Inference and prediction for stochastic models of biological populations undergoing migration and proliferation

Parameter inference is a critical step in the process of interpreting biological data using mathematical models. Inference provides a means of deriving quantitative, mechanistic insights from sparse, noisy data. While methods for parameter inference, parameter identifiability and model prediction ar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Royal Society interface Ročník 22; číslo 231; s. 20250536
Hlavní autoři: Simpson, Matthew J, Plank, Michael J
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.10.2025
Témata:
ISSN:1742-5662, 1742-5662
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Parameter inference is a critical step in the process of interpreting biological data using mathematical models. Inference provides a means of deriving quantitative, mechanistic insights from sparse, noisy data. While methods for parameter inference, parameter identifiability and model prediction are well developed for deterministic continuum models, working with biological applications often requires stochastic modelling approaches to capture inherent variability and randomness that can be prominent in biological measurements and data. Random walk models are especially useful for capturing spatio-temporal processes, such as ecological population dynamics, molecular transport phenomena and collective behaviour associated with multicellular phenomena. This review focuses on parameter inference, identifiability analysis and model prediction for a suite of biologically inspired, stochastic agent-based models relevent to animal dispersal and populations of biological cells. With a particular emphasis on model prediction, we highlight roles for numerical optimization and automatic differentiation. Open-source Julia code is provided to support scientific reproducibility. We encourage readers to use this code directly or adapt it to suit their interests and applications.
AbstractList Parameter inference is a critical step in the process of interpreting biological data using mathematical models. Inference provides a means of deriving quantitative, mechanistic insights from sparse, noisy data. While methods for parameter inference, parameter identifiability and model prediction are well developed for deterministic continuum models, working with biological applications often requires stochastic modelling approaches to capture inherent variability and randomness that can be prominent in biological measurements and data. Random walk models are especially useful for capturing spatio-temporal processes, such as ecological population dynamics, molecular transport phenomena and collective behaviour associated with multicellular phenomena. This review focuses on parameter inference, identifiability analysis and model prediction for a suite of biologically inspired, stochastic agent-based models relevent to animal dispersal and populations of biological cells. With a particular emphasis on model prediction, we highlight roles for numerical optimization and automatic differentiation. Open-source Julia code is provided to support scientific reproducibility. We encourage readers to use this code directly or adapt it to suit their interests and applications.
Parameter inference is a critical step in the process of interpreting biological data using mathematical models. Inference provides a means of deriving quantitative, mechanistic insights from sparse, noisy data. While methods for parameter inference, parameter identifiability and model prediction are well developed for deterministic continuum models, working with biological applications often requires stochastic modelling approaches to capture inherent variability and randomness that can be prominent in biological measurements and data. Random walk models are especially useful for capturing spatio-temporal processes, such as ecological population dynamics, molecular transport phenomena and collective behaviour associated with multicellular phenomena. This review focuses on parameter inference, identifiability analysis and model prediction for a suite of biologically inspired, stochastic agent-based models relevent to animal dispersal and populations of biological cells. With a particular emphasis on model prediction, we highlight roles for numerical optimization and automatic differentiation. Open-source Julia code is provided to support scientific reproducibility. We encourage readers to use this code directly or adapt it to suit their interests and applications.Parameter inference is a critical step in the process of interpreting biological data using mathematical models. Inference provides a means of deriving quantitative, mechanistic insights from sparse, noisy data. While methods for parameter inference, parameter identifiability and model prediction are well developed for deterministic continuum models, working with biological applications often requires stochastic modelling approaches to capture inherent variability and randomness that can be prominent in biological measurements and data. Random walk models are especially useful for capturing spatio-temporal processes, such as ecological population dynamics, molecular transport phenomena and collective behaviour associated with multicellular phenomena. This review focuses on parameter inference, identifiability analysis and model prediction for a suite of biologically inspired, stochastic agent-based models relevent to animal dispersal and populations of biological cells. With a particular emphasis on model prediction, we highlight roles for numerical optimization and automatic differentiation. Open-source Julia code is provided to support scientific reproducibility. We encourage readers to use this code directly or adapt it to suit their interests and applications.
Author Simpson, Matthew J
Plank, Michael J
Author_xml – sequence: 1
  givenname: Matthew J
  orcidid: 0000-0001-6254-313X
  surname: Simpson
  fullname: Simpson, Matthew J
  organization: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
– sequence: 2
  givenname: Michael J
  orcidid: 0000-0002-7539-3465
  surname: Plank
  fullname: Plank, Michael J
  organization: Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41151767$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAAhIOsuA-9epQcvbTm0STtURYfCwte9FzSPGokTWrSHvz3rusKnmYYPmZg1mARYjAAXGNUYtTUdyk7WxJEWIkY5WdghUVFCsY5WfzzS7DO-QMhKihjF2BZYcyw4GIF4i5Yk0xQBsqg4ZiMdmpyMUAbE8xTVO8yT07BIWrjM4wWdi762DslPRzjOHv5g2c4B21SH13o4eD6dExPndG7w8gxuQTnVvpsrk66AW-PD6_b52L_8rTb3u8LRSmfitrQpqkFokrJBgtqmamrrmOadzWVQjTayJoJRAS2WGqMCLKMUosJaQjThGzA7W_vYf1zNnlqB5eV8V4GE-fcUsJ5VdWC0gN6c0LnbjC6HZMbZPpq_04i3_qBbP4
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1098/rsif.2025.0536
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1742-5662
ExternalDocumentID 41151767
Genre Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
GroupedDBID ---
0R~
18M
29L
2WC
4.4
53G
5GY
5VS
ACGFO
ACQIA
ACRPL
ADBBV
ADDVE
ADNMO
AENEX
AFFVI
AGPVY
AGQPQ
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BGBPD
BTFSW
C1A
CAG
CGR
COF
CS3
CUY
CVF
DIK
DU5
EBS
ECM
EIF
EJD
GX1
H13
HYE
HZ~
KQ8
MRS
MV1
NPM
NSAHA
O9-
P2P
ROL
RPM
RRY
S70
TR2
V1E
W8F
XSW
7X8
ID FETCH-LOGICAL-c336t-8e3998703cca9173f5e84bb5d6b83a779dea8570271f1ad1020f533f122925d22
IEDL.DBID 7X8
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603027900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-5662
IngestDate Wed Oct 29 18:25:24 EDT 2025
Mon Nov 03 01:48:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 231
Keywords random walk
uncertainty quantification
continuum limit
cell proliferation
model prediction
parameter identifiability
cell migration
parameter estimation
partial differential equation
stochastic model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-8e3998703cca9173f5e84bb5d6b83a779dea8570271f1ad1020f533f122925d22
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7539-3465
0000-0001-6254-313X
OpenAccessLink https://doi.org/10.1098/rsif.2025.0536
PMID 41151767
PQID 3266448733
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3266448733
pubmed_primary_41151767
PublicationCentury 2000
PublicationDate 20251000
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251000
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the Royal Society interface
PublicationTitleAlternate J R Soc Interface
PublicationYear 2025
SSID ssj0037355
Score 2.460224
SecondaryResourceType review_article
Snippet Parameter inference is a critical step in the process of interpreting biological data using mathematical models. Inference provides a means of deriving...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 20250536
SubjectTerms Animal Migration - physiology
Animals
Cell Proliferation
Humans
Models, Biological
Population Dynamics
Stochastic Processes
Title Inference and prediction for stochastic models of biological populations undergoing migration and proliferation
URI https://www.ncbi.nlm.nih.gov/pubmed/41151767
https://www.proquest.com/docview/3266448733
Volume 22
WOSCitedRecordID wos001603027900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPeqjapM3jJCIuenDZg8LeSpq064K2dbv6-51ps-tJELyEUkgpmUnyTWbyfYScMauMU7kMkLssiIwSgY4ZNKGNhOI8stI0YhNyMFCjkR76A7fal1XO18RmoXalxTPyK4AZGEpIzm-qjwBVozC76iU0lkmHA5TBki45WmQRuOSN6imAbgi4hGAL0kZ1BZE4Eniy-BK8UPwOL5ttpr_x3x_cJOseYNLb1iO6ZCkrtkjXT-Gannue6YttUj7OL_tRUzhaTTFng3aiAGQpgEL7apDFmTZqOTUtc9pSNqFdabVQ_qopXkSbjkvYBen7ZNz6lP9m-Ya1M82bHfLSv3--ewi8_kJgORezQGWAXmA-c7AyRHU8jzMVpWnsRKq4kVK7zCA_PpNhHhoHUOU6B_SYh4xpFjvGdslKURbZPqHMWe6QKMhZDSFkpIRItYUHbbkEkNcjp_NBTcC_MWlhiqz8rJOfYe2RvdYySdUScSQRwNlQCnnwh96HZA3N3dbhHZFODrM7Oyar9ms2qacnjeNAOxg-fQMP_c4M
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+and+prediction+for+stochastic+models+of+biological+populations+undergoing+migration+and+proliferation&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Simpson%2C+Matthew+J&rft.au=Plank%2C+Michael+J&rft.date=2025-10-01&rft.eissn=1742-5662&rft.volume=22&rft.issue=231&rft.spage=20250536&rft_id=info:doi/10.1098%2Frsif.2025.0536&rft_id=info%3Apmid%2F41151767&rft_id=info%3Apmid%2F41151767&rft.externalDocID=41151767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5662&client=summon