Decentralized Edge Intelligence: A Dynamic Resource Allocation Framework for Hierarchical Federated Learning

To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on parallel and distributed systems Ročník 33; číslo 3; s. 536 - 550
Hlavní autoři: Lim, Wei Yang Bryan, Ng, Jer Shyuan, Xiong, Zehui, Jin, Jiangming, Zhang, Yang, Niyato, Dusit, Leung, Cyril, Miao, Chunyan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1045-9219, 1558-2183
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is produced. One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm known as Federated Learning (FL), which enables data owners to conduct model training without having to transmit their raw data to third-party servers. However, the FL network is envisioned to involve thousands of heterogeneous distributed devices. As a result, communication inefficiency remains a key bottleneck. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this article, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange for the data owners' participation, and the data owners are free to choose which cluster to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, each cluster head can choose to serve a model owner, whereas the model owners have to compete amongst each other for the services of the cluster heads. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head's services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing properties of the deep learning based auction.
AbstractList To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is produced. One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm known as Federated Learning (FL), which enables data owners to conduct model training without having to transmit their raw data to third-party servers. However, the FL network is envisioned to involve thousands of heterogeneous distributed devices. As a result, communication inefficiency remains a key bottleneck. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this article, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange for the data owners’ participation, and the data owners are free to choose which cluster to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, each cluster head can choose to serve a model owner, whereas the model owners have to compete amongst each other for the services of the cluster heads. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head's services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing properties of the deep learning based auction.
Author Xiong, Zehui
Zhang, Yang
Ng, Jer Shyuan
Jin, Jiangming
Miao, Chunyan
Niyato, Dusit
Leung, Cyril
Lim, Wei Yang Bryan
Author_xml – sequence: 1
  givenname: Wei Yang Bryan
  orcidid: 0000-0003-2150-5561
  surname: Lim
  fullname: Lim, Wei Yang Bryan
  email: limw0201@e.ntu.edu.sg
  organization: Alibaba Group and Alibaba-NTU Joint Research Institute (JRI), Nanyang Technological University (NTU), Singapore, Singapore
– sequence: 2
  givenname: Jer Shyuan
  orcidid: 0000-0003-2772-8977
  surname: Ng
  fullname: Ng, Jer Shyuan
  email: s190068@e.ntu.edu.sg
  organization: Alibaba Group and Alibaba-NTU Joint Research Institute (JRI), Nanyang Technological University (NTU), Singapore, Singapore
– sequence: 3
  givenname: Zehui
  orcidid: 0000-0002-4440-941X
  surname: Xiong
  fullname: Xiong, Zehui
  email: zehui_xiong@sutd.edu.sg
  organization: Information Systems Technology and Design (ISTD) Pillar, Singapore University of Technology and Design, Singapore, Singapore
– sequence: 4
  givenname: Jiangming
  surname: Jin
  fullname: Jin, Jiangming
  email: jiangming.jin@outlook.com
  organization: TuSimple, Beijing 100016, China
– sequence: 5
  givenname: Yang
  orcidid: 0000-0001-9229-7689
  surname: Zhang
  fullname: Zhang, Yang
  email: yangzhang@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
– sequence: 6
  givenname: Dusit
  orcidid: 0000-0002-7442-7416
  surname: Niyato
  fullname: Niyato, Dusit
  email: dniyato@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore, Singapore
– sequence: 7
  givenname: Cyril
  orcidid: 0000-0001-9911-2069
  surname: Leung
  fullname: Leung, Cyril
  email: cleung@ece.ubc.ca
  organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), Singapore, Singapore
– sequence: 8
  givenname: Chunyan
  orcidid: 0000-0002-0300-3448
  surname: Miao
  fullname: Miao, Chunyan
  email: ascymiao@ntu.edu.sg
  organization: SCSE, Nanyang Technological University (NTU), Singapore, Singapore
BookMark eNp9kE9LAzEQxYMoWP98APES8Lw1k02yG2_FWhUKitbzkmZna2qa1ewW0U9vasWDBxnIJPDem8zvgOyGNiAhJ8CGAEyfz-7Hj0POOAxzphUr1A4ZgJRlxqHMd9OdCZlpDnqfHHTdkjEQkokB8WO0GPpovPvEml7VC6S3oUfv3QKDxQs6ouOPYFbO0gfs2nW0SEfet9b0rg10Es0K39v4Qps20huH0UT77KzxdIJ1evUpdYomBhcWR2SvMb7D459-SJ4mV7PLm2x6d317OZpmNs9Vn2ktal0UXJcqHY1UUAo2Z6opoS5QSBBWqDkAYNqc18pwkFjDfC4Nlrlq8kNyts19je3bGru-WqaPhzSy4lLxPFUhkqrYqmxsuy5iU1nXf2-VcDhfAas2aKsN2mqDtvpBm5zwx_ka3crEj389p1uPQ8RfvRaFLkqVfwHa94YL
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3420733
crossref_primary_10_1109_TMC_2023_3343715
crossref_primary_10_1109_COMST_2024_3446585
crossref_primary_10_1109_TMC_2023_3294180
crossref_primary_10_1109_TPDS_2024_3493953
crossref_primary_10_1109_ACCESS_2025_3607738
crossref_primary_10_1002_int_22951
crossref_primary_10_1109_JIOT_2024_3383896
crossref_primary_10_1109_JIOT_2024_3427686
crossref_primary_10_1109_TMC_2025_3527048
crossref_primary_10_1109_TPDS_2023_3334398
crossref_primary_10_1007_s11704_023_3282_7
crossref_primary_10_1109_TWC_2023_3235894
crossref_primary_10_1109_TMC_2022_3221212
crossref_primary_10_1109_TMC_2024_3515037
crossref_primary_10_3390_electronics11060879
crossref_primary_10_1109_JIOT_2023_3285937
crossref_primary_10_1109_TII_2022_3170900
crossref_primary_10_1109_TPDS_2023_3250513
crossref_primary_10_1109_JIOT_2022_3201117
crossref_primary_10_1109_TCC_2025_3574823
crossref_primary_10_1016_j_comnet_2025_111458
crossref_primary_10_3233_JCS_220042
crossref_primary_10_1109_TBDATA_2025_3527202
crossref_primary_10_1109_TCYB_2022_3219452
crossref_primary_10_1109_TMC_2023_3309497
crossref_primary_10_1109_JSAC_2024_3365901
crossref_primary_10_1109_ACCESS_2024_3486775
crossref_primary_10_1109_TVT_2024_3364515
crossref_primary_10_1109_JIOT_2024_3477494
crossref_primary_10_1007_s11082_023_05382_8
crossref_primary_10_1007_s10723_024_09749_3
crossref_primary_10_1109_JIOT_2024_3492274
crossref_primary_10_1109_COMST_2024_3353265
crossref_primary_10_1109_JSAC_2022_3180811
crossref_primary_10_1109_JIOT_2023_3314743
crossref_primary_10_1109_COMST_2024_3482978
crossref_primary_10_1016_j_comnet_2024_110510
crossref_primary_10_1109_MNET_2024_3522477
crossref_primary_10_1109_TNSE_2024_3508594
crossref_primary_10_1002_ett_4761
crossref_primary_10_1109_JIOT_2024_3394170
crossref_primary_10_1109_JIOT_2023_3281909
crossref_primary_10_1109_TMC_2021_3123195
crossref_primary_10_1109_JIOT_2025_3565005
crossref_primary_10_1109_TCCN_2024_3424840
crossref_primary_10_1109_TPDS_2025_3594694
crossref_primary_10_1109_LCOMM_2022_3210604
crossref_primary_10_1109_TVT_2022_3150004
crossref_primary_10_1109_TVT_2023_3287355
crossref_primary_10_1007_s00530_025_01719_3
crossref_primary_10_1109_JSTSP_2022_3222910
crossref_primary_10_1109_TSC_2024_3376256
crossref_primary_10_1109_TMC_2024_3423399
crossref_primary_10_1109_TVT_2022_3161099
crossref_primary_10_1109_TWC_2023_3342095
crossref_primary_10_1016_j_comnet_2025_111233
crossref_primary_10_1109_TII_2023_3280314
crossref_primary_10_1109_TVT_2024_3395292
crossref_primary_10_1109_ACCESS_2023_3318109
crossref_primary_10_1016_j_future_2024_05_045
crossref_primary_10_1109_TCCN_2025_3542862
crossref_primary_10_1109_TNET_2024_3363916
crossref_primary_10_1016_j_iot_2024_101242
crossref_primary_10_1109_TSC_2024_3376259
crossref_primary_10_1016_j_cie_2023_109592
crossref_primary_10_1016_j_jisa_2025_104164
crossref_primary_10_1016_j_knosys_2023_110763
crossref_primary_10_1109_TMC_2025_3573928
crossref_primary_10_1016_j_knosys_2023_110366
crossref_primary_10_1109_JSAC_2024_3459090
crossref_primary_10_1109_JIOT_2025_3557906
crossref_primary_10_1109_TKDE_2022_3178211
crossref_primary_10_1109_TGCN_2023_3310569
crossref_primary_10_1016_j_comnet_2022_108820
crossref_primary_10_1016_j_compeleceng_2025_110160
crossref_primary_10_1109_TCCN_2022_3147196
crossref_primary_10_3390_a15030096
crossref_primary_10_1109_JIOT_2023_3271692
crossref_primary_10_1109_JIOT_2023_3329128
crossref_primary_10_1109_TCC_2023_3285534
crossref_primary_10_1109_TMC_2022_3182876
crossref_primary_10_1109_JIOT_2023_3277553
crossref_primary_10_1109_COMST_2022_3221119
crossref_primary_10_1109_TWC_2024_3350923
crossref_primary_10_1016_j_future_2022_07_010
crossref_primary_10_1007_s40747_025_01887_9
crossref_primary_10_1016_j_jksuci_2024_101912
crossref_primary_10_1109_ACCESS_2023_3320766
crossref_primary_10_1016_j_comnet_2023_109650
crossref_primary_10_1016_j_vehcom_2024_100870
crossref_primary_10_1109_TCCN_2023_3329024
crossref_primary_10_1109_JSAC_2022_3180799
crossref_primary_10_1109_JIOT_2024_3509264
crossref_primary_10_1109_JIOT_2022_3151945
crossref_primary_10_3390_fi17030118
crossref_primary_10_1109_JSYST_2022_3193200
crossref_primary_10_1109_TMC_2025_3543295
crossref_primary_10_1109_JIOT_2025_3574538
crossref_primary_10_1109_JIOT_2022_3176305
crossref_primary_10_1109_JSTSP_2022_3224591
crossref_primary_10_1109_JSAC_2021_3126057
crossref_primary_10_1109_TII_2022_3192297
crossref_primary_10_3390_electronics14132512
crossref_primary_10_1109_TC_2023_3287043
crossref_primary_10_3390_fi14120363
crossref_primary_10_1109_JBHI_2022_3192648
crossref_primary_10_1109_TWC_2024_3491359
crossref_primary_10_1109_TWC_2022_3227768
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1109_TPDS_2022_3225185
crossref_primary_10_1109_TVT_2023_3234550
crossref_primary_10_1109_TII_2022_3194627
crossref_primary_10_1109_TMC_2024_3388731
crossref_primary_10_1016_j_future_2023_09_008
crossref_primary_10_1109_JIOT_2023_3238354
crossref_primary_10_3390_electronics12183811
crossref_primary_10_1109_ACCESS_2023_3234761
crossref_primary_10_1109_JIOT_2022_3191671
crossref_primary_10_1109_JSAC_2023_3280970
crossref_primary_10_1016_j_artint_2025_104333
crossref_primary_10_1145_3625558
crossref_primary_10_1109_TC_2023_3239542
crossref_primary_10_1109_TPDS_2023_3322755
crossref_primary_10_1109_TNSE_2023_3328776
crossref_primary_10_1109_JIOT_2023_3265434
crossref_primary_10_1109_TNSE_2022_3176924
crossref_primary_10_1109_TPDS_2021_3139039
crossref_primary_10_1145_3624985
crossref_primary_10_1109_ACCESS_2024_3436009
crossref_primary_10_1109_TNSE_2022_3225292
crossref_primary_10_3390_s23177358
crossref_primary_10_1109_TETC_2022_3159282
crossref_primary_10_1109_TMC_2022_3178167
crossref_primary_10_1109_TMC_2024_3466208
crossref_primary_10_1109_TCDS_2023_3288985
crossref_primary_10_1109_ACCESS_2025_3526426
crossref_primary_10_1109_JIOT_2022_3151193
crossref_primary_10_1016_j_neucom_2023_126739
crossref_primary_10_1109_TMC_2024_3407792
crossref_primary_10_1016_j_comcom_2022_05_024
crossref_primary_10_1038_s41467_022_32020_w
crossref_primary_10_1109_JETCAS_2023_3293253
crossref_primary_10_1109_TMC_2022_3201622
crossref_primary_10_1109_JSAC_2025_3574588
crossref_primary_10_1016_j_procs_2024_04_279
crossref_primary_10_1109_JSAC_2021_3118401
crossref_primary_10_1016_j_comnet_2024_110900
crossref_primary_10_1109_TNSE_2022_3163791
crossref_primary_10_1109_TON_2025_3538661
crossref_primary_10_1109_TNSE_2021_3136942
crossref_primary_10_3390_electronics11101530
crossref_primary_10_1109_TMC_2023_3276900
crossref_primary_10_1109_TPDS_2023_3240883
crossref_primary_10_3390_electronics12122689
crossref_primary_10_1109_JIOT_2023_3234422
crossref_primary_10_1109_TCCN_2024_3454273
crossref_primary_10_1109_TNNLS_2024_3362974
crossref_primary_10_1109_JIOT_2022_3224927
crossref_primary_10_1109_JIOT_2023_3315730
crossref_primary_10_1109_TAI_2023_3348073
crossref_primary_10_1109_JIOT_2023_3321325
crossref_primary_10_1109_TPDS_2022_3218807
crossref_primary_10_1109_TVT_2023_3278467
crossref_primary_10_1109_TCOMM_2024_3523968
crossref_primary_10_1109_TCCN_2022_3181032
crossref_primary_10_1109_TC_2023_3315066
crossref_primary_10_1109_TWC_2022_3226867
crossref_primary_10_1109_TNSM_2024_3387987
Cites_doi 10.1109/TWC.2019.2961673
10.1109/ISCC.2008.4625714
10.1109/JIOT.2019.2923566
10.1109/ICASSP40776.2020.9054634
10.1109/TITS.2018.2797697
10.1109/MWC.2016.7553028
10.1145/2983323.2983711
10.1109/TrustCom.2011.76
10.1109/MNET.2019.1800286
10.1109/JIOT.2016.2579198
10.1109/ICC.2018.8422743
10.1287/moor.6.1.58
10.1109/ICOIN48656.2020.9016505
10.1109/TMC.2013.96
10.1109/JIOT.2020.2985694
10.1016/j.ijmedinf.2018.01.007
10.1109/JSAC.2017.2659059
10.1109/JIOT.2020.2967772
10.1109/ICC.2019.8761315
10.1090/S0273-0979-03-00988-1
10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00157
10.1109/COMST.2020.2986024
10.1109/TVT.2008.2004588
10.1007/978-1-4757-3108-8_5
10.1109/WCNC.2018.8377077
10.1109/MWCN.2002.1045790
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2021.3096076
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 550
ExternalDocumentID 10_1109_TPDS_2021_3096076
9479786
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation Singapore
  grantid: AISG2-RP-2020-019; AISG-GC-2019-003
  funderid: 10.13039/501100001381
– fundername: Alibaba Group
– fundername: Ministry of Education - Singapore; Singapore Ministry of Education
  grantid: Tier 1 (RG16/20)
  funderid: 10.13039/501100001459
– fundername: Singapore University of Technology and Design; SUTD
  grantid: SRG-ISTD-2021-165
  funderid: 10.13039/501100007040
– fundername: Alibaba-NTU Singapore Joint Research Institute
– fundername: WASP/NTU)
  grantid: M4082187 (4080)
– fundername: National Natural Science Foundation of China
  grantid: 62071343
  funderid: 10.13039/501100001809
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-994d9772986729f561840b06f81d7e4514c46b111e1092d6a215ed1bb5ae836f3
IEDL.DBID RIE
ISICitedReferencesCount 222
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685886500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Sun Jun 29 12:54:54 EDT 2025
Tue Nov 18 21:39:57 EST 2025
Sat Nov 29 06:06:48 EST 2025
Wed Aug 27 02:25:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-994d9772986729f561840b06f81d7e4514c46b111e1092d6a215ed1bb5ae836f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0300-3448
0000-0003-2150-5561
0000-0001-9229-7689
0000-0001-9911-2069
0000-0003-2772-8977
0000-0002-7442-7416
0000-0002-4440-941X
OpenAccessLink https://dr.ntu.edu.sg/bitstream/10356/156035/3/Decentralized_Edge_Intelligence_A_Dynamic_Resource_Allocation_Framework_for_Hierarchical_Federated_Learning.pdf
PQID 2562323274
PQPubID 85437
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TPDS_2021_3096076
proquest_journals_2562323274
crossref_primary_10_1109_TPDS_2021_3096076
ieee_primary_9479786
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref37
jia (ref28) 2019
ref36
ref31
ref33
ref11
ref32
ref2
ref1
ref39
ref38
ref16
ref19
ref18
mcmahan (ref5) 2016
chen (ref12) 2020
weibull (ref14) 1997
ref24
ref23
peltonen (ref15) 2020
kone?n? (ref17) 2016
ref26
bonawitz (ref10) 2019
ref25
ref22
yang (ref30) 2019
hard (ref6) 2018
ref21
lim (ref4) 2020
engwerda (ref35) 2005
lim (ref8) 2020
ref27
ref29
ref7
ref9
dütting (ref20) 2017
ref40
xu (ref3) 2020
References_xml – ident: ref18
  doi: 10.1109/TWC.2019.2961673
– ident: ref24
  doi: 10.1109/ISCC.2008.4625714
– ident: ref34
  doi: 10.1109/JIOT.2019.2923566
– ident: ref11
  doi: 10.1109/ICASSP40776.2020.9054634
– year: 2020
  ident: ref4
  article-title: Incentive mechanism design for resource sharing in collaborative edge learning
– year: 2019
  ident: ref30
  article-title: Energy efficient federated learning over wireless communication networks
– ident: ref37
  doi: 10.1109/TITS.2018.2797697
– ident: ref26
  doi: 10.1109/MWC.2016.7553028
– ident: ref22
  doi: 10.1145/2983323.2983711
– ident: ref25
  doi: 10.1109/TrustCom.2011.76
– year: 2005
  ident: ref35
  publication-title: LQ Dynamic Optimization and Differential Games
– year: 2020
  ident: ref15
  article-title: 6G white paper on edge intelligence
– ident: ref9
  doi: 10.1109/MNET.2019.1800286
– year: 2017
  ident: ref20
  article-title: Optimal auctions through deep learning
– year: 2020
  ident: ref3
  article-title: A survey on edge intelligence
– ident: ref2
  doi: 10.1109/JIOT.2016.2579198
– year: 2020
  ident: ref8
  article-title: Towards federated learning in UAV-enabled Internet of Vehicles: A multi-dimensional contract-matching approach
– ident: ref40
  doi: 10.1109/ICC.2018.8422743
– ident: ref39
  doi: 10.1287/moor.6.1.58
– year: 2020
  ident: ref12
  article-title: Wireless communications for collaborative federated learning in the Internet of Things
– year: 2016
  ident: ref17
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
– ident: ref19
  doi: 10.1109/ICOIN48656.2020.9016505
– ident: ref29
  doi: 10.1109/TMC.2013.96
– ident: ref16
  doi: 10.1109/JIOT.2020.2985694
– ident: ref7
  doi: 10.1016/j.ijmedinf.2018.01.007
– year: 1997
  ident: ref14
  publication-title: Evolutionary Game Theory
– year: 2018
  ident: ref6
  article-title: Federated learning for mobile keyboard prediction
– ident: ref31
  doi: 10.1109/JSAC.2017.2659059
– ident: ref27
  doi: 10.1109/JIOT.2020.2967772
– ident: ref13
  doi: 10.1109/ICC.2019.8761315
– ident: ref33
  doi: 10.1090/S0273-0979-03-00988-1
– ident: ref38
  doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00157
– ident: ref1
  doi: 10.1109/COMST.2020.2986024
– year: 2019
  ident: ref10
  article-title: Towards federated learning at scale: System design
– year: 2019
  ident: ref28
  article-title: Towards efficient data valuation based on the Shapley value
– year: 2016
  ident: ref5
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref32
  doi: 10.1109/TVT.2008.2004588
– ident: ref36
  doi: 10.1007/978-1-4757-3108-8_5
– ident: ref21
  doi: 10.1109/WCNC.2018.8377077
– ident: ref23
  doi: 10.1109/MWCN.2002.1045790
SSID ssj0014504
Score 2.7003586
Snippet To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 536
SubjectTerms Artificial intelligence
auction
Clusters
Computational modeling
Data models
Deep learning
Edge computing
edge intelligence
evolutionary game
Federated learning
Game theory
Games
Machine learning
Magnetic heads
Performance evaluation
Resource allocation
Resource management
Servers
Stability analysis
Training
Title Decentralized Edge Intelligence: A Dynamic Resource Allocation Framework for Hierarchical Federated Learning
URI https://ieeexplore.ieee.org/document/9479786
https://www.proquest.com/docview/2562323274
Volume 33
WOSCitedRecordID wos000685886500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3H9IgdPYrVt0qTxtrguCiKCCt5Kk0xlYVlFVw_-ejPZdFlQBCmUHhIofU3yJpl5D-CI4p7aWNq5tyYRmotEC6MS5KUtSrRSYHAtuVG3t-XTk76bg5NpLQwihuQzPKXHcJbvXuwHbZWdaaF80CPnYV4pNanVmp4YiCJYBfrooki0H4bxBDNL9dnDXe_eR4J5dsqJsJO8yMwaFExVfszEYXnpr_7vxdZgJdJI1p3gvg5zONqA1daigcURuwHLM3qDmzDsYUzGHHyhY5fuGdn1jCbnOeuy3sSinrX7-qw7pPWO8GP9NpOLearLrgZUvBy8VIasT6IUnrc6FhVbn7fgsX_5cHGVRLuFxHIux4nWwmki26X0t6YgK5jUpLLxlFah8MzKCmn83Ij-o-ZO1p4toMuMKWosuWz4NiyMXka4A6yxMjd-quAqb0TNM5O53NVSKMzqxod0HUhbACobtcjJEmNYhZgk1RVhVhFmVcSsA8fTLq8TIY6_Gm8SSNOGEZ8O7LcoV3Govlc5MUB_KbH7e689WMqp5iEknu3DwvjtAw9g0X6OB-9vh-Ev_AZ6rtkd
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10aWHrw_q10fRreuhTqVvbkmWrb6FpSFkaCk2hb8aSrksgpKNN-rBfP11FDoGOwTAYP0hgfCzpXOnecwBOKe6ptKGde6MjobiIlNB5hLwwWYFGCvSuJYN8OCyentT9Gpwva2EQ0Sef4QU9-rN8-2LmtFV2qUTugh75CdYzIdJkUa21PDMQmTcLdPFFFik3EMMZZhKry9F998HFgmlywYmyk8DIyirkbVU-zMV-gelt_d-rbcPXQCRZZ4H8DqzhdBe2GpMGFsbsLmyuKA7uwaSLIR1z_Bstu7HPyG5XVDmvWId1Fyb1rNnZZ50JrXiEIOs1uVzMkV3WH1P5sndTmbAeyVI45mpZ0Gx9_gaPvZvRdT8KhguR4VzOIqWEVUS3C-ludUZmMLGOZe1IbY7CcSsjpHazI7qPmlpZOb6ANtE6q7DgsubfoTV9meI-sNrIVLvJgudpLSqe6MSmtpIix6SqXVDXhrgBoDRBjZxMMSalj0piVRJmJWFWBszacLbs8mshxfGvxnsE0rJhwKcNRw3KZRisb2VKHNBduTj4e68f8Lk_uhuUg9vhz0P4klIFhE9DO4LW7HWOx7Bh3mfjt9cT_0f-Ae2f3GQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+Edge+Intelligence%3A+A+Dynamic+Resource+Allocation+Framework+for+Hierarchical+Federated+Learning&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Lim%2C+Wei+Yang+Bryan&rft.au=Ng%2C+Jer+Shyuan&rft.au=Xiong%2C+Zehui&rft.au=Jin%2C+Jiangming&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=33&rft.issue=3&rft.spage=536&rft.epage=550&rft_id=info:doi/10.1109%2FTPDS.2021.3096076&rft.externalDocID=9479786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon