Exploring deep generative models for improved data generation in hypertrophic cardiomyopathy

Data generation strategies are essential for addressing the challenge of limited training data in deep learning-based medical image analysis, particularly for hypertrophic cardiomyopathy (HCM) using magnetic resonance imaging (MRI). Unlike traditional augmentation techniques, deep generative models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INGENIUS H. 34; S. 116 - 125
Hauptverfasser: Rayavarapu, Swarajya Madhuri, Rao, Gottapu Sasibhushana
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cuenca Universidad Politécnica Salesiana del Ecuador 01.07.2025
Universidad Politécnica Salesiana
Schlagworte:
ISSN:1390-650X, 1390-860X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data generation strategies are essential for addressing the challenge of limited training data in deep learning-based medical image analysis, particularly for hypertrophic cardiomyopathy (HCM) using magnetic resonance imaging (MRI). Unlike traditional augmentation techniques, deep generative models can synthesize novel and diverse MRI images, enriching the training datasets. This study evaluates several generative models, including Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Deep Convolutional GANs (DCGANs), Auxiliary Classifier GANs (ACGANs), InfoGANs, and Diffusion Models, using the Structural Similarity Index Measure (SSIM) and Cross-Correlation Coefficient (CC) to assess image quality and structural fidelity. While VAEs demonstrated limitations such as noticeable noise and blurriness, GAN-based models, particularly DCGANs and ACGANs, generated higher-quality and anatomically accurate images. Diffusion models achieved the highest image fidelity among all the methods evaluated, but required longer generation times. These findings underscore the trade-off between image quality and computational efficiency and highlight the potential of deep generative models to augment MRI datasets, thereby improving deep learning applications for HCM diagnosis. Las estrategias de generación de datos son fundamentales para superar el desafío de los datos de entrenamiento limitados en el análisis de imágenes médicas basado en aprendizaje profundo, en particular para la miocardiopatía hipertrófica (HCM) mediante resonancia magnética (MRI). A diferencia de los métodos de aumento tradicionales, los modelos generativos profundos pueden sintetizar imágenes de MRI novedosas y diversas. Este estudio evalúa múltiples modelos generativos: autocodificadores variacionales (VAE), redes generativas adversarias (GAN), GAN convolucionales profundas (DCGAN), GAN con clasificador auxiliar (ACGAN), InfoGAN y modelos de difusión, utilizando el índice de similitud estructural (SSIM) y el coeficiente de correlación cruzada (CC) para evaluar la calidad de imagen y la fidelidad estructural. Si bien los VAE mostraron limitaciones como el ruido y la borrosidad, los modelos basados en GAN, especialmente DCGAN y ACGAN, produjeron imágenes de mayor calidad y precisión anatómica. Los modelos de difusión lograron la mayor fidelidad de imagen, aunque a expensas de tiempos de generación más prolongados. Estos resultados destacan la compensación entre la calidad de imagen y la eficiencia computacional, y demuestran el potencial de los modelos generativos para ampliar los conjuntos de datos de MRI, mejorando así las aplicaciones de aprendizaje profundo para el diagnóstico de HCM.
AbstractList Data generation strategies are essential for addressing the challenge of limited training data in deep learning-based medical image analysis, particularly for hypertrophic cardiomyopathy (HCM) using magnetic resonance imaging (MRI). Unlike traditional augmentation techniques, deep generative models can synthesize novel and diverse MRI images, enriching the training datasets. This study evaluates several generative models, including Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Deep Convolutional GANs (DCGANs), Auxiliary Classifier GANs (ACGANs), InfoGANs, and Diffusion Models, using the Structural Similarity Index Measure (SSIM) and Cross-Correlation Coefficient (CC) to assess image quality and structural fidelity. While VAEs demonstrated limitations such as noticeable noise and blurriness, GAN-based models, particularly DCGANs and ACGANs, generated higher-quality and anatomically accurate images. Diffusion models achieved the highest image fidelity among all the methods evaluated, but required longer generation times. These findings underscore the trade-off between image quality and computational efficiency and highlight the potential of deep generative models to augment MRI datasets, thereby improving deep learning applications for HCM diagnosis. Las estrategias de generación de datos son fundamentales para superar el desafío de los datos de entrenamiento limitados en el análisis de imágenes médicas basado en aprendizaje profundo, en particular para la miocardiopatía hipertrófica (HCM) mediante resonancia magnética (MRI). A diferencia de los métodos de aumento tradicionales, los modelos generativos profundos pueden sintetizar imágenes de MRI novedosas y diversas. Este estudio evalúa múltiples modelos generativos: autocodificadores variacionales (VAE), redes generativas adversarias (GAN), GAN convolucionales profundas (DCGAN), GAN con clasificador auxiliar (ACGAN), InfoGAN y modelos de difusión, utilizando el índice de similitud estructural (SSIM) y el coeficiente de correlación cruzada (CC) para evaluar la calidad de imagen y la fidelidad estructural. Si bien los VAE mostraron limitaciones como el ruido y la borrosidad, los modelos basados en GAN, especialmente DCGAN y ACGAN, produjeron imágenes de mayor calidad y precisión anatómica. Los modelos de difusión lograron la mayor fidelidad de imagen, aunque a expensas de tiempos de generación más prolongados. Estos resultados destacan la compensación entre la calidad de imagen y la eficiencia computacional, y demuestran el potencial de los modelos generativos para ampliar los conjuntos de datos de MRI, mejorando así las aplicaciones de aprendizaje profundo para el diagnóstico de HCM.
Data generation strategies are essential for addressing the challenge of limited training data in deep learning-based medical image analysis, particularly for hypertrophic cardiomyopathy (HCM) using magnetic resonance imaging (MRI). Unlike traditional augmentation techniques, deep generative models can synthesize novel and diverse MRI images, enriching the training datasets. This study evaluates several generative models, including Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Deep Convolutional GANs (DCGANs), Auxiliary Classifier GANs (ACGANs), InfoGANs, and Diffusion Models, using the Structural Similarity Index Measure (SSIM) and Cross-Correlation Coefficient (CC) to assess image quality and structural fidelity. While VAEs demonstrated limitations such as noticeable noise and blurriness, GAN-based models, particularly DCGANs and ACGANs, generated higher-quality and anatomically accurate images. Diffusion models achieved the highest image fidelity among all the methods evaluated, but required longer generation times. These findings underscore the trade-off between image quality and computational efficiency and highlight the potential of deep generative models to augment MRI datasets, thereby improving deep learning applications for HCM diagnosis.
Author Rao, Gottapu Sasibhushana
Rayavarapu, Swarajya Madhuri
Author_xml – sequence: 1
  givenname: Swarajya Madhuri
  orcidid: 0009-0007-7559-2142
  surname: Rayavarapu
  fullname: Rayavarapu, Swarajya Madhuri
– sequence: 2
  givenname: Gottapu Sasibhushana
  orcidid: 0000-0001-6346-8274
  surname: Rao
  fullname: Rao, Gottapu Sasibhushana
BookMark eNo9kU9rAjEQxUOxUGv9AL0Fetbm72ZzLGJbQeilBQ-FEJOJRnSzza5Sv31XLZ5mmHn83gzvHvWqVAFCj5SMqaIFf47VqhlXXIwZYXJM9A3qU67JqCzIovffF5Is7tCwaeKSCKG4Vlr20ff0t96m3AGwB6jxCirIto0HwLvkYdvgkDKOuzqnA3jsbWuvmlThWOH1sYbc5lSvo8POZh_T7phq266PD-g22G0Dw_86QF-v08_J-2j-8TabvMxHjvOiHWkROBUiwLKkCrzSSyaBKafAecag9KUrA6FCgba80EFSJ0i3ktwHrgvGB2h24fpkN6bOcWfz0SQbzXmQ8srY3Ea3BUMcdUpTIb3Uwiq5tJ1xYE5IYgVlZcd6urC6j3_20LRmk_a56s43nMmilJRw0qnoReVyapoM4epKiTlnYk6ZmC4Tc8rEEM3_ANjng2M
Cites_doi 10.3390/jimaging9030069
10.1016/j.artmed.2019.101723
10.1016/j.bspc.2023.105540
10.1142/S0218001420520023
10.1016/j.health.2024.100340
10.1371/journal.pone.0266467
10.3390/s23115237
10.1016/j.eswa.2023.120391
10.9781/ijimai.2018.03.004
10.3390/IOCA2021-10909
10.1109/TPAMI.2023.3261988
10.1186/s40537-025-01117-6
10.3390/app131810521
10.1016/j.eswa.2020.113696
10.1016/j.compmedimag.2024.102490
10.1007/978-981-15-1100-4_11
10.1109/TIP.2006.881959
10.1016/j.cviu.2021.103329
10.1007/s11042-022-14305-w
10.1016/j.knosys.2021.107187
10.1118/1.3605634
10.1109/TMI.2018.2837502
ContentType Journal Article
Copyright Copyright Universidad Politécnica Salesiana del Ecuador 2025
Copyright_xml – notice: Copyright Universidad Politécnica Salesiana del Ecuador 2025
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.17163/ings.n34.2025.09
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1390-860X
EndPage 125
ExternalDocumentID oai_doaj_org_article_0c1c79145d594a75ba44ff2c450a4128
10_17163_ings_n34_2025_09
GroupedDBID 5VS
8FE
8FG
AAYXX
ABJCF
ADBBV
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
INF
ITC
L6V
M7S
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c336t-94f3144feb817ed79b25e27c7ecd22e8d8c8f0147e9a369f51c40cd253df39623
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555354800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1390-650X
IngestDate Fri Oct 03 12:53:16 EDT 2025
Tue Nov 04 14:43:01 EST 2025
Sun Nov 09 14:48:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-94f3144feb817ed79b25e27c7ecd22e8d8c8f0147e9a369f51c40cd253df39623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-7559-2142
0000-0001-6346-8274
OpenAccessLink https://www.proquest.com/docview/3256851030?pq-origsite=%requestingapplication%
PQID 3256851030
PQPubID 4365294
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_0c1c79145d594a75ba44ff2c450a4128
proquest_journals_3256851030
crossref_primary_10_17163_ings_n34_2025_09
PublicationCentury 2000
PublicationDate 2025-07-01
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cuenca
PublicationPlace_xml – name: Cuenca
PublicationTitle INGENIUS
PublicationYear 2025
Publisher Universidad Politécnica Salesiana del Ecuador
Universidad Politécnica Salesiana
Publisher_xml – name: Universidad Politécnica Salesiana del Ecuador
– name: Universidad Politécnica Salesiana
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref0
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref19
  doi: 10.3390/jimaging9030069
– ident: ref10
  doi: 10.1016/j.artmed.2019.101723
– ident: ref8
  doi: 10.1016/j.bspc.2023.105540
– ident: ref20
– ident: ref7
  doi: 10.1142/S0218001420520023
– ident: ref11
  doi: 10.1016/j.health.2024.100340
– ident: ref15
  doi: 10.1371/journal.pone.0266467
– ident: ref24
– ident: ref22
– ident: ref13
  doi: 10.3390/s23115237
– ident: ref17
– ident: ref9
  doi: 10.1016/j.eswa.2023.120391
– ident: ref0
  doi: 10.9781/ijimai.2018.03.004
– ident: ref6
  doi: 10.3390/IOCA2021-10909
– ident: ref25
  doi: 10.1109/TPAMI.2023.3261988
– ident: ref5
  doi: 10.1186/s40537-025-01117-6
– ident: ref2
  doi: 10.3390/app131810521
– ident: ref14
  doi: 10.1016/j.eswa.2020.113696
– ident: ref1
  doi: 10.1016/j.compmedimag.2024.102490
– ident: ref16
  doi: 10.1007/978-981-15-1100-4_11
– ident: ref21
– ident: ref23
– ident: ref26
– ident: ref28
  doi: 10.1109/TIP.2006.881959
– ident: ref18
– ident: ref30
  doi: 10.1016/j.cviu.2021.103329
– ident: ref3
  doi: 10.1007/s11042-022-14305-w
– ident: ref4
  doi: 10.1016/j.knosys.2021.107187
– ident: ref12
– ident: ref29
  doi: 10.1118/1.3605634
– ident: ref27
  doi: 10.1109/TMI.2018.2837502
SSID ssib044739795
ssj0001879524
ssib023704370
ssib027512570
ssib041526687
ssib032177213
Score 2.2961245
Snippet Data generation strategies are essential for addressing the challenge of limited training data in deep learning-based medical image analysis, particularly for...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 116
SubjectTerms Artificial intelligence
Cardiomyopathy
Data compression
Data Generation
Datasets
Deep learning
Diffusion models
Generative Adversarial networks
Magnetic resonance imaging
Neural networks
Probability distribution
Variational autoencoders
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6qEcEKUgltLKh54qBRx_xPGRVkU9IQ6ttAckK3bGsAeyq90FiX_fGSdkV-LAhWMSK4knE89749E8xr5DKjEKOlEQ-i50JaBooJUFWAkCwzN-95TFJuz1dT2dupstqS-qCevbA_eGuxCxjNaV2rTG6caa0GidkozaiEbj4kqrr7Bui0yhJ0llqWfP6InSYlwzm2OFQBypz-iZFMWqagNUtLa032U22RrS5B4UcnFiCGumwxYp8g11QUnt805Rjkaacypu3ApyWQvg1VKf49fVAdsfgCe_7Cf8ie1Ad8j2ttoRfma3Y0EebwEW_C63pKb1kGfBnBVHhMtnOQ0BLafi0nHMvOOzjt8jq12ul_PF_SzymEtdH57npHr8fMT-Xf3---tPMagvFFGpal04nRSyrQShLi201gVpQNpoIbZSQt3WsU5IsCy4RlUumTJqgZeMapNyiKqO2W437-CE8RR0GRAZBYXkLJRNI4Ooo2jwLgFqZyfsx4u5_KJvsuGJnJBtPdnWo2092dYLN2E_yaDjQOqPnU-g1_jBa_xbXjNhZy-fww8_7corhH81dRgUp-_xjC_sI71yX9t7xnbXy0f4yj7Ep_VstfyW_fU_JyflUg
  priority: 102
  providerName: Directory of Open Access Journals
Title Exploring deep generative models for improved data generation in hypertrophic cardiomyopathy
URI https://www.proquest.com/docview/3256851030
https://doaj.org/article/0c1c79145d594a75ba44ff2c450a4128
WOSCitedRecordID wos001555354800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 1390-860X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001879524
  issn: 1390-650X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1390-860X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044739795
  issn: 1390-650X
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1390-860X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001879524
  issn: 1390-650X
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1390-860X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001879524
  issn: 1390-650X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1390-860X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001879524
  issn: 1390-650X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj5swELXa3R7aQ7-rpt1GPvRUiV1jA8anig1eBWkDiKWrRKqEwJiql2SbpD32t3eGkGSlSr30ggS2EMMb-82MRzOEfLSdCyyomIPWt-MFzDq1bbljJbcM6Blw7_pmEzJNw_lc5UPAbTOkVe73xH6jblcGY-QXArg5xPJv7PPdDwe7RuHp6tBC4yE5xSoJbp-6d7PXJy4kVu456COXwG7-8V6AOQ4O0EE_kcuC4GiueJ7EUy__GLPBztxDn1wQD4yb-XBQCl6HuMDQ9vlSYKSG--eY4niP6vqOAH9t-D2LXT37X_mfk6eD_UqjncK9IA_s8iV5cq-q4SvyVc_z6wyzLGisdU532XFlcqvpLIv19Q0Fz5Mms7zIbnVM46iMDnOylCYpnS5yXZRFlk-TCZ1ERZxks0WWR-V08Zp8udLlZOoMTRwcI0SwdZTXCXDaOtuErrStVA33LZdGWtNybsM2NGEHfpq0qhaB6nzXeAyGfNF2QoFx9oacLFdL-5bQrvHcBgysRoCP17h1zRsWGlbDWxobKjkin_b_u7rb1eqo0MdBcCoEpwJwKgSnYmpELhGRw0Qss90_WK2_VcOqrZhxjVSu57e-8mrpNzVI0nHj-az2gNlH5GwPVjWs_U11ROrdv4ffk8f4Mbvk3zNysl3_tB_II_Nr-32zHpPTS53mxbiPEox7xcbrbw0jOWC0-APoXe9Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwELVWCxJw4BtRWMAHuCBlN7GTOD4gVJqsEm2bRN2waiUkkzgO4tIubQHxp_iNzKRJuxIStz1wTGxFif08b549mSHktWkcYEFpW-h9W65vG6s0NbOMYMYGeoZ5b9piEyJNg9lM5gfkd_8vDIZV9jaxNdT1UuMe-QkHbg4w_Zv9_vKbhVWj8HS1L6GxhcWZ-fUTJNv6XRLC_L5h7DQqRrHVVRWwNOf-xpJuw0FFNKYKHGFqISvmGSa0MLpmzAR1oIMGhIMwsuS-bDxHuzY0ebxuuPQx0QGY_BvgRjDZhgqe9_hlXGCmoB3-mQA29fbXHNx_EFy79YDc6ft798h1BZ6yefs9IqwE3tXlheEEZ2rWHcyCyuEnuJV-vOC4M8S8YwypvEKtbQWCvwimZc3Te__beN8ndzv_nA63C-oBOTCLh-TOlayNj8inaJaPM4wioWEU5XQb_VckFxGdZGE0PqegrGkyyafZRRTScFgMd32ylCYpjed5NC2mWR4nIzoaTsMkm8yzfFjE88fk47V83hNyuFguzFNCm8p1KnAgKw4atnLKklV2oO0SnlKZQIoBedvPr7rc5iJRqOEQDArBoAAMCsGgbDkgHxABu46YRry9sVx9UZ1VUrZ2tJCO69WedEvhVSV8ScO069kl4DsYkKMeHKqzbWu1R8azfze_IrfiYjJW4yQ9e05u44ttA52PyOFm9d28IDf1j83X9eplu4wo-XzdOPoDNnZG5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EXPLORING+DEEP+GENERATIVE+MODELS+FOR+IMPROVED+DATA+GENERATION+IN+HYPERTROPHIC+CARDIOMYOPATHY&rft.jtitle=INGENIUS&rft.au=Rayavarapu%2C+Swarajya+Madhuri&rft.au=Rao%2C+Gottapu+Sasibhushana&rft.date=2025-07-01&rft.pub=Universidad+Polit%C3%A9cnica+Salesiana+del+Ecuador&rft.issn=1390-650X&rft.eissn=1390-860X&rft.issue=34&rft.spage=116&rft.epage=125&rft_id=info:doi/10.17163%2Fings.n34.2025.09
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1390-650X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1390-650X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1390-650X&client=summon