3D vessel-like structure segmentation in medical images by an edge-reinforced network
The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’ mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory r...
Uložené v:
| Vydané v: | Medical image analysis Ročník 82; s. 102581 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.11.2022
|
| Predmet: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’ mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder–decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.
[Display omitted]
•We propose a novel method for 3D vessel-like structure segmentation, which is validated quantitatively and qualitatively using two cerebrovascular and two nerve datasets.•We propose a novel edge-reinforced neural network to detect edges better, capture the microstructure and improve structure connectivity of the given 3D volumetric data.•We propose reverse edge attention and edge-reinforced optimization loss to constrain both the edge and non-edge voxels of vessel-like structures and improve segmentation performance. |
|---|---|
| AbstractList | The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases' mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder-decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases' mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder-decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics. The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’ mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder–decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics. [Display omitted] •We propose a novel method for 3D vessel-like structure segmentation, which is validated quantitatively and qualitatively using two cerebrovascular and two nerve datasets.•We propose a novel edge-reinforced neural network to detect edges better, capture the microstructure and improve structure connectivity of the given 3D volumetric data.•We propose reverse edge attention and edge-reinforced optimization loss to constrain both the edge and non-edge voxels of vessel-like structures and improve segmentation performance. |
| ArticleNumber | 102581 |
| Author | Xia, Likun Xie, Yixuan Liu, Jiang Zhao, Yitian Song, Ran Wu, Yufei Ma, Yuhui Mou, Lei Zhang, Hao Ma, Ming |
| Author_xml | – sequence: 1 givenname: Likun orcidid: 0000-0002-9593-2737 surname: Xia fullname: Xia, Likun organization: College of Information Engineering, Capital Normal University, Beijing, China – sequence: 2 givenname: Hao surname: Zhang fullname: Zhang, Hao organization: College of Information Engineering, Capital Normal University, Beijing, China – sequence: 3 givenname: Yufei surname: Wu fullname: Wu, Yufei organization: The Affiliated People’s Hospital of Ningbo University, Ningbo, China – sequence: 4 givenname: Ran orcidid: 0000-0002-1344-4415 surname: Song fullname: Song, Ran organization: School of Control Science and Engineering, Shandong University, Jinan, China – sequence: 5 givenname: Yuhui surname: Ma fullname: Ma, Yuhui organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China – sequence: 6 givenname: Lei surname: Mou fullname: Mou, Lei organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China – sequence: 7 givenname: Jiang orcidid: 0000-0001-6281-6505 surname: Liu fullname: Liu, Jiang organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 8 givenname: Yixuan surname: Xie fullname: Xie, Yixuan organization: College of Information Engineering, Capital Normal University, Beijing, China – sequence: 9 givenname: Ming surname: Ma fullname: Ma, Ming organization: Department of Computer Science, Winona State University, Winona, USA – sequence: 10 givenname: Yitian orcidid: 0000-0003-4357-4592 surname: Zhao fullname: Zhao, Yitian email: yitian.zhao@nimte.ac.cn organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China |
| BookMark | eNqFkD1PwzAQhi1UJFrgF7B4ZEnxVz48MKDyKVViobPlOJfKbeIU2ynqvycliIEBpnt1uudO98zQxHUOELqiZE4JzW428xYqq-eMMDZ0WFrQEzSlPKNJIRif_GSanqFZCBtCSC4EmaIVv8d7CAGapLFbwCH63sTeDwnWLbioo-0ctg4fLxjdYNvqNQRcHrB2GKo1JB6sqztvoMIO4kfntxfotNZNgMvveo5Wjw9vi-dk-fr0srhbJobzLCa5FJkEWpqapCQtCyrzSnJaZgIEZyTjshAVK6AUBWHGiJoBLwhlqRRa12D4Oboe9-58995DiKq1wUDTaAddHxTLiZRU5DIdRvk4anwXgoda7fzwij8oStRRotqoL4nqKFGNEgdK_qKMHZVEr23zD3s7sjAY2FvwKhgLbtBkPZioqs7-yX8CZUKPyQ |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3269223 crossref_primary_10_1007_s11548_024_03159_2 crossref_primary_10_1002_mp_17542 crossref_primary_10_1016_j_compbiomed_2024_107996 crossref_primary_10_1002_mp_70017 crossref_primary_10_1007_s11517_024_03195_9 crossref_primary_10_1016_j_compbiomed_2023_107609 crossref_primary_10_3389_fnins_2024_1363930 crossref_primary_10_1016_j_measurement_2025_118925 crossref_primary_10_1016_j_media_2024_103442 crossref_primary_10_3389_fphys_2023_1308987 crossref_primary_10_1016_j_compbiomed_2023_107766 crossref_primary_10_1109_TSIPN_2025_3540709 crossref_primary_10_1016_j_bspc_2024_106849 crossref_primary_10_3389_fcvm_2023_1203400 crossref_primary_10_1007_s40747_023_01322_x crossref_primary_10_1007_s11760_025_04222_4 crossref_primary_10_1007_s40747_025_01995_6 crossref_primary_10_1016_j_eswa_2025_127577 crossref_primary_10_1007_s11760_024_03409_5 crossref_primary_10_1016_j_compmedimag_2025_102521 crossref_primary_10_1016_j_compbiomed_2024_108331 crossref_primary_10_1109_TMI_2024_3424976 crossref_primary_10_1371_journal_pone_0311439 crossref_primary_10_1002_mp_16720 crossref_primary_10_1109_JBHI_2024_3409382 crossref_primary_10_1016_j_bspc_2025_108028 crossref_primary_10_1016_j_compbiomed_2023_107617 crossref_primary_10_1109_JSTARS_2025_3535805 crossref_primary_10_1016_j_cmpb_2024_108511 crossref_primary_10_1016_j_engappai_2025_110398 crossref_primary_10_3390_s24134326 crossref_primary_10_1016_j_eswa_2025_128096 crossref_primary_10_1016_j_compbiomed_2023_106886 crossref_primary_10_3389_fnins_2023_1265032 crossref_primary_10_1109_TIP_2025_3526061 crossref_primary_10_3390_diagnostics13132161 crossref_primary_10_3390_jimaging10120311 crossref_primary_10_1016_j_bspc_2025_107507 crossref_primary_10_1109_TMI_2024_3367384 crossref_primary_10_1016_j_compbiomed_2024_109191 crossref_primary_10_1016_j_compmedimag_2023_102228 crossref_primary_10_1016_j_ymeth_2024_05_016 crossref_primary_10_1109_TIM_2024_3497181 crossref_primary_10_1038_s41598_024_77582_5 crossref_primary_10_1016_j_compbiomed_2024_109150 |
| Cites_doi | 10.1109/TITB.2012.2189408 10.1109/JBHI.2020.3017540 10.1007/s00330-018-5453-8 10.1002/hbm.10062 10.1007/s12021-011-9110-5 10.1109/CVPR.2016.90 10.3389/fninf.2020.00009 10.1016/j.artmed.2020.101938 10.1109/TMI.2020.2974499 10.1109/CVPR.2017.660 10.1109/CVPR.2019.00154 10.1109/TBME.2019.2936460 10.1109/TMI.2020.3042802 10.1016/j.mri.2012.07.008 10.3389/fnins.2019.00097 10.1109/TMI.2019.2903562 10.1118/1.3515749 10.1109/JBHI.2014.2302749 10.1038/s41467-020-18606-2 10.1109/TSMC.1979.4310076 10.1109/TMI.2017.2756073 10.1016/j.media.2020.101874 10.1109/TMI.2019.2926568 10.1109/TIP.2013.2240005 10.1016/j.neuron.2015.06.036 10.1109/TMI.2019.2959609 10.1109/42.993126 10.1007/978-3-030-01240-3_15 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1016/j.media.2022.102581 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| ExternalDocumentID | 10_1016_j_media_2022_102581 S1361841522002201 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7X8 |
| ID | FETCH-LOGICAL-c336t-79469e1bcf0505b8197d931b64e432063984d28eb4802cc4f2e38012594aafec3 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890002100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Thu Oct 02 12:05:30 EDT 2025 Tue Nov 18 20:55:35 EST 2025 Sat Nov 29 07:03:27 EST 2025 Fri Feb 23 02:40:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep network Loss function Vessel-like structure 3D segmentation Attention |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c336t-79469e1bcf0505b8197d931b64e432063984d28eb4802cc4f2e38012594aafec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9593-2737 0000-0001-6281-6505 0000-0003-4357-4592 0000-0002-1344-4415 |
| PQID | 2709914795 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2709914795 crossref_primary_10_1016_j_media_2022_102581 crossref_citationtrail_10_1016_j_media_2022_102581 elsevier_sciencedirect_doi_10_1016_j_media_2022_102581 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Medical image analysis |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Liu, Chen, Duan, Qiao, Ognami (b18) 2018; 28 Livne, Rieger, Aydin, Taha, Akay, Kossen, Sobesky, Kelleher, Hildebrand, Frey (b21) 2019; 13 Katouzian, Angelini, Carlier, Suri, Navab, Laine (b15) 2012; 16 Forkert, Schmidt-Richberg, Fiehler, Illies, Möller, Säring, Handels, Ehrhardt (b8) 2013; 31 Kingma, Ba (b17) 2014 Cao, Lin, Li (b4) 2020 Isensee, Jäger, Full, Vollmuth, Maier-Hein (b14) 2020 Milletari, Navab, Ahmadi (b23) 2016 Gu, Cheng, Fu, Zhou, Hao, Zhao, Zhang, Gao, Liu (b11) 2019; 38 Li, Shen (b19) 2019; 39 Mou, Zhao, Chen, Cheng, Gu, Hao, Qi, Zheng, Frangi, Liu (b24) 2019 Zhang, Xia, Song, Yang, Hao, Liu, Zhao (b45) 2020 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (b7) 2016 Mou, Zhao, Fu, Liu, Cheng, Zheng, Su, Yang, Chen, Frangi (b25) 2021; 67 Zhang, Xie, Wang, Xia (b46) 2020 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. Frangi, Niessen, Vincken, Viergever (b9) 1998 Callara, Magliaro, Ahluwalia, Vanello (b3) 2020; 14 Ma, Hao, Xie, Fu, Zhang, Yang, Wang, Liu, Zheng, Zhao (b22) 2020; 40 Fu, Wei, Zhang, Yu, Xiao, Rong, Shan, Li, Zhao, Liao (b10) 2020; 11 Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890. Tetteh, Efremov, Forkert, Schneider, Kirschke, Weber, Zimmer, Piraud, Menze (b36) 2018 Wang, Narayanaswamy, Tsai, Roysam (b38) 2011; 9 Kazeminia, Baur, Kuijper, van Ginneken, Navab, Albarqouni, Mukhopadhyay (b16) 2020 Sanchesa, Meyer, Vigon, Naegel (b34) 2019 Smith (b35) 2002; 17 Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz (b27) 2018 Wang, W., Zhao, S., Shen, J., Hoi, S.C., Borji, A., 2019. Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1448–1457. Zhao, Zheng, Liu, Zhao, Luo, Yang, Na, Wang, Liu (b49) 2017; 37 Peng, Hawrylycz, Roskams, Hill, Spruston, Meijering, Ascoli (b29) 2015; 87 Salazar-Gonzalez, Kaba, Li, Liu (b33) 2014; 18 Phellan, Peixinho, Falcão, Forkert (b30) 2017 Ronneberger, Fischer, Brox (b32) 2015 Liu, Yang, Zhang, Wang (b20) 2022 Otsu (b28) 1979; 9 Yang, Cheng, Chien (b42) 2014 Yang, Chen, Luo, Tan, Liu, Wang (b41) 2020; 25 Zhao, Zhang, Pereira, Zheng, Su, Xie, Zhao, Shi, Qi, Liu (b48) 2020; 39 Chen, Lian, Jiao, Wang, Gao, Lingling (b5) 2020 Wang, Han, Chen, Gao, Vasconcelos (b37) 2019 Hatamizadeh, Terzopoulos, Myronenko (b12) 2019 Aylward, Bullitt (b1) 2002; 21 Mou, Zhao, Fu, Liux, Cheng, Zheng, Su, Yang, Chen, Frangi (b26) 2020 Yang, Zhou, Zhu, Xiang, Chen, Yuan, Chen, Shi (b43) 2021 Xia, Zhu, Liu, Gong, Huang, Xu, Zhang, Guo (b40) 2019; 67 Chen, S., Tan, X., Wang, B., Hu, X., 2018. Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 234–250. Zhou, Siddiquee, Tajbakhsh, Liang (b50) 2019; 39 Rivest-Henault, Cheriet (b31) 2013; 22 Bogunović, Pozo, Villa-Uriol, Majoie, van den Berg, Gratama van Andel, Macho, Blasco, San Román, Frangi (b2) 2011; 38 Zhang, Fu, Dai, Shen, Pang, Shao (b44) 2019 Frangi (10.1016/j.media.2022.102581_b9) 1998 Ma (10.1016/j.media.2022.102581_b22) 2020; 40 Otsu (10.1016/j.media.2022.102581_b28) 1979; 9 Çiçek (10.1016/j.media.2022.102581_b7) 2016 Kingma (10.1016/j.media.2022.102581_b17) 2014 Aylward (10.1016/j.media.2022.102581_b1) 2002; 21 10.1016/j.media.2022.102581_b6 Kazeminia (10.1016/j.media.2022.102581_b16) 2020 Zhou (10.1016/j.media.2022.102581_b50) 2019; 39 Ronneberger (10.1016/j.media.2022.102581_b32) 2015 Bogunović (10.1016/j.media.2022.102581_b2) 2011; 38 Mou (10.1016/j.media.2022.102581_b24) 2019 Cao (10.1016/j.media.2022.102581_b4) 2020 Tetteh (10.1016/j.media.2022.102581_b36) 2018 Katouzian (10.1016/j.media.2022.102581_b15) 2012; 16 Mou (10.1016/j.media.2022.102581_b25) 2021; 67 Phellan (10.1016/j.media.2022.102581_b30) 2017 Yang (10.1016/j.media.2022.102581_b42) 2014 Zhang (10.1016/j.media.2022.102581_b46) 2020 Salazar-Gonzalez (10.1016/j.media.2022.102581_b33) 2014; 18 Li (10.1016/j.media.2022.102581_b18) 2018; 28 Wang (10.1016/j.media.2022.102581_b37) 2019 Callara (10.1016/j.media.2022.102581_b3) 2020; 14 Sanchesa (10.1016/j.media.2022.102581_b34) 2019 Yang (10.1016/j.media.2022.102581_b41) 2020; 25 Gu (10.1016/j.media.2022.102581_b11) 2019; 38 10.1016/j.media.2022.102581_b39 Peng (10.1016/j.media.2022.102581_b29) 2015; 87 Zhang (10.1016/j.media.2022.102581_b44) 2019 Isensee (10.1016/j.media.2022.102581_b14) 2020 Zhao (10.1016/j.media.2022.102581_b49) 2017; 37 Mou (10.1016/j.media.2022.102581_b26) 2020 Wang (10.1016/j.media.2022.102581_b38) 2011; 9 Forkert (10.1016/j.media.2022.102581_b8) 2013; 31 Oktay (10.1016/j.media.2022.102581_b27) 2018 Chen (10.1016/j.media.2022.102581_b5) 2020 10.1016/j.media.2022.102581_b47 Hatamizadeh (10.1016/j.media.2022.102581_b12) 2019 Zhao (10.1016/j.media.2022.102581_b48) 2020; 39 Xia (10.1016/j.media.2022.102581_b40) 2019; 67 Livne (10.1016/j.media.2022.102581_b21) 2019; 13 Liu (10.1016/j.media.2022.102581_b20) 2022 Rivest-Henault (10.1016/j.media.2022.102581_b31) 2013; 22 Fu (10.1016/j.media.2022.102581_b10) 2020; 11 Yang (10.1016/j.media.2022.102581_b43) 2021 Li (10.1016/j.media.2022.102581_b19) 2019; 39 Zhang (10.1016/j.media.2022.102581_b45) 2020 10.1016/j.media.2022.102581_b13 Milletari (10.1016/j.media.2022.102581_b23) 2016 Smith (10.1016/j.media.2022.102581_b35) 2002; 17 |
| References_xml | – volume: 38 start-page: 2281 year: 2019 end-page: 2292 ident: b11 article-title: Ce-net: Context encoder network for 2d medical image segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 424 year: 2016 end-page: 432 ident: b7 article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 9 start-page: 193 year: 2011 end-page: 217 ident: b38 article-title: A broadly applicable 3-D neuron tracing method based on open-curve snake publication-title: Neuroinformatics – volume: 14 start-page: 9 year: 2020 ident: b3 article-title: A smart region-growing algorithm for single-neuron segmentation from confocal and 2-photon datasets publication-title: Front. Neuroinformatics – volume: 16 start-page: 823 year: 2012 end-page: 834 ident: b15 article-title: A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 11 start-page: 1 year: 2020 end-page: 12 ident: b10 article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network publication-title: Nature Commun. – year: 2020 ident: b4 article-title: Learning crisp boundaries using deep refinement network and adaptive weighting loss publication-title: IEEE Trans. Multimed. – start-page: 768 year: 2019 end-page: 771 ident: b34 article-title: Cerebrovascular network segmentation of MRA images with deep learning publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) – year: 2018 ident: b27 article-title: Attention u-net: Learning where to look for the pancreas – reference: Chen, S., Tan, X., Wang, B., Hu, X., 2018. Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 234–250. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b28 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 31 start-page: 262 year: 2013 end-page: 271 ident: b8 article-title: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights publication-title: Magn. Reson. Imaging – volume: 13 start-page: 97 year: 2019 ident: b21 article-title: A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease publication-title: Front. Neuroscience – volume: 67 year: 2021 ident: b25 article-title: CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging publication-title: Med. Image Anal. – volume: 39 start-page: 1856 year: 2019 end-page: 1867 ident: b50 article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 39 year: 2017 end-page: 46 ident: b30 article-title: Vascular segmentation in tof mra images of the brain using a deep convolutional neural network publication-title: Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis – volume: 40 start-page: 928 year: 2020 end-page: 939 ident: b22 article-title: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model publication-title: IEEE Trans. Med. Imaging – year: 2018 ident: b36 article-title: Deepvesselnet: Vessel segmentation, centerline prediction, and bifurcation detection in 3-d angiographic volumes – year: 2021 ident: b43 article-title: Multi-discriminator adversarial convolutional network for nerve fiber segmentation in confocal corneal microscopy images publication-title: IEEE J. Biomed. Health Inf. – volume: 25 start-page: 1634 year: 2020 end-page: 1645 ident: b41 article-title: Neuron image segmentation via learning deep features and enhancing weak neuronal structures publication-title: IEEE J. Biomed. Health Inf. – volume: 87 start-page: 252 year: 2015 end-page: 256 ident: b29 article-title: BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images publication-title: Neuron – year: 2020 ident: b16 article-title: Gans for medical image analysis publication-title: Artif. Intell. Med. – volume: 39 start-page: 2725 year: 2020 end-page: 2737 ident: b48 article-title: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy publication-title: IEEE Trans. Med. Imaging – volume: 18 start-page: 1874 year: 2014 end-page: 1886 ident: b33 article-title: Segmentation of the blood vessels and optic disk in retinal images publication-title: IEEE J. Biomed. Health Inf. – volume: 38 start-page: 210 year: 2011 end-page: 222 ident: b2 article-title: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: An evaluation study publication-title: Med. Phys. – volume: 39 start-page: 425 year: 2019 end-page: 435 ident: b19 article-title: 3D neuron reconstruction in tangled neuronal image with deep networks publication-title: IEEE Trans. Med. Imaging – reference: Wang, W., Zhao, S., Shen, J., Hoi, S.C., Borji, A., 2019. Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1448–1457. – start-page: 565 year: 2016 end-page: 571 ident: b23 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth International Conference on 3D Vision (3DV) – volume: 21 start-page: 61 year: 2002 end-page: 75 ident: b1 article-title: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction publication-title: IEEE Trans. Med. Imaging – year: 2020 ident: b46 article-title: Inter-slice context residual learning for 3D medical image segmentation publication-title: IEEE Trans. Med. Imaging – reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890. – year: 2022 ident: b20 article-title: Edge detection with attention: From global view to local focus publication-title: Pattern Recognit. Lett. – start-page: 442 year: 2019 end-page: 450 ident: b44 article-title: Et-net: A generic edge-attention guidance network for medical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 28 start-page: 4561 year: 2018 end-page: 4569 ident: b18 article-title: The 3D reconstructions of female pelvic autonomic nerves and their related organs based on MRI: a first step towards neuronavigation during nerve-sparing radical hysterectomy publication-title: European Radiology – volume: 67 start-page: 1338 year: 2019 end-page: 1348 ident: b40 article-title: Vessel segmentation of X-ray coronary angiographic image sequence publication-title: IEEE Trans. Biomed. Eng. – year: 2020 ident: b26 article-title: CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging publication-title: Med. Image Anal. – start-page: 721 year: 2019 end-page: 730 ident: b24 article-title: CS-Net: channel and spatial attention network for curvilinear structure segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 37 start-page: 438 year: 2017 end-page: 450 ident: b49 article-title: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter publication-title: IEEE Trans. Med. Imaging – start-page: 617 year: 2020 end-page: 631 ident: b5 article-title: Supervised edge attention network for accurate image instance segmentation publication-title: European Conference on Computer Vision – volume: 22 start-page: 2849 year: 2013 end-page: 2863 ident: b31 article-title: 3-D curvilinear structure detection filter via structure-ball analysis publication-title: IEEE Trans. Image Process. – start-page: 66 year: 2020 end-page: 75 ident: b45 article-title: Cerebrovascular segmentation in MRA via reverse edge attention network publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 175 year: 2019 end-page: 184 ident: b37 article-title: Volumetric attention for 3D medical image segmentation and detection publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 3209 year: 2014 end-page: 3214 ident: b42 article-title: Geodesic active contours with adaptive configuration for cerebral vessel and aneurysm segmentation publication-title: 2014 22nd International Conference on Pattern Recognition – start-page: 187 year: 2019 end-page: 194 ident: b12 article-title: End-to-end boundary aware networks for medical image segmentation publication-title: International Workshop on Machine Learning in Medical Imaging – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. – start-page: 234 year: 2015 end-page: 241 ident: b32 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: b35 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – year: 2014 ident: b17 article-title: Adam: A method for stochastic optimization – start-page: 118 year: 2020 end-page: 132 ident: b14 article-title: nnU-net for brain tumor segmentation publication-title: International MICCAI Brainlesion Workshop – start-page: 130 year: 1998 end-page: 137 ident: b9 article-title: Multiscale vessel enhancement filtering publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 16 start-page: 823 issue: 5 year: 2012 ident: 10.1016/j.media.2022.102581_b15 article-title: A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2189408 – volume: 25 start-page: 1634 issue: 5 year: 2020 ident: 10.1016/j.media.2022.102581_b41 article-title: Neuron image segmentation via learning deep features and enhancing weak neuronal structures publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2020.3017540 – volume: 28 start-page: 4561 issue: 11 year: 2018 ident: 10.1016/j.media.2022.102581_b18 article-title: The 3D reconstructions of female pelvic autonomic nerves and their related organs based on MRI: a first step towards neuronavigation during nerve-sparing radical hysterectomy publication-title: European Radiology doi: 10.1007/s00330-018-5453-8 – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.media.2022.102581_b35 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – start-page: 175 year: 2019 ident: 10.1016/j.media.2022.102581_b37 article-title: Volumetric attention for 3D medical image segmentation and detection – volume: 9 start-page: 193 issue: 2 year: 2011 ident: 10.1016/j.media.2022.102581_b38 article-title: A broadly applicable 3-D neuron tracing method based on open-curve snake publication-title: Neuroinformatics doi: 10.1007/s12021-011-9110-5 – ident: 10.1016/j.media.2022.102581_b13 doi: 10.1109/CVPR.2016.90 – start-page: 565 year: 2016 ident: 10.1016/j.media.2022.102581_b23 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation – volume: 14 start-page: 9 year: 2020 ident: 10.1016/j.media.2022.102581_b3 article-title: A smart region-growing algorithm for single-neuron segmentation from confocal and 2-photon datasets publication-title: Front. Neuroinformatics doi: 10.3389/fninf.2020.00009 – year: 2020 ident: 10.1016/j.media.2022.102581_b16 article-title: Gans for medical image analysis publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101938 – volume: 39 start-page: 2725 issue: 9 year: 2020 ident: 10.1016/j.media.2022.102581_b48 article-title: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2974499 – year: 2020 ident: 10.1016/j.media.2022.102581_b26 article-title: CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging publication-title: Med. Image Anal. – ident: 10.1016/j.media.2022.102581_b47 doi: 10.1109/CVPR.2017.660 – ident: 10.1016/j.media.2022.102581_b39 doi: 10.1109/CVPR.2019.00154 – start-page: 617 year: 2020 ident: 10.1016/j.media.2022.102581_b5 article-title: Supervised edge attention network for accurate image instance segmentation – volume: 67 start-page: 1338 issue: 5 year: 2019 ident: 10.1016/j.media.2022.102581_b40 article-title: Vessel segmentation of X-ray coronary angiographic image sequence publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2936460 – start-page: 39 year: 2017 ident: 10.1016/j.media.2022.102581_b30 article-title: Vascular segmentation in tof mra images of the brain using a deep convolutional neural network – volume: 40 start-page: 928 issue: 3 year: 2020 ident: 10.1016/j.media.2022.102581_b22 article-title: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3042802 – year: 2018 ident: 10.1016/j.media.2022.102581_b27 – year: 2020 ident: 10.1016/j.media.2022.102581_b4 article-title: Learning crisp boundaries using deep refinement network and adaptive weighting loss publication-title: IEEE Trans. Multimed. – start-page: 187 year: 2019 ident: 10.1016/j.media.2022.102581_b12 article-title: End-to-end boundary aware networks for medical image segmentation – start-page: 234 year: 2015 ident: 10.1016/j.media.2022.102581_b32 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 31 start-page: 262 issue: 2 year: 2013 ident: 10.1016/j.media.2022.102581_b8 article-title: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.07.008 – year: 2021 ident: 10.1016/j.media.2022.102581_b43 article-title: Multi-discriminator adversarial convolutional network for nerve fiber segmentation in confocal corneal microscopy images publication-title: IEEE J. Biomed. Health Inf. – start-page: 442 year: 2019 ident: 10.1016/j.media.2022.102581_b44 article-title: Et-net: A generic edge-attention guidance network for medical image segmentation – year: 2022 ident: 10.1016/j.media.2022.102581_b20 article-title: Edge detection with attention: From global view to local focus publication-title: Pattern Recognit. Lett. – start-page: 3209 year: 2014 ident: 10.1016/j.media.2022.102581_b42 article-title: Geodesic active contours with adaptive configuration for cerebral vessel and aneurysm segmentation – volume: 13 start-page: 97 year: 2019 ident: 10.1016/j.media.2022.102581_b21 article-title: A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease publication-title: Front. Neuroscience doi: 10.3389/fnins.2019.00097 – volume: 38 start-page: 2281 issue: 10 year: 2019 ident: 10.1016/j.media.2022.102581_b11 article-title: Ce-net: Context encoder network for 2d medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2903562 – volume: 38 start-page: 210 issue: 1 year: 2011 ident: 10.1016/j.media.2022.102581_b2 article-title: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: An evaluation study publication-title: Med. Phys. doi: 10.1118/1.3515749 – volume: 18 start-page: 1874 issue: 6 year: 2014 ident: 10.1016/j.media.2022.102581_b33 article-title: Segmentation of the blood vessels and optic disk in retinal images publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2302749 – start-page: 768 year: 2019 ident: 10.1016/j.media.2022.102581_b34 article-title: Cerebrovascular network segmentation of MRA images with deep learning – year: 2020 ident: 10.1016/j.media.2022.102581_b46 article-title: Inter-slice context residual learning for 3D medical image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.media.2022.102581_b10 article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network publication-title: Nature Commun. doi: 10.1038/s41467-020-18606-2 – year: 2018 ident: 10.1016/j.media.2022.102581_b36 – start-page: 424 year: 2016 ident: 10.1016/j.media.2022.102581_b7 article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation – start-page: 118 year: 2020 ident: 10.1016/j.media.2022.102581_b14 article-title: nnU-net for brain tumor segmentation – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.media.2022.102581_b28 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 37 start-page: 438 issue: 2 year: 2017 ident: 10.1016/j.media.2022.102581_b49 article-title: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2756073 – start-page: 130 year: 1998 ident: 10.1016/j.media.2022.102581_b9 article-title: Multiscale vessel enhancement filtering – volume: 67 year: 2021 ident: 10.1016/j.media.2022.102581_b25 article-title: CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101874 – start-page: 721 year: 2019 ident: 10.1016/j.media.2022.102581_b24 article-title: CS-Net: channel and spatial attention network for curvilinear structure segmentation – volume: 39 start-page: 425 issue: 2 year: 2019 ident: 10.1016/j.media.2022.102581_b19 article-title: 3D neuron reconstruction in tangled neuronal image with deep networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2926568 – start-page: 66 year: 2020 ident: 10.1016/j.media.2022.102581_b45 article-title: Cerebrovascular segmentation in MRA via reverse edge attention network – volume: 22 start-page: 2849 issue: 7 year: 2013 ident: 10.1016/j.media.2022.102581_b31 article-title: 3-D curvilinear structure detection filter via structure-ball analysis publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2240005 – year: 2014 ident: 10.1016/j.media.2022.102581_b17 – volume: 87 start-page: 252 issue: 2 year: 2015 ident: 10.1016/j.media.2022.102581_b29 article-title: BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images publication-title: Neuron doi: 10.1016/j.neuron.2015.06.036 – volume: 39 start-page: 1856 issue: 6 year: 2019 ident: 10.1016/j.media.2022.102581_b50 article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2959609 – volume: 21 start-page: 61 issue: 2 year: 2002 ident: 10.1016/j.media.2022.102581_b1 article-title: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.993126 – ident: 10.1016/j.media.2022.102581_b6 doi: 10.1007/978-3-030-01240-3_15 |
| SSID | ssj0007440 |
| Score | 2.6019943 |
| Snippet | The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’... The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases'... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102581 |
| SubjectTerms | 3D segmentation Attention Deep network Loss function Vessel-like structure |
| Title | 3D vessel-like structure segmentation in medical images by an edge-reinforced network |
| URI | https://dx.doi.org/10.1016/j.media.2022.102581 https://www.proquest.com/docview/2709914795 |
| Volume | 82 |
| WOSCitedRecordID | wos000890002100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYGTNN4QBvbNLaBPGlvLFUTO7HziAaITYCmCaa8RbbjoECbIkoR_Pc7_4jJiqjGw17SNopPVu_L-Xy--w6hL6Sus4oqGfFUJBEVKYF3jsRRxbJUEVOLaU_wfx-y42NeFPlPn5A5te0EWNvy29v88r-qGu6Bsk3p7BPUHYTCDfgOSocrqB2u_6R4srt9YwjBR9GouTD8sYYg1hwTTPXZ2Fca2fTGsT-jacbCED1Iw8S0bcJr0ZW2fKo2NcClifd92KP-OBjjWE06zRUu-_awuZgF3IWo9IGYhFVgZq3_rNZNiPL49OBfHrE-GAH72DgEI5z9JFkcceoqNDsD67oLeQsJDk3qmrQ8MN4ujnA-sDUzAyN-cP_031TZc0tYSCzsctbOSyukNEJKJ2QJrSQszcHyrex83yt-hPXaUCS66jw39Y6bymYBPpjLY_7L3Epu3ZOTV2jN7yvwjsPDa_RMt-totcc2uY5eHPk8ijfolOziHkhwAAnugwQ3LfYgwQ4kWN5h0eI5kGAPkrfodH_v5NtB5BtsRIqQ7DoyzQVyHUtVm36GEpxDVuUklhnVlCTGeeW0SriWlA8TpWidaGI8mjSnQtRakXdouZ20-j3C8INnaU2H8EGJknmqhBRDTSWrFAjcQEn3t5XKs8-bJiijcoHKNtDXMOjSka8sfjzr9FF6_9H5hSUgbPHAz532SrCu5shMtHoym5YJgx1UTFmefnjaXD6il_fvxye0DGrUm-i5urlupldbaIkVfMsD8Q9scpyr |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+vessel-like+structure+segmentation+in+medical+images+by+an+edge-reinforced+network&rft.jtitle=Medical+image+analysis&rft.au=Xia%2C+Likun&rft.au=Zhang%2C+Hao&rft.au=Wu%2C+Yufei&rft.au=Song%2C+Ran&rft.date=2022-11-01&rft.issn=1361-8415&rft.volume=82&rft.spage=102581&rft_id=info:doi/10.1016%2Fj.media.2022.102581&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2022_102581 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |