Decentralized Edge Intelligence: A Dynamic Resource Allocation Framework for Hierarchical Federated Learning
To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is pro...
Uloženo v:
| Vydáno v: | IEEE transactions on parallel and distributed systems Ročník 33; číslo 3; s. 536 - 550 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1045-9219, 1558-2183 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is produced. One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm known as Federated Learning (FL), which enables data owners to conduct model training without having to transmit their raw data to third-party servers. However, the FL network is envisioned to involve thousands of heterogeneous distributed devices. As a result, communication inefficiency remains a key bottleneck. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this article, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange for the data owners' participation, and the data owners are free to choose which cluster to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, each cluster head can choose to serve a model owner, whereas the model owners have to compete amongst each other for the services of the cluster heads. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head's services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing properties of the deep learning based auction. |
|---|---|
| AbstractList | To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is produced. One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm known as Federated Learning (FL), which enables data owners to conduct model training without having to transmit their raw data to third-party servers. However, the FL network is envisioned to involve thousands of heterogeneous distributed devices. As a result, communication inefficiency remains a key bottleneck. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this article, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange for the data owners’ participation, and the data owners are free to choose which cluster to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, each cluster head can choose to serve a model owner, whereas the model owners have to compete amongst each other for the services of the cluster heads. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head's services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing properties of the deep learning based auction. |
| Author | Xiong, Zehui Zhang, Yang Ng, Jer Shyuan Jin, Jiangming Miao, Chunyan Niyato, Dusit Leung, Cyril Lim, Wei Yang Bryan |
| Author_xml | – sequence: 1 givenname: Wei Yang Bryan orcidid: 0000-0003-2150-5561 surname: Lim fullname: Lim, Wei Yang Bryan email: limw0201@e.ntu.edu.sg organization: Alibaba Group and Alibaba-NTU Joint Research Institute (JRI), Nanyang Technological University (NTU), Singapore, Singapore – sequence: 2 givenname: Jer Shyuan orcidid: 0000-0003-2772-8977 surname: Ng fullname: Ng, Jer Shyuan email: s190068@e.ntu.edu.sg organization: Alibaba Group and Alibaba-NTU Joint Research Institute (JRI), Nanyang Technological University (NTU), Singapore, Singapore – sequence: 3 givenname: Zehui orcidid: 0000-0002-4440-941X surname: Xiong fullname: Xiong, Zehui email: zehui_xiong@sutd.edu.sg organization: Information Systems Technology and Design (ISTD) Pillar, Singapore University of Technology and Design, Singapore, Singapore – sequence: 4 givenname: Jiangming surname: Jin fullname: Jin, Jiangming email: jiangming.jin@outlook.com organization: TuSimple, Beijing 100016, China – sequence: 5 givenname: Yang orcidid: 0000-0001-9229-7689 surname: Zhang fullname: Zhang, Yang email: yangzhang@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China – sequence: 6 givenname: Dusit orcidid: 0000-0002-7442-7416 surname: Niyato fullname: Niyato, Dusit email: dniyato@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore, Singapore – sequence: 7 givenname: Cyril orcidid: 0000-0001-9911-2069 surname: Leung fullname: Leung, Cyril email: cleung@ece.ubc.ca organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), Singapore, Singapore – sequence: 8 givenname: Chunyan orcidid: 0000-0002-0300-3448 surname: Miao fullname: Miao, Chunyan email: ascymiao@ntu.edu.sg organization: SCSE, Nanyang Technological University (NTU), Singapore, Singapore |
| BookMark | eNp9kE9LAzEQxYMoWP98APES8Lw1k02yG2_FWhUKitbzkmZna2qa1ewW0U9vasWDBxnIJPDem8zvgOyGNiAhJ8CGAEyfz-7Hj0POOAxzphUr1A4ZgJRlxqHMd9OdCZlpDnqfHHTdkjEQkokB8WO0GPpovPvEml7VC6S3oUfv3QKDxQs6ouOPYFbO0gfs2nW0SEfet9b0rg10Es0K39v4Qps20huH0UT77KzxdIJ1evUpdYomBhcWR2SvMb7D459-SJ4mV7PLm2x6d317OZpmNs9Vn2ktal0UXJcqHY1UUAo2Z6opoS5QSBBWqDkAYNqc18pwkFjDfC4Nlrlq8kNyts19je3bGru-WqaPhzSy4lLxPFUhkqrYqmxsuy5iU1nXf2-VcDhfAas2aKsN2mqDtvpBm5zwx_ka3crEj389p1uPQ8RfvRaFLkqVfwHa94YL |
| CODEN | ITDSEO |
| CitedBy_id | crossref_primary_10_1109_TCOMM_2024_3420733 crossref_primary_10_1109_TMC_2023_3343715 crossref_primary_10_1109_COMST_2024_3446585 crossref_primary_10_1109_TMC_2023_3294180 crossref_primary_10_1109_TPDS_2024_3493953 crossref_primary_10_1109_ACCESS_2025_3607738 crossref_primary_10_1002_int_22951 crossref_primary_10_1109_JIOT_2024_3383896 crossref_primary_10_1109_JIOT_2024_3427686 crossref_primary_10_1109_TMC_2025_3527048 crossref_primary_10_1109_TPDS_2023_3334398 crossref_primary_10_1007_s11704_023_3282_7 crossref_primary_10_1109_TWC_2023_3235894 crossref_primary_10_1109_TMC_2022_3221212 crossref_primary_10_1109_TMC_2024_3515037 crossref_primary_10_3390_electronics11060879 crossref_primary_10_1109_JIOT_2023_3285937 crossref_primary_10_1109_TII_2022_3170900 crossref_primary_10_1109_TPDS_2023_3250513 crossref_primary_10_1109_JIOT_2022_3201117 crossref_primary_10_1109_TCC_2025_3574823 crossref_primary_10_1016_j_comnet_2025_111458 crossref_primary_10_3233_JCS_220042 crossref_primary_10_1109_TBDATA_2025_3527202 crossref_primary_10_1109_TCYB_2022_3219452 crossref_primary_10_1109_TMC_2023_3309497 crossref_primary_10_1109_JSAC_2024_3365901 crossref_primary_10_1109_ACCESS_2024_3486775 crossref_primary_10_1109_TVT_2024_3364515 crossref_primary_10_1109_JIOT_2024_3477494 crossref_primary_10_1007_s11082_023_05382_8 crossref_primary_10_1007_s10723_024_09749_3 crossref_primary_10_1109_JIOT_2024_3492274 crossref_primary_10_1109_COMST_2024_3353265 crossref_primary_10_1109_JSAC_2022_3180811 crossref_primary_10_1109_JIOT_2023_3314743 crossref_primary_10_1109_COMST_2024_3482978 crossref_primary_10_1016_j_comnet_2024_110510 crossref_primary_10_1109_MNET_2024_3522477 crossref_primary_10_1109_TNSE_2024_3508594 crossref_primary_10_1002_ett_4761 crossref_primary_10_1109_JIOT_2024_3394170 crossref_primary_10_1109_JIOT_2023_3281909 crossref_primary_10_1109_TMC_2021_3123195 crossref_primary_10_1109_JIOT_2025_3565005 crossref_primary_10_1109_TCCN_2024_3424840 crossref_primary_10_1109_TPDS_2025_3594694 crossref_primary_10_1109_LCOMM_2022_3210604 crossref_primary_10_1109_TVT_2022_3150004 crossref_primary_10_1109_TVT_2023_3287355 crossref_primary_10_1007_s00530_025_01719_3 crossref_primary_10_1109_JSTSP_2022_3222910 crossref_primary_10_1109_TSC_2024_3376256 crossref_primary_10_1109_TMC_2024_3423399 crossref_primary_10_1109_TVT_2022_3161099 crossref_primary_10_1109_TWC_2023_3342095 crossref_primary_10_1016_j_comnet_2025_111233 crossref_primary_10_1109_TII_2023_3280314 crossref_primary_10_1109_TVT_2024_3395292 crossref_primary_10_1109_ACCESS_2023_3318109 crossref_primary_10_1016_j_future_2024_05_045 crossref_primary_10_1109_TCCN_2025_3542862 crossref_primary_10_1109_TNET_2024_3363916 crossref_primary_10_1016_j_iot_2024_101242 crossref_primary_10_1109_TSC_2024_3376259 crossref_primary_10_1016_j_cie_2023_109592 crossref_primary_10_1016_j_jisa_2025_104164 crossref_primary_10_1016_j_knosys_2023_110763 crossref_primary_10_1109_TMC_2025_3573928 crossref_primary_10_1016_j_knosys_2023_110366 crossref_primary_10_1109_JSAC_2024_3459090 crossref_primary_10_1109_JIOT_2025_3557906 crossref_primary_10_1109_TKDE_2022_3178211 crossref_primary_10_1109_TGCN_2023_3310569 crossref_primary_10_1016_j_comnet_2022_108820 crossref_primary_10_1016_j_compeleceng_2025_110160 crossref_primary_10_1109_TCCN_2022_3147196 crossref_primary_10_3390_a15030096 crossref_primary_10_1109_JIOT_2023_3271692 crossref_primary_10_1109_JIOT_2023_3329128 crossref_primary_10_1109_TCC_2023_3285534 crossref_primary_10_1109_TMC_2022_3182876 crossref_primary_10_1109_JIOT_2023_3277553 crossref_primary_10_1109_COMST_2022_3221119 crossref_primary_10_1109_TWC_2024_3350923 crossref_primary_10_1016_j_future_2022_07_010 crossref_primary_10_1007_s40747_025_01887_9 crossref_primary_10_1016_j_jksuci_2024_101912 crossref_primary_10_1109_ACCESS_2023_3320766 crossref_primary_10_1016_j_comnet_2023_109650 crossref_primary_10_1016_j_vehcom_2024_100870 crossref_primary_10_1109_TCCN_2023_3329024 crossref_primary_10_1109_JSAC_2022_3180799 crossref_primary_10_1109_JIOT_2024_3509264 crossref_primary_10_1109_JIOT_2022_3151945 crossref_primary_10_3390_fi17030118 crossref_primary_10_1109_JSYST_2022_3193200 crossref_primary_10_1109_TMC_2025_3543295 crossref_primary_10_1109_JIOT_2025_3574538 crossref_primary_10_1109_JIOT_2022_3176305 crossref_primary_10_1109_JSTSP_2022_3224591 crossref_primary_10_1109_JSAC_2021_3126057 crossref_primary_10_1109_TII_2022_3192297 crossref_primary_10_3390_electronics14132512 crossref_primary_10_1109_TC_2023_3287043 crossref_primary_10_3390_fi14120363 crossref_primary_10_1109_JBHI_2022_3192648 crossref_primary_10_1109_TWC_2024_3491359 crossref_primary_10_1109_TWC_2022_3227768 crossref_primary_10_1109_COMST_2022_3175453 crossref_primary_10_1109_TPDS_2022_3225185 crossref_primary_10_1109_TVT_2023_3234550 crossref_primary_10_1109_TII_2022_3194627 crossref_primary_10_1109_TMC_2024_3388731 crossref_primary_10_1016_j_future_2023_09_008 crossref_primary_10_1109_JIOT_2023_3238354 crossref_primary_10_3390_electronics12183811 crossref_primary_10_1109_ACCESS_2023_3234761 crossref_primary_10_1109_JIOT_2022_3191671 crossref_primary_10_1109_JSAC_2023_3280970 crossref_primary_10_1016_j_artint_2025_104333 crossref_primary_10_1145_3625558 crossref_primary_10_1109_TC_2023_3239542 crossref_primary_10_1109_TPDS_2023_3322755 crossref_primary_10_1109_TNSE_2023_3328776 crossref_primary_10_1109_JIOT_2023_3265434 crossref_primary_10_1109_TNSE_2022_3176924 crossref_primary_10_1109_TPDS_2021_3139039 crossref_primary_10_1145_3624985 crossref_primary_10_1109_ACCESS_2024_3436009 crossref_primary_10_1109_TNSE_2022_3225292 crossref_primary_10_3390_s23177358 crossref_primary_10_1109_TETC_2022_3159282 crossref_primary_10_1109_TMC_2022_3178167 crossref_primary_10_1109_TMC_2024_3466208 crossref_primary_10_1109_TCDS_2023_3288985 crossref_primary_10_1109_ACCESS_2025_3526426 crossref_primary_10_1109_JIOT_2022_3151193 crossref_primary_10_1016_j_neucom_2023_126739 crossref_primary_10_1109_TMC_2024_3407792 crossref_primary_10_1016_j_comcom_2022_05_024 crossref_primary_10_1038_s41467_022_32020_w crossref_primary_10_1109_JETCAS_2023_3293253 crossref_primary_10_1109_TMC_2022_3201622 crossref_primary_10_1109_JSAC_2025_3574588 crossref_primary_10_1016_j_procs_2024_04_279 crossref_primary_10_1109_JSAC_2021_3118401 crossref_primary_10_1016_j_comnet_2024_110900 crossref_primary_10_1109_TNSE_2022_3163791 crossref_primary_10_1109_TON_2025_3538661 crossref_primary_10_1109_TNSE_2021_3136942 crossref_primary_10_3390_electronics11101530 crossref_primary_10_1109_TMC_2023_3276900 crossref_primary_10_1109_TPDS_2023_3240883 crossref_primary_10_3390_electronics12122689 crossref_primary_10_1109_JIOT_2023_3234422 crossref_primary_10_1109_TCCN_2024_3454273 crossref_primary_10_1109_TNNLS_2024_3362974 crossref_primary_10_1109_JIOT_2022_3224927 crossref_primary_10_1109_JIOT_2023_3315730 crossref_primary_10_1109_TAI_2023_3348073 crossref_primary_10_1109_JIOT_2023_3321325 crossref_primary_10_1109_TPDS_2022_3218807 crossref_primary_10_1109_TVT_2023_3278467 crossref_primary_10_1109_TCOMM_2024_3523968 crossref_primary_10_1109_TCCN_2022_3181032 crossref_primary_10_1109_TC_2023_3315066 crossref_primary_10_1109_TWC_2022_3226867 crossref_primary_10_1109_TNSM_2024_3387987 |
| Cites_doi | 10.1109/TWC.2019.2961673 10.1109/ISCC.2008.4625714 10.1109/JIOT.2019.2923566 10.1109/ICASSP40776.2020.9054634 10.1109/TITS.2018.2797697 10.1109/MWC.2016.7553028 10.1145/2983323.2983711 10.1109/TrustCom.2011.76 10.1109/MNET.2019.1800286 10.1109/JIOT.2016.2579198 10.1109/ICC.2018.8422743 10.1287/moor.6.1.58 10.1109/ICOIN48656.2020.9016505 10.1109/TMC.2013.96 10.1109/JIOT.2020.2985694 10.1016/j.ijmedinf.2018.01.007 10.1109/JSAC.2017.2659059 10.1109/JIOT.2020.2967772 10.1109/ICC.2019.8761315 10.1090/S0273-0979-03-00988-1 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00157 10.1109/COMST.2020.2986024 10.1109/TVT.2008.2004588 10.1007/978-1-4757-3108-8_5 10.1109/WCNC.2018.8377077 10.1109/MWCN.2002.1045790 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TPDS.2021.3096076 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 550 |
| ExternalDocumentID | 10_1109_TPDS_2021_3096076 9479786 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation Singapore grantid: AISG2-RP-2020-019; AISG-GC-2019-003 funderid: 10.13039/501100001381 – fundername: Alibaba Group – fundername: Ministry of Education - Singapore; Singapore Ministry of Education grantid: Tier 1 (RG16/20) funderid: 10.13039/501100001459 – fundername: Singapore University of Technology and Design; SUTD grantid: SRG-ISTD-2021-165 funderid: 10.13039/501100007040 – fundername: Alibaba-NTU Singapore Joint Research Institute – fundername: WASP/NTU) grantid: M4082187 (4080) – fundername: National Natural Science Foundation of China grantid: 62071343 funderid: 10.13039/501100001809 |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c336t-994d9772986729f561840b06f81d7e4514c46b111e1092d6a215ed1bb5ae836f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 222 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685886500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9219 |
| IngestDate | Sun Jun 29 12:54:54 EDT 2025 Tue Nov 18 21:39:57 EST 2025 Sat Nov 29 06:06:48 EST 2025 Wed Aug 27 02:25:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-994d9772986729f561840b06f81d7e4514c46b111e1092d6a215ed1bb5ae836f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0300-3448 0000-0003-2150-5561 0000-0001-9229-7689 0000-0001-9911-2069 0000-0003-2772-8977 0000-0002-7442-7416 0000-0002-4440-941X |
| OpenAccessLink | https://dr.ntu.edu.sg/bitstream/10356/156035/3/Decentralized_Edge_Intelligence_A_Dynamic_Resource_Allocation_Framework_for_Hierarchical_Federated_Learning.pdf |
| PQID | 2562323274 |
| PQPubID | 85437 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPDS_2021_3096076 proquest_journals_2562323274 crossref_primary_10_1109_TPDS_2021_3096076 ieee_primary_9479786 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref37 jia (ref28) 2019 ref36 ref31 ref33 ref11 ref32 ref2 ref1 ref39 ref38 ref16 ref19 ref18 mcmahan (ref5) 2016 chen (ref12) 2020 weibull (ref14) 1997 ref24 ref23 peltonen (ref15) 2020 kone?n? (ref17) 2016 ref26 bonawitz (ref10) 2019 ref25 ref22 yang (ref30) 2019 hard (ref6) 2018 ref21 lim (ref4) 2020 engwerda (ref35) 2005 lim (ref8) 2020 ref27 ref29 ref7 ref9 dütting (ref20) 2017 ref40 xu (ref3) 2020 |
| References_xml | – ident: ref18 doi: 10.1109/TWC.2019.2961673 – ident: ref24 doi: 10.1109/ISCC.2008.4625714 – ident: ref34 doi: 10.1109/JIOT.2019.2923566 – ident: ref11 doi: 10.1109/ICASSP40776.2020.9054634 – year: 2020 ident: ref4 article-title: Incentive mechanism design for resource sharing in collaborative edge learning – year: 2019 ident: ref30 article-title: Energy efficient federated learning over wireless communication networks – ident: ref37 doi: 10.1109/TITS.2018.2797697 – ident: ref26 doi: 10.1109/MWC.2016.7553028 – ident: ref22 doi: 10.1145/2983323.2983711 – ident: ref25 doi: 10.1109/TrustCom.2011.76 – year: 2005 ident: ref35 publication-title: LQ Dynamic Optimization and Differential Games – year: 2020 ident: ref15 article-title: 6G white paper on edge intelligence – ident: ref9 doi: 10.1109/MNET.2019.1800286 – year: 2017 ident: ref20 article-title: Optimal auctions through deep learning – year: 2020 ident: ref3 article-title: A survey on edge intelligence – ident: ref2 doi: 10.1109/JIOT.2016.2579198 – year: 2020 ident: ref8 article-title: Towards federated learning in UAV-enabled Internet of Vehicles: A multi-dimensional contract-matching approach – ident: ref40 doi: 10.1109/ICC.2018.8422743 – ident: ref39 doi: 10.1287/moor.6.1.58 – year: 2020 ident: ref12 article-title: Wireless communications for collaborative federated learning in the Internet of Things – year: 2016 ident: ref17 article-title: Federated optimization: Distributed machine learning for on-device intelligence – ident: ref19 doi: 10.1109/ICOIN48656.2020.9016505 – ident: ref29 doi: 10.1109/TMC.2013.96 – ident: ref16 doi: 10.1109/JIOT.2020.2985694 – ident: ref7 doi: 10.1016/j.ijmedinf.2018.01.007 – year: 1997 ident: ref14 publication-title: Evolutionary Game Theory – year: 2018 ident: ref6 article-title: Federated learning for mobile keyboard prediction – ident: ref31 doi: 10.1109/JSAC.2017.2659059 – ident: ref27 doi: 10.1109/JIOT.2020.2967772 – ident: ref13 doi: 10.1109/ICC.2019.8761315 – ident: ref33 doi: 10.1090/S0273-0979-03-00988-1 – ident: ref38 doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00157 – ident: ref1 doi: 10.1109/COMST.2020.2986024 – year: 2019 ident: ref10 article-title: Towards federated learning at scale: System design – year: 2019 ident: ref28 article-title: Towards efficient data valuation based on the Shapley value – year: 2016 ident: ref5 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref32 doi: 10.1109/TVT.2008.2004588 – ident: ref36 doi: 10.1007/978-1-4757-3108-8_5 – ident: ref21 doi: 10.1109/WCNC.2018.8377077 – ident: ref23 doi: 10.1109/MWCN.2002.1045790 |
| SSID | ssj0014504 |
| Score | 2.7003586 |
| Snippet | To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 536 |
| SubjectTerms | Artificial intelligence auction Clusters Computational modeling Data models Deep learning Edge computing edge intelligence evolutionary game Federated learning Game theory Games Machine learning Magnetic heads Performance evaluation Resource allocation Resource management Servers Stability analysis Training |
| Title | Decentralized Edge Intelligence: A Dynamic Resource Allocation Framework for Hierarchical Federated Learning |
| URI | https://ieeexplore.ieee.org/document/9479786 https://www.proquest.com/docview/2562323274 |
| Volume | 33 |
| WOSCitedRecordID | wos000685886500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3H9IgdPYrVt0qTxtrguCiKCCt5Kk0xlYVlFVw_-ejPZdFlQBCmUHhIofU3yJpl5D-CI4p7aWNq5tyYRmotEC6MS5KUtSrRSYHAtuVG3t-XTk76bg5NpLQwihuQzPKXHcJbvXuwHbZWdaaF80CPnYV4pNanVmp4YiCJYBfrooki0H4bxBDNL9dnDXe_eR4J5dsqJsJO8yMwaFExVfszEYXnpr_7vxdZgJdJI1p3gvg5zONqA1daigcURuwHLM3qDmzDsYUzGHHyhY5fuGdn1jCbnOeuy3sSinrX7-qw7pPWO8GP9NpOLearLrgZUvBy8VIasT6IUnrc6FhVbn7fgsX_5cHGVRLuFxHIux4nWwmki26X0t6YgK5jUpLLxlFah8MzKCmn83Ij-o-ZO1p4toMuMKWosuWz4NiyMXka4A6yxMjd-quAqb0TNM5O53NVSKMzqxod0HUhbACobtcjJEmNYhZgk1RVhVhFmVcSsA8fTLq8TIY6_Gm8SSNOGEZ8O7LcoV3Govlc5MUB_KbH7e689WMqp5iEknu3DwvjtAw9g0X6OB-9vh-Ev_AZ6rtkd |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10aWHrw_q10fRreuhTqVvbkmWrb6FpSFkaCk2hb8aSrksgpKNN-rBfP11FDoGOwTAYP0hgfCzpXOnecwBOKe6ptKGde6MjobiIlNB5hLwwWYFGCvSuJYN8OCyentT9Gpwva2EQ0Sef4QU9-rN8-2LmtFV2qUTugh75CdYzIdJkUa21PDMQmTcLdPFFFik3EMMZZhKry9F998HFgmlywYmyk8DIyirkbVU-zMV-gelt_d-rbcPXQCRZZ4H8DqzhdBe2GpMGFsbsLmyuKA7uwaSLIR1z_Bstu7HPyG5XVDmvWId1Fyb1rNnZZ50JrXiEIOs1uVzMkV3WH1P5sndTmbAeyVI45mpZ0Gx9_gaPvZvRdT8KhguR4VzOIqWEVUS3C-ludUZmMLGOZe1IbY7CcSsjpHazI7qPmlpZOb6ANtE6q7DgsubfoTV9meI-sNrIVLvJgudpLSqe6MSmtpIix6SqXVDXhrgBoDRBjZxMMSalj0piVRJmJWFWBszacLbs8mshxfGvxnsE0rJhwKcNRw3KZRisb2VKHNBduTj4e68f8Lk_uhuUg9vhz0P4klIFhE9DO4LW7HWOx7Bh3mfjt9cT_0f-Ae2f3GQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+Edge+Intelligence%3A+A+Dynamic+Resource+Allocation+Framework+for+Hierarchical+Federated+Learning&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Lim%2C+Wei+Yang+Bryan&rft.au=Ng%2C+Jer+Shyuan&rft.au=Xiong%2C+Zehui&rft.au=Jin%2C+Jiangming&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=33&rft.issue=3&rft.spage=536&rft.epage=550&rft_id=info:doi/10.1109%2FTPDS.2021.3096076&rft.externalDocID=9479786 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |