65
  article-title: An advanced fuzzy collaborative intelligence approach for fitting the uncertain unit cost learning process
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-018-0081-0
– volume: 24
  start-page: 384
  year: 2016
  ident: ref_31
  article-title: An intervalvalued fuzzy number approach for supplier selection
  publication-title: J. Mar. Sci. Technol.
– volume: 8
  start-page: 7679
  year: 2012
  ident: ref_42
  article-title: A collaborative fuzzy-neural system for global CO2 concentration forecasting
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 5
  start-page: 41
  year: 2019
  ident: ref_64
  article-title: Interval-valued Pythagorean fuzzy Einstein hybrid weighted averaging aggregation operator and their application to group decision making
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-018-0076-x
– volume: 94
  start-page: 106455
  year: 2020
  ident: ref_68
  article-title: A fuzzy collaborative forecasting approach considering experts’ unequal levels of authority
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106455
– ident: ref_1
– volume: 43
  start-page: 21
  year: 2013
  ident: ref_28
  article-title: Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.11.007
– ident: ref_29
  doi: 10.1109/WEIT.2011.19
– volume: 158
  start-page: 2153
  year: 2007
  ident: ref_71
  article-title: Incorporating fuzzy c-means and a back-propagation network ensemble to job completion time prediction in a semiconductor fabrication factory
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2007.04.013
– ident: ref_44
  doi: 10.3390/sym10020045
– volume: 23
  start-page: 546
  year: 2017
  ident: ref_62
  article-title: Confidence levels based Pythagorean fuzzy aggregation operators and its application to decision-making process
  publication-title: Comput. Math. Organ. Theory
  doi: 10.1007/s10588-017-9242-8
– volume: 54
  start-page: 2827
  year: 2011
  ident: ref_18
  article-title: An overall profit Malmquist productivity index with fuzzy and interval data
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.07.003
– volume: 2
  start-page: 20
  year: 2007
  ident: ref_34
  article-title: Type-2 fuzzy sets and systems: An overview
  publication-title: IEEE Comput. Intell. Mag.
– volume: 1
  start-page: 1279
  year: 2014
  ident: ref_9
  article-title: The role of different types of information systems in business organizations: A review
  publication-title: Int. J. Res.
– volume: 60
  start-page: 3480
  year: 2011
  ident: ref_12
  article-title: State-of-the-art predictive maintenance techniques
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2036347
– volume: 24
  start-page: 511
  year: 2014
  ident: ref_15
  article-title: Forecasting the productivity of a virtual enterprise by agent-based fuzzy collaborative intelligence—With Facebook as an example
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.003
– volume: 26
  start-page: 1339
  year: 2017
  ident: ref_25
  article-title: Multiobjective reliability redun-dancy allocation problem with interval type-2 fuzzy uncertainty
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 11
  start-page: 1213
  year: 2020
  ident: ref_32
  article-title: Interval fuzzy number-based approach for modeling an uncertain fuzzy yield learning process
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01302-5
– ident: ref_54
  doi: 10.1007/s10588-017-9262-4
– volume: 12
  start-page: 809
  year: 2019
  ident: ref_67
  article-title: Information structures in an incomplete interval-valued information system
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.d.190712.001
– ident: ref_52
– volume: 98
  start-page: 331
  year: 1998
  ident: ref_22
  article-title: The applications of interval-valued fuzzy numbers and interval-distribution numbers
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(96)00368-5
– volume: 31
  start-page: 605
  year: 2019
  ident: ref_40
  article-title: A multi-item transportation problem with mode of transportation preference by MCDM method in interval type-2 fuzzy environment
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3093-6
– volume: 31
  start-page: 343
  year: 1989
  ident: ref_59
  article-title: Interval valued intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(89)90205-4
– ident: ref_4
  doi: 10.1007/s12351-019-00483-3
– ident: ref_11
  doi: 10.1007/978-3-642-23960-1_9
– volume: 8
  start-page: 301
  year: 1975
  ident: ref_16
  article-title: The concept of a linguistic variable and its application to approximate reasoning—II
  publication-title: Inf. Sci.
  doi: 10.1016/0020-0255(75)90046-8
– volume: 47
  start-page: 1311
  year: 2001
  ident: ref_5
  article-title: Creating and transferring knowledge for productivity improvement in factories
  publication-title: Manag. Sci.
– volume: 6
  start-page: 164
  year: 2011
  ident: ref_8
  article-title: The role of management information system (MIS) and Decision support system (DSS) for manager’s decision making process
  publication-title: Int. J. Bus. Manag.
  doi: 10.5539/ijbm.v6n7p164
– volume: 5
  start-page: 234571
  year: 2013
  ident: ref_19
  article-title: A fuzzy collaborative forecasting approach for forecasting the productivity of a factory
  publication-title: Adv. Mech. Eng.
  doi: 10.1155/2013/234571
– volume: 272
  start-page: 275
  year: 1988
  ident: ref_41
  article-title: Possibilistic linear systems and their application to the linear regression model
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(88)90054-1
– volume: 66
  start-page: 476
  year: 2013
  ident: ref_6
  article-title: A collaborative and artificial intelligence approach for semiconductor cost forecasting
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2013.07.014
– volume: 45
  start-page: 54
  year: 2002
  ident: ref_63
  article-title: Learning from productivity learning curves
  publication-title: Res. Technol. Manag
  doi: 10.1080/08956308.2002.11671501
– ident: ref_26
  doi: 10.1007/s00500-019-04394-5
– volume: 32
  start-page: 394
  year: 2017
  ident: ref_72
  article-title: Feasibility evaluation and optimization of a smart manufacturing system based on 3D printing: A review
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21866
– volume: 131
  start-page: 455
  year: 2019
  ident: ref_35
  article-title: An innovative yield learning model considering multiple learning sources and learning source interactions
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.07.002
– volume: 152
  start-page: 455
  year: 2005
  ident: ref_17
  article-title: A simple approximation of productivity scores of fuzzy production plans
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2004.10.022
– volume: 105
  start-page: 4171
  year: 2019
  ident: ref_50
  article-title: 3D printing technologies for enhancing the sustainability of an aircraft manufacturing or MRO company—A multi-expert partial consensus-FAHP analysis
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-03998-3
– ident: ref_7
  doi: 10.5220/0007830700400050
– ident: ref_13
  doi: 10.3386/w24001
– volume: 34
  start-page: 3
  year: 2019
  ident: ref_27
  article-title: Bonferroni means with induced ordered weighted average operators
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22033
– volume: 9
  start-page: 73
  year: 2017
  ident: ref_36
  article-title: Learning factory: The path to industry 4.0
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2017.04.022
– volume: 9
  start-page: 1013
  year: 2018
  ident: ref_37
  article-title: An innovative fuzzy and artificial neural network approach for forecasting yield under an uncertain learning environment
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-017-0504-6
– volume: 6
  start-page: 9441
  year: 2014
  ident: ref_49
  article-title: Enhancing the sustainability of a location-aware service through optimization
  publication-title: Sustainability
  doi: 10.3390/su6129441
– volume: 5
  start-page: 371
  year: 2019
  ident: ref_23
  article-title: Shortest path problem in fuzzy, intuitionistic fuzzy and neutrosophic environment: An overview
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-019-0098-z
– volume: 22
  start-page: 201
  year: 2013
  ident: ref_55
  article-title: An agent-based fuzzy collaborative intelligence approach for precise and accurate semiconductor yield forecasting
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2250290
– volume: 9
  start-page: 1225
  year: 2009
  ident: ref_57
  article-title: Fuzzy-neural approaches with example post-classification for estimating job cycle time in a wafer fab
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.03.006
– volume: 25
  start-page: 85
  year: 2019
  ident: ref_21
  article-title: A fuzzy polynomial fitting and mathematical programming approach for enhancing the accuracy and precision of productivity forecasting
  publication-title: Comput. Math. Organ. Theory
  doi: 10.1007/s10588-018-09287-w
– ident: ref_38
  doi: 10.1007/s00521-018-3492-3
– volume: 2
  start-page: 157
  year: 1991
  ident: ref_14
  article-title: Uncertainty and the measurement of productivity
  publication-title: J. Product. Anal.
  doi: 10.1007/BF00159729
– ident: ref_45
  doi: 10.1007/978-3-642-17910-5
– ident: ref_61
  doi: 10.1007/s12652-018-0912-2
– volume: 17
  start-page: 110
  year: 2018
  ident: ref_70
  article-title: A direct-solution fuzzy collaborative intelligence approach for yield forecasting in semiconductor manufacturing
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.10.021
– ident: ref_43
– volume: 87
  start-page: 1435
  year: 2016
  ident: ref_20
  article-title: Evaluating sustainable advantages in productivity with a systematic procedure
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-5100-0
– volume: 234
  start-page: 1044
  year: 2020
  ident: ref_47
  article-title: A multibelief analytic hierarchy process and nonlinear programming approach for diversifying product designs: Smart backpack design as an example
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1177/0954405419896117
– volume: 20
  start-page: 158
  year: 2018
  ident: ref_69
  article-title: An integrative framework for collaborative forecasting in tourism supply chains
  publication-title: Int. J. Tour. Res.
  doi: 10.1002/jtr.2168
– volume: 304
  start-page: 78
  year: 2004
  ident: ref_66
  article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 59
  start-page: 597
  year: 2019
  ident: ref_33
  article-title: Rankings and operations for interval type-2 fuzzy numbers: A review and some new methods
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-018-1193-9
– volume: 24
  start-page: 441
  year: 2018
  ident: ref_46
  article-title: Subjective stakeholder dynamics relationships treatment: A methodological approach using fuzzy decision-making
  publication-title: Comput. Math. Organ. Theory
  doi: 10.1007/s10588-018-09284-z
– volume: 3
  start-page: 102
  year: 2017
  ident: ref_58
  article-title: Productivity forecast of a manufacturing sys-tem through intelligent modelling
  publication-title: Futo J. Ser.
SSID ssj0000913849
Score 2.1952345
Snippet Existing methods for forecasting the productivity of a factory are subject to a major drawback—the lower and upper bounds of productivity are usually...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 998
SubjectTerms interval fuzzy number
learning
mixed binary quadratic programming
ordered weighted average
productivity
Title Modeling an Uncertain Productivity Learning Process Using an Interval Fuzzy Methodology
URI https://doaj.org/article/6894570f7b864c50a22e32f9fc07259a
Volume 8
WOSCitedRecordID wos000554695400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0yuNCF-MTxRRazEsqkeTVZqszgwg6zcHB2pXmpIFXmITgLv90krUMFwY2bLkpSyr2hOSe99xwAepgZLozgSamQSWiKbFJigxKHsDScKqXqRuG7bDQS06kct6y-Qk1YLQ9cB67PhaQsQy5TglPNUImxJdhJp1HmoXuERh71tMhU_AbLlAgq64Y84nl93-O_J4G4B0TixxbUUuqPW8pwF-w0WBBe1e-wBzZstQ-287WQ6vwAPASvstAxDssKTnyC4g98OK51WqPxA2wkUh9hU_QPYxlAmBCP-_xSgsPlavUB8-gWHc_RD8FkOLi_uU0aL4REE8IXiVR-X8UKuZRqg4jxPMdYikvNLda0ZIaVimOrmSLEUzKXpY5Ga3QXWlUJI0egU71W9hhAnVIjdKYC1AmEScZ-U8w1slhohbvg8js8hW6EwoNfxUvhCUOIZdGKZRf01oPfan2M34ddhzivhwRR63jDp7poUl38leqT_3jIKdjCgTLHg5Qz0FnMlvYcbOr3xfN8dhFXkb_mn4MvhhDNEg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+an+Uncertain+Productivity+Learning+Process+Using+an+Interval+Fuzzy+Methodology&rft.jtitle=Mathematics+%28Basel%29&rft.au=Chiu%2C+Min-Chi&rft.au=Chen%2C+Tin-Chih+Toly&rft.au=Hsu%2C+Keng-Wei&rft.date=2020-06-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=8&rft.issue=6&rft.spage=998&rft_id=info:doi/10.3390%2Fmath8060998&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math8060998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon