3D vessel-like structure segmentation in medical images by an edge-reinforced network

The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’ mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical image analysis Ročník 82; s. 102581
Hlavní autori: Xia, Likun, Zhang, Hao, Wu, Yufei, Song, Ran, Ma, Yuhui, Mou, Lei, Liu, Jiang, Xie, Yixuan, Ma, Ming, Zhao, Yitian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2022
Predmet:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’ mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder–decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics. [Display omitted] •We propose a novel method for 3D vessel-like structure segmentation, which is validated quantitatively and qualitatively using two cerebrovascular and two nerve datasets.•We propose a novel edge-reinforced neural network to detect edges better, capture the microstructure and improve structure connectivity of the given 3D volumetric data.•We propose reverse edge attention and edge-reinforced optimization loss to constrain both the edge and non-edge voxels of vessel-like structures and improve segmentation performance.
AbstractList The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases' mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder-decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases' mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder-decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.
The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’ mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder–decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics. [Display omitted] •We propose a novel method for 3D vessel-like structure segmentation, which is validated quantitatively and qualitatively using two cerebrovascular and two nerve datasets.•We propose a novel edge-reinforced neural network to detect edges better, capture the microstructure and improve structure connectivity of the given 3D volumetric data.•We propose reverse edge attention and edge-reinforced optimization loss to constrain both the edge and non-edge voxels of vessel-like structures and improve segmentation performance.
ArticleNumber 102581
Author Xia, Likun
Xie, Yixuan
Liu, Jiang
Zhao, Yitian
Song, Ran
Wu, Yufei
Ma, Yuhui
Mou, Lei
Zhang, Hao
Ma, Ming
Author_xml – sequence: 1
  givenname: Likun
  orcidid: 0000-0002-9593-2737
  surname: Xia
  fullname: Xia, Likun
  organization: College of Information Engineering, Capital Normal University, Beijing, China
– sequence: 2
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: College of Information Engineering, Capital Normal University, Beijing, China
– sequence: 3
  givenname: Yufei
  surname: Wu
  fullname: Wu, Yufei
  organization: The Affiliated People’s Hospital of Ningbo University, Ningbo, China
– sequence: 4
  givenname: Ran
  orcidid: 0000-0002-1344-4415
  surname: Song
  fullname: Song, Ran
  organization: School of Control Science and Engineering, Shandong University, Jinan, China
– sequence: 5
  givenname: Yuhui
  surname: Ma
  fullname: Ma, Yuhui
  organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
– sequence: 6
  givenname: Lei
  surname: Mou
  fullname: Mou, Lei
  organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
– sequence: 7
  givenname: Jiang
  orcidid: 0000-0001-6281-6505
  surname: Liu
  fullname: Liu, Jiang
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 8
  givenname: Yixuan
  surname: Xie
  fullname: Xie, Yixuan
  organization: College of Information Engineering, Capital Normal University, Beijing, China
– sequence: 9
  givenname: Ming
  surname: Ma
  fullname: Ma, Ming
  organization: Department of Computer Science, Winona State University, Winona, USA
– sequence: 10
  givenname: Yitian
  orcidid: 0000-0003-4357-4592
  surname: Zhao
  fullname: Zhao, Yitian
  email: yitian.zhao@nimte.ac.cn
  organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
BookMark eNqFkD1PwzAQhi1UJFrgF7B4ZEnxVz48MKDyKVViobPlOJfKbeIU2ynqvycliIEBpnt1uudO98zQxHUOELqiZE4JzW428xYqq-eMMDZ0WFrQEzSlPKNJIRif_GSanqFZCBtCSC4EmaIVv8d7CAGapLFbwCH63sTeDwnWLbioo-0ctg4fLxjdYNvqNQRcHrB2GKo1JB6sqztvoMIO4kfntxfotNZNgMvveo5Wjw9vi-dk-fr0srhbJobzLCa5FJkEWpqapCQtCyrzSnJaZgIEZyTjshAVK6AUBWHGiJoBLwhlqRRa12D4Oboe9-58995DiKq1wUDTaAddHxTLiZRU5DIdRvk4anwXgoda7fzwij8oStRRotqoL4nqKFGNEgdK_qKMHZVEr23zD3s7sjAY2FvwKhgLbtBkPZioqs7-yX8CZUKPyQ
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3269223
crossref_primary_10_1007_s11548_024_03159_2
crossref_primary_10_1002_mp_17542
crossref_primary_10_1016_j_compbiomed_2024_107996
crossref_primary_10_1002_mp_70017
crossref_primary_10_1007_s11517_024_03195_9
crossref_primary_10_1016_j_compbiomed_2023_107609
crossref_primary_10_3389_fnins_2024_1363930
crossref_primary_10_1016_j_measurement_2025_118925
crossref_primary_10_1016_j_media_2024_103442
crossref_primary_10_3389_fphys_2023_1308987
crossref_primary_10_1016_j_compbiomed_2023_107766
crossref_primary_10_1109_TSIPN_2025_3540709
crossref_primary_10_1016_j_bspc_2024_106849
crossref_primary_10_3389_fcvm_2023_1203400
crossref_primary_10_1007_s40747_023_01322_x
crossref_primary_10_1007_s11760_025_04222_4
crossref_primary_10_1007_s40747_025_01995_6
crossref_primary_10_1016_j_eswa_2025_127577
crossref_primary_10_1007_s11760_024_03409_5
crossref_primary_10_1016_j_compmedimag_2025_102521
crossref_primary_10_1016_j_compbiomed_2024_108331
crossref_primary_10_1109_TMI_2024_3424976
crossref_primary_10_1371_journal_pone_0311439
crossref_primary_10_1002_mp_16720
crossref_primary_10_1109_JBHI_2024_3409382
crossref_primary_10_1016_j_bspc_2025_108028
crossref_primary_10_1016_j_compbiomed_2023_107617
crossref_primary_10_1109_JSTARS_2025_3535805
crossref_primary_10_1016_j_cmpb_2024_108511
crossref_primary_10_1016_j_engappai_2025_110398
crossref_primary_10_3390_s24134326
crossref_primary_10_1016_j_eswa_2025_128096
crossref_primary_10_1016_j_compbiomed_2023_106886
crossref_primary_10_3389_fnins_2023_1265032
crossref_primary_10_1109_TIP_2025_3526061
crossref_primary_10_3390_diagnostics13132161
crossref_primary_10_3390_jimaging10120311
crossref_primary_10_1016_j_bspc_2025_107507
crossref_primary_10_1109_TMI_2024_3367384
crossref_primary_10_1016_j_compbiomed_2024_109191
crossref_primary_10_1016_j_compmedimag_2023_102228
crossref_primary_10_1016_j_ymeth_2024_05_016
crossref_primary_10_1109_TIM_2024_3497181
crossref_primary_10_1038_s41598_024_77582_5
crossref_primary_10_1016_j_compbiomed_2024_109150
Cites_doi 10.1109/TITB.2012.2189408
10.1109/JBHI.2020.3017540
10.1007/s00330-018-5453-8
10.1002/hbm.10062
10.1007/s12021-011-9110-5
10.1109/CVPR.2016.90
10.3389/fninf.2020.00009
10.1016/j.artmed.2020.101938
10.1109/TMI.2020.2974499
10.1109/CVPR.2017.660
10.1109/CVPR.2019.00154
10.1109/TBME.2019.2936460
10.1109/TMI.2020.3042802
10.1016/j.mri.2012.07.008
10.3389/fnins.2019.00097
10.1109/TMI.2019.2903562
10.1118/1.3515749
10.1109/JBHI.2014.2302749
10.1038/s41467-020-18606-2
10.1109/TSMC.1979.4310076
10.1109/TMI.2017.2756073
10.1016/j.media.2020.101874
10.1109/TMI.2019.2926568
10.1109/TIP.2013.2240005
10.1016/j.neuron.2015.06.036
10.1109/TMI.2019.2959609
10.1109/42.993126
10.1007/978-3-030-01240-3_15
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.media.2022.102581
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10_1016_j_media_2022_102581
S1361841522002201
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7X8
ID FETCH-LOGICAL-c336t-79469e1bcf0505b8197d931b64e432063984d28eb4802cc4f2e38012594aafec3
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890002100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Thu Oct 02 12:05:30 EDT 2025
Tue Nov 18 20:55:35 EST 2025
Sat Nov 29 07:03:27 EST 2025
Fri Feb 23 02:40:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep network
Loss function
Vessel-like structure
3D segmentation
Attention
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-79469e1bcf0505b8197d931b64e432063984d28eb4802cc4f2e38012594aafec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9593-2737
0000-0001-6281-6505
0000-0003-4357-4592
0000-0002-1344-4415
PQID 2709914795
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2709914795
crossref_primary_10_1016_j_media_2022_102581
crossref_citationtrail_10_1016_j_media_2022_102581
elsevier_sciencedirect_doi_10_1016_j_media_2022_102581
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Medical image analysis
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Liu, Chen, Duan, Qiao, Ognami (b18) 2018; 28
Livne, Rieger, Aydin, Taha, Akay, Kossen, Sobesky, Kelleher, Hildebrand, Frey (b21) 2019; 13
Katouzian, Angelini, Carlier, Suri, Navab, Laine (b15) 2012; 16
Forkert, Schmidt-Richberg, Fiehler, Illies, Möller, Säring, Handels, Ehrhardt (b8) 2013; 31
Kingma, Ba (b17) 2014
Cao, Lin, Li (b4) 2020
Isensee, Jäger, Full, Vollmuth, Maier-Hein (b14) 2020
Milletari, Navab, Ahmadi (b23) 2016
Gu, Cheng, Fu, Zhou, Hao, Zhao, Zhang, Gao, Liu (b11) 2019; 38
Li, Shen (b19) 2019; 39
Mou, Zhao, Chen, Cheng, Gu, Hao, Qi, Zheng, Frangi, Liu (b24) 2019
Zhang, Xia, Song, Yang, Hao, Liu, Zhao (b45) 2020
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (b7) 2016
Mou, Zhao, Fu, Liu, Cheng, Zheng, Su, Yang, Chen, Frangi (b25) 2021; 67
Zhang, Xie, Wang, Xia (b46) 2020
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
Frangi, Niessen, Vincken, Viergever (b9) 1998
Callara, Magliaro, Ahluwalia, Vanello (b3) 2020; 14
Ma, Hao, Xie, Fu, Zhang, Yang, Wang, Liu, Zheng, Zhao (b22) 2020; 40
Fu, Wei, Zhang, Yu, Xiao, Rong, Shan, Li, Zhao, Liao (b10) 2020; 11
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890.
Tetteh, Efremov, Forkert, Schneider, Kirschke, Weber, Zimmer, Piraud, Menze (b36) 2018
Wang, Narayanaswamy, Tsai, Roysam (b38) 2011; 9
Kazeminia, Baur, Kuijper, van Ginneken, Navab, Albarqouni, Mukhopadhyay (b16) 2020
Sanchesa, Meyer, Vigon, Naegel (b34) 2019
Smith (b35) 2002; 17
Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz (b27) 2018
Wang, W., Zhao, S., Shen, J., Hoi, S.C., Borji, A., 2019. Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1448–1457.
Zhao, Zheng, Liu, Zhao, Luo, Yang, Na, Wang, Liu (b49) 2017; 37
Peng, Hawrylycz, Roskams, Hill, Spruston, Meijering, Ascoli (b29) 2015; 87
Salazar-Gonzalez, Kaba, Li, Liu (b33) 2014; 18
Phellan, Peixinho, Falcão, Forkert (b30) 2017
Ronneberger, Fischer, Brox (b32) 2015
Liu, Yang, Zhang, Wang (b20) 2022
Otsu (b28) 1979; 9
Yang, Cheng, Chien (b42) 2014
Yang, Chen, Luo, Tan, Liu, Wang (b41) 2020; 25
Zhao, Zhang, Pereira, Zheng, Su, Xie, Zhao, Shi, Qi, Liu (b48) 2020; 39
Chen, Lian, Jiao, Wang, Gao, Lingling (b5) 2020
Wang, Han, Chen, Gao, Vasconcelos (b37) 2019
Hatamizadeh, Terzopoulos, Myronenko (b12) 2019
Aylward, Bullitt (b1) 2002; 21
Mou, Zhao, Fu, Liux, Cheng, Zheng, Su, Yang, Chen, Frangi (b26) 2020
Yang, Zhou, Zhu, Xiang, Chen, Yuan, Chen, Shi (b43) 2021
Xia, Zhu, Liu, Gong, Huang, Xu, Zhang, Guo (b40) 2019; 67
Chen, S., Tan, X., Wang, B., Hu, X., 2018. Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 234–250.
Zhou, Siddiquee, Tajbakhsh, Liang (b50) 2019; 39
Rivest-Henault, Cheriet (b31) 2013; 22
Bogunović, Pozo, Villa-Uriol, Majoie, van den Berg, Gratama van Andel, Macho, Blasco, San Román, Frangi (b2) 2011; 38
Zhang, Fu, Dai, Shen, Pang, Shao (b44) 2019
Frangi (10.1016/j.media.2022.102581_b9) 1998
Ma (10.1016/j.media.2022.102581_b22) 2020; 40
Otsu (10.1016/j.media.2022.102581_b28) 1979; 9
Çiçek (10.1016/j.media.2022.102581_b7) 2016
Kingma (10.1016/j.media.2022.102581_b17) 2014
Aylward (10.1016/j.media.2022.102581_b1) 2002; 21
10.1016/j.media.2022.102581_b6
Kazeminia (10.1016/j.media.2022.102581_b16) 2020
Zhou (10.1016/j.media.2022.102581_b50) 2019; 39
Ronneberger (10.1016/j.media.2022.102581_b32) 2015
Bogunović (10.1016/j.media.2022.102581_b2) 2011; 38
Mou (10.1016/j.media.2022.102581_b24) 2019
Cao (10.1016/j.media.2022.102581_b4) 2020
Tetteh (10.1016/j.media.2022.102581_b36) 2018
Katouzian (10.1016/j.media.2022.102581_b15) 2012; 16
Mou (10.1016/j.media.2022.102581_b25) 2021; 67
Phellan (10.1016/j.media.2022.102581_b30) 2017
Yang (10.1016/j.media.2022.102581_b42) 2014
Zhang (10.1016/j.media.2022.102581_b46) 2020
Salazar-Gonzalez (10.1016/j.media.2022.102581_b33) 2014; 18
Li (10.1016/j.media.2022.102581_b18) 2018; 28
Wang (10.1016/j.media.2022.102581_b37) 2019
Callara (10.1016/j.media.2022.102581_b3) 2020; 14
Sanchesa (10.1016/j.media.2022.102581_b34) 2019
Yang (10.1016/j.media.2022.102581_b41) 2020; 25
Gu (10.1016/j.media.2022.102581_b11) 2019; 38
10.1016/j.media.2022.102581_b39
Peng (10.1016/j.media.2022.102581_b29) 2015; 87
Zhang (10.1016/j.media.2022.102581_b44) 2019
Isensee (10.1016/j.media.2022.102581_b14) 2020
Zhao (10.1016/j.media.2022.102581_b49) 2017; 37
Mou (10.1016/j.media.2022.102581_b26) 2020
Wang (10.1016/j.media.2022.102581_b38) 2011; 9
Forkert (10.1016/j.media.2022.102581_b8) 2013; 31
Oktay (10.1016/j.media.2022.102581_b27) 2018
Chen (10.1016/j.media.2022.102581_b5) 2020
10.1016/j.media.2022.102581_b47
Hatamizadeh (10.1016/j.media.2022.102581_b12) 2019
Zhao (10.1016/j.media.2022.102581_b48) 2020; 39
Xia (10.1016/j.media.2022.102581_b40) 2019; 67
Livne (10.1016/j.media.2022.102581_b21) 2019; 13
Liu (10.1016/j.media.2022.102581_b20) 2022
Rivest-Henault (10.1016/j.media.2022.102581_b31) 2013; 22
Fu (10.1016/j.media.2022.102581_b10) 2020; 11
Yang (10.1016/j.media.2022.102581_b43) 2021
Li (10.1016/j.media.2022.102581_b19) 2019; 39
Zhang (10.1016/j.media.2022.102581_b45) 2020
10.1016/j.media.2022.102581_b13
Milletari (10.1016/j.media.2022.102581_b23) 2016
Smith (10.1016/j.media.2022.102581_b35) 2002; 17
References_xml – volume: 38
  start-page: 2281
  year: 2019
  end-page: 2292
  ident: b11
  article-title: Ce-net: Context encoder network for 2d medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 424
  year: 2016
  end-page: 432
  ident: b7
  article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 9
  start-page: 193
  year: 2011
  end-page: 217
  ident: b38
  article-title: A broadly applicable 3-D neuron tracing method based on open-curve snake
  publication-title: Neuroinformatics
– volume: 14
  start-page: 9
  year: 2020
  ident: b3
  article-title: A smart region-growing algorithm for single-neuron segmentation from confocal and 2-photon datasets
  publication-title: Front. Neuroinformatics
– volume: 16
  start-page: 823
  year: 2012
  end-page: 834
  ident: b15
  article-title: A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 12
  ident: b10
  article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
  publication-title: Nature Commun.
– year: 2020
  ident: b4
  article-title: Learning crisp boundaries using deep refinement network and adaptive weighting loss
  publication-title: IEEE Trans. Multimed.
– start-page: 768
  year: 2019
  end-page: 771
  ident: b34
  article-title: Cerebrovascular network segmentation of MRA images with deep learning
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– year: 2018
  ident: b27
  article-title: Attention u-net: Learning where to look for the pancreas
– reference: Chen, S., Tan, X., Wang, B., Hu, X., 2018. Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 234–250.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b28
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 31
  start-page: 262
  year: 2013
  end-page: 271
  ident: b8
  article-title: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights
  publication-title: Magn. Reson. Imaging
– volume: 13
  start-page: 97
  year: 2019
  ident: b21
  article-title: A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease
  publication-title: Front. Neuroscience
– volume: 67
  year: 2021
  ident: b25
  article-title: CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging
  publication-title: Med. Image Anal.
– volume: 39
  start-page: 1856
  year: 2019
  end-page: 1867
  ident: b50
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 39
  year: 2017
  end-page: 46
  ident: b30
  article-title: Vascular segmentation in tof mra images of the brain using a deep convolutional neural network
  publication-title: Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
– volume: 40
  start-page: 928
  year: 2020
  end-page: 939
  ident: b22
  article-title: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model
  publication-title: IEEE Trans. Med. Imaging
– year: 2018
  ident: b36
  article-title: Deepvesselnet: Vessel segmentation, centerline prediction, and bifurcation detection in 3-d angiographic volumes
– year: 2021
  ident: b43
  article-title: Multi-discriminator adversarial convolutional network for nerve fiber segmentation in confocal corneal microscopy images
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 25
  start-page: 1634
  year: 2020
  end-page: 1645
  ident: b41
  article-title: Neuron image segmentation via learning deep features and enhancing weak neuronal structures
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 87
  start-page: 252
  year: 2015
  end-page: 256
  ident: b29
  article-title: BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images
  publication-title: Neuron
– year: 2020
  ident: b16
  article-title: Gans for medical image analysis
  publication-title: Artif. Intell. Med.
– volume: 39
  start-page: 2725
  year: 2020
  end-page: 2737
  ident: b48
  article-title: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy
  publication-title: IEEE Trans. Med. Imaging
– volume: 18
  start-page: 1874
  year: 2014
  end-page: 1886
  ident: b33
  article-title: Segmentation of the blood vessels and optic disk in retinal images
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 38
  start-page: 210
  year: 2011
  end-page: 222
  ident: b2
  article-title: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: An evaluation study
  publication-title: Med. Phys.
– volume: 39
  start-page: 425
  year: 2019
  end-page: 435
  ident: b19
  article-title: 3D neuron reconstruction in tangled neuronal image with deep networks
  publication-title: IEEE Trans. Med. Imaging
– reference: Wang, W., Zhao, S., Shen, J., Hoi, S.C., Borji, A., 2019. Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1448–1457.
– start-page: 565
  year: 2016
  end-page: 571
  ident: b23
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– volume: 21
  start-page: 61
  year: 2002
  end-page: 75
  ident: b1
  article-title: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction
  publication-title: IEEE Trans. Med. Imaging
– year: 2020
  ident: b46
  article-title: Inter-slice context residual learning for 3D medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2881–2890.
– year: 2022
  ident: b20
  article-title: Edge detection with attention: From global view to local focus
  publication-title: Pattern Recognit. Lett.
– start-page: 442
  year: 2019
  end-page: 450
  ident: b44
  article-title: Et-net: A generic edge-attention guidance network for medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 28
  start-page: 4561
  year: 2018
  end-page: 4569
  ident: b18
  article-title: The 3D reconstructions of female pelvic autonomic nerves and their related organs based on MRI: a first step towards neuronavigation during nerve-sparing radical hysterectomy
  publication-title: European Radiology
– volume: 67
  start-page: 1338
  year: 2019
  end-page: 1348
  ident: b40
  article-title: Vessel segmentation of X-ray coronary angiographic image sequence
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2020
  ident: b26
  article-title: CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging
  publication-title: Med. Image Anal.
– start-page: 721
  year: 2019
  end-page: 730
  ident: b24
  article-title: CS-Net: channel and spatial attention network for curvilinear structure segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 37
  start-page: 438
  year: 2017
  end-page: 450
  ident: b49
  article-title: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter
  publication-title: IEEE Trans. Med. Imaging
– start-page: 617
  year: 2020
  end-page: 631
  ident: b5
  article-title: Supervised edge attention network for accurate image instance segmentation
  publication-title: European Conference on Computer Vision
– volume: 22
  start-page: 2849
  year: 2013
  end-page: 2863
  ident: b31
  article-title: 3-D curvilinear structure detection filter via structure-ball analysis
  publication-title: IEEE Trans. Image Process.
– start-page: 66
  year: 2020
  end-page: 75
  ident: b45
  article-title: Cerebrovascular segmentation in MRA via reverse edge attention network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 175
  year: 2019
  end-page: 184
  ident: b37
  article-title: Volumetric attention for 3D medical image segmentation and detection
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 3209
  year: 2014
  end-page: 3214
  ident: b42
  article-title: Geodesic active contours with adaptive configuration for cerebral vessel and aneurysm segmentation
  publication-title: 2014 22nd International Conference on Pattern Recognition
– start-page: 187
  year: 2019
  end-page: 194
  ident: b12
  article-title: End-to-end boundary aware networks for medical image segmentation
  publication-title: International Workshop on Machine Learning in Medical Imaging
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b32
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: b35
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– year: 2014
  ident: b17
  article-title: Adam: A method for stochastic optimization
– start-page: 118
  year: 2020
  end-page: 132
  ident: b14
  article-title: nnU-net for brain tumor segmentation
  publication-title: International MICCAI Brainlesion Workshop
– start-page: 130
  year: 1998
  end-page: 137
  ident: b9
  article-title: Multiscale vessel enhancement filtering
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 16
  start-page: 823
  issue: 5
  year: 2012
  ident: 10.1016/j.media.2022.102581_b15
  article-title: A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2189408
– volume: 25
  start-page: 1634
  issue: 5
  year: 2020
  ident: 10.1016/j.media.2022.102581_b41
  article-title: Neuron image segmentation via learning deep features and enhancing weak neuronal structures
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3017540
– volume: 28
  start-page: 4561
  issue: 11
  year: 2018
  ident: 10.1016/j.media.2022.102581_b18
  article-title: The 3D reconstructions of female pelvic autonomic nerves and their related organs based on MRI: a first step towards neuronavigation during nerve-sparing radical hysterectomy
  publication-title: European Radiology
  doi: 10.1007/s00330-018-5453-8
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.media.2022.102581_b35
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– start-page: 175
  year: 2019
  ident: 10.1016/j.media.2022.102581_b37
  article-title: Volumetric attention for 3D medical image segmentation and detection
– volume: 9
  start-page: 193
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2022.102581_b38
  article-title: A broadly applicable 3-D neuron tracing method based on open-curve snake
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-011-9110-5
– ident: 10.1016/j.media.2022.102581_b13
  doi: 10.1109/CVPR.2016.90
– start-page: 565
  year: 2016
  ident: 10.1016/j.media.2022.102581_b23
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
– volume: 14
  start-page: 9
  year: 2020
  ident: 10.1016/j.media.2022.102581_b3
  article-title: A smart region-growing algorithm for single-neuron segmentation from confocal and 2-photon datasets
  publication-title: Front. Neuroinformatics
  doi: 10.3389/fninf.2020.00009
– year: 2020
  ident: 10.1016/j.media.2022.102581_b16
  article-title: Gans for medical image analysis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101938
– volume: 39
  start-page: 2725
  issue: 9
  year: 2020
  ident: 10.1016/j.media.2022.102581_b48
  article-title: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2974499
– year: 2020
  ident: 10.1016/j.media.2022.102581_b26
  article-title: CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging
  publication-title: Med. Image Anal.
– ident: 10.1016/j.media.2022.102581_b47
  doi: 10.1109/CVPR.2017.660
– ident: 10.1016/j.media.2022.102581_b39
  doi: 10.1109/CVPR.2019.00154
– start-page: 617
  year: 2020
  ident: 10.1016/j.media.2022.102581_b5
  article-title: Supervised edge attention network for accurate image instance segmentation
– volume: 67
  start-page: 1338
  issue: 5
  year: 2019
  ident: 10.1016/j.media.2022.102581_b40
  article-title: Vessel segmentation of X-ray coronary angiographic image sequence
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2936460
– start-page: 39
  year: 2017
  ident: 10.1016/j.media.2022.102581_b30
  article-title: Vascular segmentation in tof mra images of the brain using a deep convolutional neural network
– volume: 40
  start-page: 928
  issue: 3
  year: 2020
  ident: 10.1016/j.media.2022.102581_b22
  article-title: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3042802
– year: 2018
  ident: 10.1016/j.media.2022.102581_b27
– year: 2020
  ident: 10.1016/j.media.2022.102581_b4
  article-title: Learning crisp boundaries using deep refinement network and adaptive weighting loss
  publication-title: IEEE Trans. Multimed.
– start-page: 187
  year: 2019
  ident: 10.1016/j.media.2022.102581_b12
  article-title: End-to-end boundary aware networks for medical image segmentation
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2022.102581_b32
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 31
  start-page: 262
  issue: 2
  year: 2013
  ident: 10.1016/j.media.2022.102581_b8
  article-title: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.07.008
– year: 2021
  ident: 10.1016/j.media.2022.102581_b43
  article-title: Multi-discriminator adversarial convolutional network for nerve fiber segmentation in confocal corneal microscopy images
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 442
  year: 2019
  ident: 10.1016/j.media.2022.102581_b44
  article-title: Et-net: A generic edge-attention guidance network for medical image segmentation
– year: 2022
  ident: 10.1016/j.media.2022.102581_b20
  article-title: Edge detection with attention: From global view to local focus
  publication-title: Pattern Recognit. Lett.
– start-page: 3209
  year: 2014
  ident: 10.1016/j.media.2022.102581_b42
  article-title: Geodesic active contours with adaptive configuration for cerebral vessel and aneurysm segmentation
– volume: 13
  start-page: 97
  year: 2019
  ident: 10.1016/j.media.2022.102581_b21
  article-title: A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease
  publication-title: Front. Neuroscience
  doi: 10.3389/fnins.2019.00097
– volume: 38
  start-page: 2281
  issue: 10
  year: 2019
  ident: 10.1016/j.media.2022.102581_b11
  article-title: Ce-net: Context encoder network for 2d medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2903562
– volume: 38
  start-page: 210
  issue: 1
  year: 2011
  ident: 10.1016/j.media.2022.102581_b2
  article-title: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: An evaluation study
  publication-title: Med. Phys.
  doi: 10.1118/1.3515749
– volume: 18
  start-page: 1874
  issue: 6
  year: 2014
  ident: 10.1016/j.media.2022.102581_b33
  article-title: Segmentation of the blood vessels and optic disk in retinal images
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2302749
– start-page: 768
  year: 2019
  ident: 10.1016/j.media.2022.102581_b34
  article-title: Cerebrovascular network segmentation of MRA images with deep learning
– year: 2020
  ident: 10.1016/j.media.2022.102581_b46
  article-title: Inter-slice context residual learning for 3D medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.media.2022.102581_b10
  article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
  publication-title: Nature Commun.
  doi: 10.1038/s41467-020-18606-2
– year: 2018
  ident: 10.1016/j.media.2022.102581_b36
– start-page: 424
  year: 2016
  ident: 10.1016/j.media.2022.102581_b7
  article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation
– start-page: 118
  year: 2020
  ident: 10.1016/j.media.2022.102581_b14
  article-title: nnU-net for brain tumor segmentation
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.media.2022.102581_b28
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 37
  start-page: 438
  issue: 2
  year: 2017
  ident: 10.1016/j.media.2022.102581_b49
  article-title: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2756073
– start-page: 130
  year: 1998
  ident: 10.1016/j.media.2022.102581_b9
  article-title: Multiscale vessel enhancement filtering
– volume: 67
  year: 2021
  ident: 10.1016/j.media.2022.102581_b25
  article-title: CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101874
– start-page: 721
  year: 2019
  ident: 10.1016/j.media.2022.102581_b24
  article-title: CS-Net: channel and spatial attention network for curvilinear structure segmentation
– volume: 39
  start-page: 425
  issue: 2
  year: 2019
  ident: 10.1016/j.media.2022.102581_b19
  article-title: 3D neuron reconstruction in tangled neuronal image with deep networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2926568
– start-page: 66
  year: 2020
  ident: 10.1016/j.media.2022.102581_b45
  article-title: Cerebrovascular segmentation in MRA via reverse edge attention network
– volume: 22
  start-page: 2849
  issue: 7
  year: 2013
  ident: 10.1016/j.media.2022.102581_b31
  article-title: 3-D curvilinear structure detection filter via structure-ball analysis
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2240005
– year: 2014
  ident: 10.1016/j.media.2022.102581_b17
– volume: 87
  start-page: 252
  issue: 2
  year: 2015
  ident: 10.1016/j.media.2022.102581_b29
  article-title: BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.036
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  ident: 10.1016/j.media.2022.102581_b50
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
– volume: 21
  start-page: 61
  issue: 2
  year: 2002
  ident: 10.1016/j.media.2022.102581_b1
  article-title: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.993126
– ident: 10.1016/j.media.2022.102581_b6
  doi: 10.1007/978-3-030-01240-3_15
SSID ssj0007440
Score 2.6019943
Snippet The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’...
The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases'...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102581
SubjectTerms 3D segmentation
Attention
Deep network
Loss function
Vessel-like structure
Title 3D vessel-like structure segmentation in medical images by an edge-reinforced network
URI https://dx.doi.org/10.1016/j.media.2022.102581
https://www.proquest.com/docview/2709914795
Volume 82
WOSCitedRecordID wos000890002100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYGTNN4QBvbNLaBPGlvLFUTO7HziAaITYCmCaa8RbbjoECbIkoR_Pc7_4jJiqjGw17SNopPVu_L-Xy--w6hL6Sus4oqGfFUJBEVKYF3jsRRxbJUEVOLaU_wfx-y42NeFPlPn5A5te0EWNvy29v88r-qGu6Bsk3p7BPUHYTCDfgOSocrqB2u_6R4srt9YwjBR9GouTD8sYYg1hwTTPXZ2Fca2fTGsT-jacbCED1Iw8S0bcJr0ZW2fKo2NcClifd92KP-OBjjWE06zRUu-_awuZgF3IWo9IGYhFVgZq3_rNZNiPL49OBfHrE-GAH72DgEI5z9JFkcceoqNDsD67oLeQsJDk3qmrQ8MN4ujnA-sDUzAyN-cP_031TZc0tYSCzsctbOSyukNEJKJ2QJrSQszcHyrex83yt-hPXaUCS66jw39Y6bymYBPpjLY_7L3Epu3ZOTV2jN7yvwjsPDa_RMt-totcc2uY5eHPk8ijfolOziHkhwAAnugwQ3LfYgwQ4kWN5h0eI5kGAPkrfodH_v5NtB5BtsRIqQ7DoyzQVyHUtVm36GEpxDVuUklhnVlCTGeeW0SriWlA8TpWidaGI8mjSnQtRakXdouZ20-j3C8INnaU2H8EGJknmqhBRDTSWrFAjcQEn3t5XKs8-bJiijcoHKNtDXMOjSka8sfjzr9FF6_9H5hSUgbPHAz532SrCu5shMtHoym5YJgx1UTFmefnjaXD6il_fvxye0DGrUm-i5urlupldbaIkVfMsD8Q9scpyr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+vessel-like+structure+segmentation+in+medical+images+by+an+edge-reinforced+network&rft.jtitle=Medical+image+analysis&rft.au=Xia%2C+Likun&rft.au=Zhang%2C+Hao&rft.au=Wu%2C+Yufei&rft.au=Song%2C+Ran&rft.date=2022-11-01&rft.issn=1361-8415&rft.volume=82&rft.spage=102581&rft_id=info:doi/10.1016%2Fj.media.2022.102581&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2022_102581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon