An efficient k′-means clustering algorithm

This paper introduces k′-means algorithm that performs correct clustering without pre-assigning the exact number of clusters. This is achieved by minimizing a suggested cost-function. The cost-function extends the mean-square-error cost-function of k-means. The algorithm consists of two separate ste...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 29; číslo 9; s. 1385 - 1391
Hlavní autor: Žalik, Krista Rizman
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.07.2008
Elsevier
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces k′-means algorithm that performs correct clustering without pre-assigning the exact number of clusters. This is achieved by minimizing a suggested cost-function. The cost-function extends the mean-square-error cost-function of k-means. The algorithm consists of two separate steps. The first is a pre-processing procedure that performs initial clustering and assigns at least one seed point to each cluster. During the second step, the seed-points are adjusted to minimize the cost-function. The algorithm automatically penalizes any possible winning chances for all rival seed-points in subsequent iterations. When the cost-function reaches a global minimum, the correct number of clusters is determined and the remaining seed points are located near the centres of actual clusters. The simulated experiments described in this paper confirm good performance of the proposed algorithm.
ISSN:0167-8655
1872-7344
DOI:10.1016/j.patrec.2008.02.014