Computational Complexity of Unitary and State Design Properties

We investigate unitary and state t -designs from a computational complexity perspective. First, we address the problems of computing frame potentials that characterize (approximate) t -designs. We present a quantum algorithm for computing frame potentials and establish the following: (1) exact compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PRX quantum Jg. 6; H. 3; S. 030345
Hauptverfasser: Nakata, Yoshifumi, Takeuchi, Yuki, Kliesch, Martin, Darmawan, Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: American Physical Society 09.09.2025
ISSN:2691-3399, 2691-3399
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We investigate unitary and state t -designs from a computational complexity perspective. First, we address the problems of computing frame potentials that characterize (approximate) t -designs. We present a quantum algorithm for computing frame potentials and establish the following: (1) exact computation can be achieved by a single query to a # P oracle and is # P -hard; (2) for state vectors, deciding whether the frame potential is larger than or smaller than certain values is B Q P -complete, provided that the promise gap between the two values is inverse polynomial in the number of qubits; and (3) for both state vectors and unitaries, this promise problem is P P -complete if the promise gap is exponentially small. Second, we address the promise problem of deciding whether or not a given set is a good approximation to a design. Given a certain promise gap that could be constant, we show that this problem is P P -hard, highlighting the inherent computational difficulty of determining properties of unitary and state designs. We further identify implications of our results, including variational methods for constructing designs, diagnosing quantum chaos, and exploring emergent designs in Hamiltonian systems.
AbstractList We investigate unitary and state t -designs from a computational complexity perspective. First, we address the problems of computing frame potentials that characterize (approximate) t -designs. We present a quantum algorithm for computing frame potentials and establish the following: (1) exact computation can be achieved by a single query to a # P oracle and is # P -hard; (2) for state vectors, deciding whether the frame potential is larger than or smaller than certain values is B Q P -complete, provided that the promise gap between the two values is inverse polynomial in the number of qubits; and (3) for both state vectors and unitaries, this promise problem is P P -complete if the promise gap is exponentially small. Second, we address the promise problem of deciding whether or not a given set is a good approximation to a design. Given a certain promise gap that could be constant, we show that this problem is P P -hard, highlighting the inherent computational difficulty of determining properties of unitary and state designs. We further identify implications of our results, including variational methods for constructing designs, diagnosing quantum chaos, and exploring emergent designs in Hamiltonian systems.
We investigate unitary and state t-designs from a computational complexity perspective. First, we address the problems of computing frame potentials that characterize (approximate) t-designs. We present a quantum algorithm for computing frame potentials and establish the following: (1) exact computation can be achieved by a single query to a #P oracle and is #P-hard; (2) for state vectors, deciding whether the frame potential is larger than or smaller than certain values is BQP-complete, provided that the promise gap between the two values is inverse polynomial in the number of qubits; and (3) for both state vectors and unitaries, this promise problem is PP-complete if the promise gap is exponentially small. Second, we address the promise problem of deciding whether or not a given set is a good approximation to a design. Given a certain promise gap that could be constant, we show that this problem is PP-hard, highlighting the inherent computational difficulty of determining properties of unitary and state designs. We further identify implications of our results, including variational methods for constructing designs, diagnosing quantum chaos, and exploring emergent designs in Hamiltonian systems.
ArticleNumber 030345
Author Darmawan, Andrew
Kliesch, Martin
Takeuchi, Yuki
Nakata, Yoshifumi
Author_xml – sequence: 1
  givenname: Yoshifumi
  orcidid: 0000-0003-1285-6968
  surname: Nakata
  fullname: Nakata, Yoshifumi
– sequence: 2
  givenname: Yuki
  orcidid: 0000-0003-2428-7432
  surname: Takeuchi
  fullname: Takeuchi, Yuki
– sequence: 3
  givenname: Martin
  orcidid: 0000-0002-8009-0549
  surname: Kliesch
  fullname: Kliesch, Martin
– sequence: 4
  givenname: Andrew
  surname: Darmawan
  fullname: Darmawan, Andrew
BookMark eNpNkE1LAzEQhoNUsNYe_Ae5elhNMtns5iRSvwoFBe05ZPNRUrabsomi_np3rYineWcYHh7eUzTpYucQOqfkklICV4y-74rmC_IRmjIhaQEg5eRfPkHzlLaEEFZSoFxO0fUi7vZvWecQO93icWvdR8ifOHq87kLW_SfWncUvw4_Dty6FTYef-7h3fQ4unaFjr9vk5r9zhtb3d6-Lx2L19LBc3KwKAyByUVUVq4mpPRPaG9fI0grqSuk5eKqt5I6zBkzJiTVG85oOjhya0hHLgQoPM7Q8cG3UW7Xvw24QU1EH9XOI_UbpQci0ToH2YICBNVrwmpcNsEbYIVjiaMXrgXVxYJk-ptQ7_8ejRI1FqrFINRYJ3xwDaAA
Cites_doi 10.1103/PhysRevA.101.042126
10.1103/PRXQuantum.4.010311
10.1103/PhysRevB.108.104317
10.1007/JHEP08(2016)106
10.1103/PhysRevA.85.042311
10.1103/PhysRevResearch.3.013204
10.1038/nature03909
10.1007/978-3-642-03685-9_41
10.22331/q-2022-09-08-795
10.1103/PhysRevX.6.041044
10.1088/1126-6708/2007/09/120
10.1103/PhysRevX.7.021006
10.1103/PhysRevA.72.032317
10.1007/978-3-319-96878-0_5
10.1103/PhysRevLett.131.110601
10.1007/JHEP04(2013)022
10.1109/FOCS61266.2024.00037
10.1103/PhysRevA.70.052328
10.1109/SAMPTA.2017.8024414
10.1103/PhysRevLett.98.140506
10.1007/s00220-014-1990-4
10.1002/rsa.20194
10.1103/PhysRevE.94.022104
10.1103/PhysRevA.104.012408
10.1007/s00220-022-04507-6
10.1007/s00220-017-2950-6
10.1088/1464-4266/7/10/021
10.1016/j.aim.2022.108457
10.1038/s41586-022-05442-1
10.1103/PhysRevLett.128.060601
10.1145/800119.803889
10.1063/1.2716992
10.1103/PhysRevLett.123.060501
10.1103/PhysRevX.14.041059
10.1007/978-3-031-22318-1_9
10.22331/q-2022-12-29-886
10.1007/s11139-016-9778-0
10.1007/978-3-031-15802-5_10
10.1103/PhysRevX.11.011020
10.1088/1751-8121/ad7211
10.26421/QIC13.11-12-1
10.1109/CCC.2007.26
10.1007/978-3-540-27821-4_23
10.1007/978-3-030-36030-6_10
10.1007/JHEP04(2017)121
10.1103/PhysRevLett.112.240504
10.1098/rspa.2009.0202
10.1109/TIT.2004.839515
10.1007/978-3-031-15802-5_8
10.1007/11685654
10.1038/nphys444
10.1103/PRXQuantum.3.020357
10.1038/s41586-019-1666-5
10.1103/PhysRevLett.134.180403
10.1016/j.acha.2015.07.007
10.1103/PhysRevLett.131.250401
10.1103/PhysRevA.77.012307
10.1103/PhysRevA.86.012301
10.1016/B978-0-12-189420-7.50020-7
10.1126/science.adv8590
10.1145/3564246.3585225
10.1007/s00220-004-1087-6
10.1088/1126-6708/2008/10/065
10.1038/s41534-024-00951-5
10.1103/PhysRevLett.106.180504
10.1103/PhysRevLett.93.080501
10.4230/LIPIcs.ITCS.2020.25
10.1103/PRXQuantum.2.030339
10.1103/PhysRevE.79.061103
10.1109/CCC.2006.37
10.1007/s00220-023-04675-z
10.1103/PhysRevX.14.041051
10.22331/q-2023-02-21-928
10.1007/s00220-016-2706-8
10.1109/TIT.2022.3222775
10.1103/PRXQuantum.4.030322
10.1088/1367-2630/15/5/053022
10.1038/s41567-018-0318-2
10.4230/LIPIcs.ITCS.2025.69
10.1038/s41567-018-0124-x
10.1007/BF03187604
10.1007/s00220-006-0118-x
10.1103/PhysRevA.93.012301
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/21vm-bz3t
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2691-3399
ExternalDocumentID oai_doaj_org_article_3af3c323dca64845b32b6d845d0e1748
10_1103_21vm_bz3t
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c336t-777280c8f26afceb95d61e59f43f1ad94e42b3c540dcca48100043b5e0d4316f3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001567984000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2691-3399
IngestDate Mon Nov 10 04:33:43 EST 2025
Sat Nov 29 07:35:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-777280c8f26afceb95d61e59f43f1ad94e42b3c540dcca48100043b5e0d4316f3
ORCID 0000-0002-8009-0549
0000-0003-1285-6968
0000-0003-2428-7432
OpenAccessLink https://doaj.org/article/3af3c323dca64845b32b6d845d0e1748
ParticipantIDs doaj_primary_oai_doaj_org_article_3af3c323dca64845b32b6d845d0e1748
crossref_primary_10_1103_21vm_bz3t
PublicationCentury 2000
PublicationDate 2025-09-09
PublicationDateYYYYMMDD 2025-09-09
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-09
  day: 09
PublicationDecade 2020
PublicationTitle PRX quantum
PublicationYear 2025
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References 21vm-bz3tCc25R1
21vm-bz3tCc48R1
M. A. Nielsen (21vm-bz3tCc53R1) 2010
21vm-bz3tCc23R1
21vm-bz3tCc46R1
P. Sen (21vm-bz3tCc6R1)
21vm-bz3tCc29R1
21vm-bz3tCc27R1
21vm-bz3tCc80R1
21vm-bz3tCc40R1
21vm-bz3tCc63R1
21vm-bz3tCc86R1
21vm-bz3tCc65R1
21vm-bz3tCc88R1
21vm-bz3tCc21R1
21vm-bz3tCc44R1
21vm-bz3tCc82R1
21vm-bz3tCc42R1
21vm-bz3tCc61R1
21vm-bz3tCc84R1
A. Gilyén (21vm-bz3tCc95R1)
21vm-bz3tCc36R1
21vm-bz3tCc59R1
21vm-bz3tCc15R1
21vm-bz3tCc3R1
21vm-bz3tCc34R1
21vm-bz3tCc57R1
21vm-bz3tCc5R1
21vm-bz3tCc78R1
21vm-bz3tCc19R1
21vm-bz3tCc7R1
21vm-bz3tCc38R1
21vm-bz3tCc17R1
21vm-bz3tCc9R1
21vm-bz3tCc51R1
21vm-bz3tCc74R1
21vm-bz3tCc76R1
21vm-bz3tCc32R1
21vm-bz3tCc70R1
21vm-bz3tCc11R1
21vm-bz3tCc30R1
21vm-bz3tCc72R1
21vm-bz3tCc26R1
21vm-bz3tCc47R1
21vm-bz3tCc24R1
21vm-bz3tCc45R1
21vm-bz3tCc89R1
21vm-bz3tCc28R1
21vm-bz3tCc49R1
A. Ambainis (21vm-bz3tCc77R1)
21vm-bz3tCc64R1
21vm-bz3tCc85R1
21vm-bz3tCc66R1
21vm-bz3tCc87R1
21vm-bz3tCc22R1
21vm-bz3tCc43R1
21vm-bz3tCc60R1
21vm-bz3tCc20R1
21vm-bz3tCc41R1
21vm-bz3tCc62R1
21vm-bz3tCc83R1
21vm-bz3tCc14R1
21vm-bz3tCc2R1
21vm-bz3tCc37R1
21vm-bz3tCc58R1
N. LaRacuente (21vm-bz3tCc69R1)
P. Ananth (21vm-bz3tCc91R1)
21vm-bz3tCc4R1
21vm-bz3tCc35R1
21vm-bz3tCc56R1
21vm-bz3tCc18R1
21vm-bz3tCc16R1
21vm-bz3tCc39R1
21vm-bz3tCc8R1
S. Kimmel (21vm-bz3tCc12R1)
Z. Brakerski (21vm-bz3tCc90R1)
21vm-bz3tCc75R1
J. Watrous (21vm-bz3tCc79R1) 2009
A. Ambainis (21vm-bz3tCc1R1)
21vm-bz3tCc33R1
21vm-bz3tCc54R1
21vm-bz3tCc71R1
C.-F. Chen (21vm-bz3tCc68R1)
21vm-bz3tCc10R1
21vm-bz3tCc31R1
21vm-bz3tCc52R1
21vm-bz3tCc73R1
References_xml – ident: 21vm-bz3tCc28R1
  doi: 10.1103/PhysRevA.101.042126
– ident: 21vm-bz3tCc38R1
  doi: 10.1103/PRXQuantum.4.010311
– ident: 21vm-bz3tCc30R1
  doi: 10.1103/PhysRevB.108.104317
– ident: 21vm-bz3tCc36R1
  doi: 10.1007/JHEP08(2016)106
– ident: 21vm-bz3tCc44R1
  doi: 10.1103/PhysRevA.85.042311
– ident: 21vm-bz3tCc47R1
  doi: 10.1103/PhysRevResearch.3.013204
– ident: 21vm-bz3tCc21R1
  doi: 10.1038/nature03909
– ident: 21vm-bz3tCc60R1
  doi: 10.1007/978-3-642-03685-9_41
– ident: 21vm-bz3tCc64R1
  doi: 10.22331/q-2022-09-08-795
– ident: 21vm-bz3tCc14R1
  doi: 10.1103/PhysRevX.6.041044
– ident: 21vm-bz3tCc31R1
  doi: 10.1088/1126-6708/2007/09/120
– ident: 21vm-bz3tCc62R1
  doi: 10.1103/PhysRevX.7.021006
– ident: 21vm-bz3tCc17R1
  doi: 10.1103/PhysRevA.72.032317
– ident: 21vm-bz3tCc54R1
  doi: 10.1007/978-3-319-96878-0_5
– ident: 21vm-bz3tCc52R1
  doi: 10.1103/PhysRevLett.131.110601
– ident: 21vm-bz3tCc35R1
  doi: 10.1007/JHEP04(2013)022
– volume-title: 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)
  ident: 21vm-bz3tCc68R1
  doi: 10.1109/FOCS61266.2024.00037
– ident: 21vm-bz3tCc82R1
  doi: 10.1103/PhysRevA.70.052328
– volume-title: 2017 International Conference on Sampling Theory and Applications (SampTA)
  ident: 21vm-bz3tCc12R1
  doi: 10.1109/SAMPTA.2017.8024414
– ident: 21vm-bz3tCc86R1
  doi: 10.1103/PhysRevLett.98.140506
– ident: 21vm-bz3tCc19R1
  doi: 10.1007/s00220-014-1990-4
– ident: 21vm-bz3tCc84R1
  doi: 10.1002/rsa.20194
– ident: 21vm-bz3tCc27R1
  doi: 10.1103/PhysRevE.94.022104
– ident: 21vm-bz3tCc23R1
  doi: 10.1103/PhysRevA.104.012408
– ident: 21vm-bz3tCc66R1
  doi: 10.1007/s00220-022-04507-6
– ident: 21vm-bz3tCc63R1
  doi: 10.1007/s00220-017-2950-6
– ident: 21vm-bz3tCc87R1
– ident: 21vm-bz3tCc41R1
  doi: 10.1088/1464-4266/7/10/021
– ident: 21vm-bz3tCc58R1
  doi: 10.1016/j.aim.2022.108457
– ident: 21vm-bz3tCc51R1
  doi: 10.1038/s41586-022-05442-1
– ident: 21vm-bz3tCc74R1
  doi: 10.1103/PhysRevLett.128.060601
– ident: 21vm-bz3tCc80R1
  doi: 10.1145/800119.803889
– ident: 21vm-bz3tCc71R1
  doi: 10.1063/1.2716992
– ident: 21vm-bz3tCc48R1
  doi: 10.1103/PhysRevLett.123.060501
– ident: 21vm-bz3tCc40R1
  doi: 10.1103/PhysRevX.14.041059
– issn: 0302-9743
  volume-title: Theory of Cryptography: 20th International Conference, TCC 2022, Chicago, IL, USA, November 7–10, 2022, Proceedings, Part I
  ident: 21vm-bz3tCc91R1
  doi: 10.1007/978-3-031-22318-1_9
– ident: 21vm-bz3tCc29R1
  doi: 10.22331/q-2022-12-29-886
– ident: 21vm-bz3tCc88R1
  doi: 10.1007/s11139-016-9778-0
– ident: 21vm-bz3tCc4R1
  doi: 10.1007/978-3-031-15802-5_10
– ident: 21vm-bz3tCc83R1
  doi: 10.1103/PhysRevX.11.011020
– ident: 21vm-bz3tCc72R1
  doi: 10.1088/1751-8121/ad7211
– ident: 21vm-bz3tCc7R1
  doi: 10.26421/QIC13.11-12-1
– issn: 1093-0159
  volume-title: Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07)
  ident: 21vm-bz3tCc77R1
  doi: 10.1109/CCC.2007.26
– issn: 0302-9743
  volume-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2004 2004,
  ident: 21vm-bz3tCc1R1
  doi: 10.1007/978-3-540-27821-4_23
– issn: 0302-9743
  volume-title: Theory of Cryptography, TCC 2019, Lecture Notes in Computer Science
  ident: 21vm-bz3tCc90R1
  doi: 10.1007/978-3-030-36030-6_10
– ident: 21vm-bz3tCc37R1
  doi: 10.1007/JHEP04(2017)121
– ident: 21vm-bz3tCc45R1
  doi: 10.1103/PhysRevLett.112.240504
– ident: 21vm-bz3tCc3R1
– ident: 21vm-bz3tCc18R1
  doi: 10.1098/rspa.2009.0202
– ident: 21vm-bz3tCc15R1
  doi: 10.1109/TIT.2004.839515
– ident: 21vm-bz3tCc5R1
  doi: 10.1007/978-3-031-15802-5_8
– ident: 21vm-bz3tCc78R1
  doi: 10.1007/11685654
– ident: 21vm-bz3tCc25R1
  doi: 10.1038/nphys444
– ident: 21vm-bz3tCc49R1
  doi: 10.1103/PRXQuantum.3.020357
– volume-title: Quantum Computation and Quantum Information: 10th Anniversary Edition
  year: 2010
  ident: 21vm-bz3tCc53R1
– ident: 21vm-bz3tCc9R1
  doi: 10.1038/s41586-019-1666-5
– ident: 21vm-bz3tCc73R1
  doi: 10.1103/PhysRevLett.134.180403
– ident: 21vm-bz3tCc11R1
  doi: 10.1016/j.acha.2015.07.007
– ident: 21vm-bz3tCc76R1
  doi: 10.1103/PhysRevLett.131.250401
– ident: 21vm-bz3tCc42R1
  doi: 10.1103/PhysRevA.77.012307
– ident: 21vm-bz3tCc89R1
  doi: 10.1103/PhysRevA.86.012301
– ident: 21vm-bz3tCc56R1
  doi: 10.1016/B978-0-12-189420-7.50020-7
– ident: 21vm-bz3tCc70R1
  doi: 10.1126/science.adv8590
– ident: 21vm-bz3tCc85R1
  doi: 10.1145/3564246.3585225
– ident: 21vm-bz3tCc2R1
  doi: 10.1007/s00220-004-1087-6
– ident: 21vm-bz3tCc34R1
  doi: 10.1088/1126-6708/2008/10/065
– ident: 21vm-bz3tCc33R1
  doi: 10.1038/s41534-024-00951-5
– ident: 21vm-bz3tCc43R1
  doi: 10.1103/PhysRevLett.106.180504
– ident: 21vm-bz3tCc16R1
  doi: 10.1103/PhysRevLett.93.080501
– volume-title: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)
  ident: 21vm-bz3tCc95R1
  doi: 10.4230/LIPIcs.ITCS.2020.25
– ident: 21vm-bz3tCc59R1
  doi: 10.1103/PRXQuantum.2.030339
– ident: 21vm-bz3tCc26R1
  doi: 10.1103/PhysRevE.79.061103
– volume-title: 21st Annual IEEE Conference on Computational Complexity (CCC’06)
  ident: 21vm-bz3tCc6R1
  doi: 10.1109/CCC.2006.37
– ident: 21vm-bz3tCc65R1
  doi: 10.1007/s00220-023-04675-z
– ident: 21vm-bz3tCc39R1
  doi: 10.1103/PhysRevX.14.041051
– ident: 21vm-bz3tCc32R1
  doi: 10.22331/q-2023-02-21-928
– ident: 21vm-bz3tCc61R1
  doi: 10.1007/s00220-016-2706-8
– volume-title: Encyclopedia of Complexity and Systems Science
  year: 2009
  ident: 21vm-bz3tCc79R1
– ident: 21vm-bz3tCc24R1
  doi: 10.1109/TIT.2022.3222775
– ident: 21vm-bz3tCc75R1
  doi: 10.1103/PRXQuantum.4.030322
– ident: 21vm-bz3tCc20R1
  doi: 10.1088/1367-2630/15/5/053022
– ident: 21vm-bz3tCc10R1
  doi: 10.1038/s41567-018-0318-2
– volume-title: 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)
  ident: 21vm-bz3tCc69R1
  doi: 10.4230/LIPIcs.ITCS.2025.69
– ident: 21vm-bz3tCc8R1
  doi: 10.1038/s41567-018-0124-x
– ident: 21vm-bz3tCc57R1
  doi: 10.1007/BF03187604
– ident: 21vm-bz3tCc22R1
  doi: 10.1007/s00220-006-0118-x
– ident: 21vm-bz3tCc46R1
  doi: 10.1103/PhysRevA.93.012301
SSID ssj0002513149
Score 2.3028402
Snippet We investigate unitary and state t -designs from a computational complexity perspective. First, we address the problems of computing frame potentials that...
We investigate unitary and state t-designs from a computational complexity perspective. First, we address the problems of computing frame potentials that...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 030345
Title Computational Complexity of Unitary and State Design Properties
URI https://doaj.org/article/3af3c323dca64845b32b6d845d0e1748
Volume 6
WOSCitedRecordID wos001567984000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2691-3399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513149
  issn: 2691-3399
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-3399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513149
  issn: 2691-3399
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kKHgRn1hfLOI1NJvZTTYn8dHiQUsPKr2FfQU8mEoaC_Xgb3dnE6WevHgJm7CE8A1kvtmZ-YaQC6bAhxVCRFnsRMTB8kjm2huEMZMZ7z9YyJ4_32fjsZxO88nKqC-sCWvlgVvgBqBKMJCANSrlkgsNiU6tX9jYeTYd2nzjLF8JpvAf7L02eO7fSQmxGAYJW7xG-gOaXw5oRac_OJTRNtnqmCC9ar9gh6y5apdshIpMM98jl-28he6sjuIdalc2SzorKTJFVS-pqiwNdJHehkoMOsGz9RpFUvfJ02j4eHMXddMOIgOQNp7m4qQoI8skVaVxOhc2ZU7kJYeSKZtzxxMNxjMsa1CKnIUsnhYuttjOXsIB6VWzyh0SykTmnBZMJx4zw5mWjkmVMSUV9t3aPjn_hqB4a0UtihAMxFAgTgXi1CfXCM7PBtShDg-8dYrOOsVf1jn6j5cck80Ep-5iGic_Ib2mfnenZN0smpd5fRYM768Pn8Mvriiz8A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Complexity+of+Unitary+and+State+Design+Properties&rft.jtitle=PRX+quantum&rft.au=Nakata%2C+Yoshifumi&rft.au=Takeuchi%2C+Yuki&rft.au=Kliesch%2C+Martin&rft.au=Darmawan%2C+Andrew&rft.date=2025-09-09&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1103%2F21vm-bz3t&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_21vm_bz3t
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon