Computational Complexity of Unitary and State Design Properties
We investigate unitary and state t -designs from a computational complexity perspective. First, we address the problems of computing frame potentials that characterize (approximate) t -designs. We present a quantum algorithm for computing frame potentials and establish the following: (1) exact compu...
Gespeichert in:
| Veröffentlicht in: | PRX quantum Jg. 6; H. 3; S. 030345 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
American Physical Society
09.09.2025
|
| ISSN: | 2691-3399, 2691-3399 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We investigate unitary and state t -designs from a computational complexity perspective. First, we address the problems of computing frame potentials that characterize (approximate) t -designs. We present a quantum algorithm for computing frame potentials and establish the following: (1) exact computation can be achieved by a single query to a # P oracle and is # P -hard; (2) for state vectors, deciding whether the frame potential is larger than or smaller than certain values is B Q P -complete, provided that the promise gap between the two values is inverse polynomial in the number of qubits; and (3) for both state vectors and unitaries, this promise problem is P P -complete if the promise gap is exponentially small. Second, we address the promise problem of deciding whether or not a given set is a good approximation to a design. Given a certain promise gap that could be constant, we show that this problem is P P -hard, highlighting the inherent computational difficulty of determining properties of unitary and state designs. We further identify implications of our results, including variational methods for constructing designs, diagnosing quantum chaos, and exploring emergent designs in Hamiltonian systems. |
|---|---|
| AbstractList | We investigate unitary and state t -designs from a computational complexity perspective. First, we address the problems of computing frame potentials that characterize (approximate) t -designs. We present a quantum algorithm for computing frame potentials and establish the following: (1) exact computation can be achieved by a single query to a # P oracle and is # P -hard; (2) for state vectors, deciding whether the frame potential is larger than or smaller than certain values is B Q P -complete, provided that the promise gap between the two values is inverse polynomial in the number of qubits; and (3) for both state vectors and unitaries, this promise problem is P P -complete if the promise gap is exponentially small. Second, we address the promise problem of deciding whether or not a given set is a good approximation to a design. Given a certain promise gap that could be constant, we show that this problem is P P -hard, highlighting the inherent computational difficulty of determining properties of unitary and state designs. We further identify implications of our results, including variational methods for constructing designs, diagnosing quantum chaos, and exploring emergent designs in Hamiltonian systems. We investigate unitary and state t-designs from a computational complexity perspective. First, we address the problems of computing frame potentials that characterize (approximate) t-designs. We present a quantum algorithm for computing frame potentials and establish the following: (1) exact computation can be achieved by a single query to a #P oracle and is #P-hard; (2) for state vectors, deciding whether the frame potential is larger than or smaller than certain values is BQP-complete, provided that the promise gap between the two values is inverse polynomial in the number of qubits; and (3) for both state vectors and unitaries, this promise problem is PP-complete if the promise gap is exponentially small. Second, we address the promise problem of deciding whether or not a given set is a good approximation to a design. Given a certain promise gap that could be constant, we show that this problem is PP-hard, highlighting the inherent computational difficulty of determining properties of unitary and state designs. We further identify implications of our results, including variational methods for constructing designs, diagnosing quantum chaos, and exploring emergent designs in Hamiltonian systems. |
| ArticleNumber | 030345 |
| Author | Darmawan, Andrew Kliesch, Martin Takeuchi, Yuki Nakata, Yoshifumi |
| Author_xml | – sequence: 1 givenname: Yoshifumi orcidid: 0000-0003-1285-6968 surname: Nakata fullname: Nakata, Yoshifumi – sequence: 2 givenname: Yuki orcidid: 0000-0003-2428-7432 surname: Takeuchi fullname: Takeuchi, Yuki – sequence: 3 givenname: Martin orcidid: 0000-0002-8009-0549 surname: Kliesch fullname: Kliesch, Martin – sequence: 4 givenname: Andrew surname: Darmawan fullname: Darmawan, Andrew |
| BookMark | eNpNkE1LAzEQhoNUsNYe_Ae5elhNMtns5iRSvwoFBe05ZPNRUrabsomi_np3rYineWcYHh7eUzTpYucQOqfkklICV4y-74rmC_IRmjIhaQEg5eRfPkHzlLaEEFZSoFxO0fUi7vZvWecQO93icWvdR8ifOHq87kLW_SfWncUvw4_Dty6FTYef-7h3fQ4unaFjr9vk5r9zhtb3d6-Lx2L19LBc3KwKAyByUVUVq4mpPRPaG9fI0grqSuk5eKqt5I6zBkzJiTVG85oOjhya0hHLgQoPM7Q8cG3UW7Xvw24QU1EH9XOI_UbpQci0ToH2YICBNVrwmpcNsEbYIVjiaMXrgXVxYJk-ptQ7_8ejRI1FqrFINRYJ3xwDaAA |
| Cites_doi | 10.1103/PhysRevA.101.042126 10.1103/PRXQuantum.4.010311 10.1103/PhysRevB.108.104317 10.1007/JHEP08(2016)106 10.1103/PhysRevA.85.042311 10.1103/PhysRevResearch.3.013204 10.1038/nature03909 10.1007/978-3-642-03685-9_41 10.22331/q-2022-09-08-795 10.1103/PhysRevX.6.041044 10.1088/1126-6708/2007/09/120 10.1103/PhysRevX.7.021006 10.1103/PhysRevA.72.032317 10.1007/978-3-319-96878-0_5 10.1103/PhysRevLett.131.110601 10.1007/JHEP04(2013)022 10.1109/FOCS61266.2024.00037 10.1103/PhysRevA.70.052328 10.1109/SAMPTA.2017.8024414 10.1103/PhysRevLett.98.140506 10.1007/s00220-014-1990-4 10.1002/rsa.20194 10.1103/PhysRevE.94.022104 10.1103/PhysRevA.104.012408 10.1007/s00220-022-04507-6 10.1007/s00220-017-2950-6 10.1088/1464-4266/7/10/021 10.1016/j.aim.2022.108457 10.1038/s41586-022-05442-1 10.1103/PhysRevLett.128.060601 10.1145/800119.803889 10.1063/1.2716992 10.1103/PhysRevLett.123.060501 10.1103/PhysRevX.14.041059 10.1007/978-3-031-22318-1_9 10.22331/q-2022-12-29-886 10.1007/s11139-016-9778-0 10.1007/978-3-031-15802-5_10 10.1103/PhysRevX.11.011020 10.1088/1751-8121/ad7211 10.26421/QIC13.11-12-1 10.1109/CCC.2007.26 10.1007/978-3-540-27821-4_23 10.1007/978-3-030-36030-6_10 10.1007/JHEP04(2017)121 10.1103/PhysRevLett.112.240504 10.1098/rspa.2009.0202 10.1109/TIT.2004.839515 10.1007/978-3-031-15802-5_8 10.1007/11685654 10.1038/nphys444 10.1103/PRXQuantum.3.020357 10.1038/s41586-019-1666-5 10.1103/PhysRevLett.134.180403 10.1016/j.acha.2015.07.007 10.1103/PhysRevLett.131.250401 10.1103/PhysRevA.77.012307 10.1103/PhysRevA.86.012301 10.1016/B978-0-12-189420-7.50020-7 10.1126/science.adv8590 10.1145/3564246.3585225 10.1007/s00220-004-1087-6 10.1088/1126-6708/2008/10/065 10.1038/s41534-024-00951-5 10.1103/PhysRevLett.106.180504 10.1103/PhysRevLett.93.080501 10.4230/LIPIcs.ITCS.2020.25 10.1103/PRXQuantum.2.030339 10.1103/PhysRevE.79.061103 10.1109/CCC.2006.37 10.1007/s00220-023-04675-z 10.1103/PhysRevX.14.041051 10.22331/q-2023-02-21-928 10.1007/s00220-016-2706-8 10.1109/TIT.2022.3222775 10.1103/PRXQuantum.4.030322 10.1088/1367-2630/15/5/053022 10.1038/s41567-018-0318-2 10.4230/LIPIcs.ITCS.2025.69 10.1038/s41567-018-0124-x 10.1007/BF03187604 10.1007/s00220-006-0118-x 10.1103/PhysRevA.93.012301 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1103/21vm-bz3t |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2691-3399 |
| ExternalDocumentID | oai_doaj_org_article_3af3c323dca64845b32b6d845d0e1748 10_1103_21vm_bz3t |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ROL |
| ID | FETCH-LOGICAL-c336t-777280c8f26afceb95d61e59f43f1ad94e42b3c540dcca48100043b5e0d4316f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001567984000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2691-3399 |
| IngestDate | Mon Nov 10 04:33:43 EST 2025 Sat Nov 29 07:35:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-777280c8f26afceb95d61e59f43f1ad94e42b3c540dcca48100043b5e0d4316f3 |
| ORCID | 0000-0002-8009-0549 0000-0003-1285-6968 0000-0003-2428-7432 |
| OpenAccessLink | https://doaj.org/article/3af3c323dca64845b32b6d845d0e1748 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3af3c323dca64845b32b6d845d0e1748 crossref_primary_10_1103_21vm_bz3t |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-09 |
| PublicationDateYYYYMMDD | 2025-09-09 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | PRX quantum |
| PublicationYear | 2025 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | 21vm-bz3tCc25R1 21vm-bz3tCc48R1 M. A. Nielsen (21vm-bz3tCc53R1) 2010 21vm-bz3tCc23R1 21vm-bz3tCc46R1 P. Sen (21vm-bz3tCc6R1) 21vm-bz3tCc29R1 21vm-bz3tCc27R1 21vm-bz3tCc80R1 21vm-bz3tCc40R1 21vm-bz3tCc63R1 21vm-bz3tCc86R1 21vm-bz3tCc65R1 21vm-bz3tCc88R1 21vm-bz3tCc21R1 21vm-bz3tCc44R1 21vm-bz3tCc82R1 21vm-bz3tCc42R1 21vm-bz3tCc61R1 21vm-bz3tCc84R1 A. Gilyén (21vm-bz3tCc95R1) 21vm-bz3tCc36R1 21vm-bz3tCc59R1 21vm-bz3tCc15R1 21vm-bz3tCc3R1 21vm-bz3tCc34R1 21vm-bz3tCc57R1 21vm-bz3tCc5R1 21vm-bz3tCc78R1 21vm-bz3tCc19R1 21vm-bz3tCc7R1 21vm-bz3tCc38R1 21vm-bz3tCc17R1 21vm-bz3tCc9R1 21vm-bz3tCc51R1 21vm-bz3tCc74R1 21vm-bz3tCc76R1 21vm-bz3tCc32R1 21vm-bz3tCc70R1 21vm-bz3tCc11R1 21vm-bz3tCc30R1 21vm-bz3tCc72R1 21vm-bz3tCc26R1 21vm-bz3tCc47R1 21vm-bz3tCc24R1 21vm-bz3tCc45R1 21vm-bz3tCc89R1 21vm-bz3tCc28R1 21vm-bz3tCc49R1 A. Ambainis (21vm-bz3tCc77R1) 21vm-bz3tCc64R1 21vm-bz3tCc85R1 21vm-bz3tCc66R1 21vm-bz3tCc87R1 21vm-bz3tCc22R1 21vm-bz3tCc43R1 21vm-bz3tCc60R1 21vm-bz3tCc20R1 21vm-bz3tCc41R1 21vm-bz3tCc62R1 21vm-bz3tCc83R1 21vm-bz3tCc14R1 21vm-bz3tCc2R1 21vm-bz3tCc37R1 21vm-bz3tCc58R1 N. LaRacuente (21vm-bz3tCc69R1) P. Ananth (21vm-bz3tCc91R1) 21vm-bz3tCc4R1 21vm-bz3tCc35R1 21vm-bz3tCc56R1 21vm-bz3tCc18R1 21vm-bz3tCc16R1 21vm-bz3tCc39R1 21vm-bz3tCc8R1 S. Kimmel (21vm-bz3tCc12R1) Z. Brakerski (21vm-bz3tCc90R1) 21vm-bz3tCc75R1 J. Watrous (21vm-bz3tCc79R1) 2009 A. Ambainis (21vm-bz3tCc1R1) 21vm-bz3tCc33R1 21vm-bz3tCc54R1 21vm-bz3tCc71R1 C.-F. Chen (21vm-bz3tCc68R1) 21vm-bz3tCc10R1 21vm-bz3tCc31R1 21vm-bz3tCc52R1 21vm-bz3tCc73R1 |
| References_xml | – ident: 21vm-bz3tCc28R1 doi: 10.1103/PhysRevA.101.042126 – ident: 21vm-bz3tCc38R1 doi: 10.1103/PRXQuantum.4.010311 – ident: 21vm-bz3tCc30R1 doi: 10.1103/PhysRevB.108.104317 – ident: 21vm-bz3tCc36R1 doi: 10.1007/JHEP08(2016)106 – ident: 21vm-bz3tCc44R1 doi: 10.1103/PhysRevA.85.042311 – ident: 21vm-bz3tCc47R1 doi: 10.1103/PhysRevResearch.3.013204 – ident: 21vm-bz3tCc21R1 doi: 10.1038/nature03909 – ident: 21vm-bz3tCc60R1 doi: 10.1007/978-3-642-03685-9_41 – ident: 21vm-bz3tCc64R1 doi: 10.22331/q-2022-09-08-795 – ident: 21vm-bz3tCc14R1 doi: 10.1103/PhysRevX.6.041044 – ident: 21vm-bz3tCc31R1 doi: 10.1088/1126-6708/2007/09/120 – ident: 21vm-bz3tCc62R1 doi: 10.1103/PhysRevX.7.021006 – ident: 21vm-bz3tCc17R1 doi: 10.1103/PhysRevA.72.032317 – ident: 21vm-bz3tCc54R1 doi: 10.1007/978-3-319-96878-0_5 – ident: 21vm-bz3tCc52R1 doi: 10.1103/PhysRevLett.131.110601 – ident: 21vm-bz3tCc35R1 doi: 10.1007/JHEP04(2013)022 – volume-title: 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS) ident: 21vm-bz3tCc68R1 doi: 10.1109/FOCS61266.2024.00037 – ident: 21vm-bz3tCc82R1 doi: 10.1103/PhysRevA.70.052328 – volume-title: 2017 International Conference on Sampling Theory and Applications (SampTA) ident: 21vm-bz3tCc12R1 doi: 10.1109/SAMPTA.2017.8024414 – ident: 21vm-bz3tCc86R1 doi: 10.1103/PhysRevLett.98.140506 – ident: 21vm-bz3tCc19R1 doi: 10.1007/s00220-014-1990-4 – ident: 21vm-bz3tCc84R1 doi: 10.1002/rsa.20194 – ident: 21vm-bz3tCc27R1 doi: 10.1103/PhysRevE.94.022104 – ident: 21vm-bz3tCc23R1 doi: 10.1103/PhysRevA.104.012408 – ident: 21vm-bz3tCc66R1 doi: 10.1007/s00220-022-04507-6 – ident: 21vm-bz3tCc63R1 doi: 10.1007/s00220-017-2950-6 – ident: 21vm-bz3tCc87R1 – ident: 21vm-bz3tCc41R1 doi: 10.1088/1464-4266/7/10/021 – ident: 21vm-bz3tCc58R1 doi: 10.1016/j.aim.2022.108457 – ident: 21vm-bz3tCc51R1 doi: 10.1038/s41586-022-05442-1 – ident: 21vm-bz3tCc74R1 doi: 10.1103/PhysRevLett.128.060601 – ident: 21vm-bz3tCc80R1 doi: 10.1145/800119.803889 – ident: 21vm-bz3tCc71R1 doi: 10.1063/1.2716992 – ident: 21vm-bz3tCc48R1 doi: 10.1103/PhysRevLett.123.060501 – ident: 21vm-bz3tCc40R1 doi: 10.1103/PhysRevX.14.041059 – issn: 0302-9743 volume-title: Theory of Cryptography: 20th International Conference, TCC 2022, Chicago, IL, USA, November 7–10, 2022, Proceedings, Part I ident: 21vm-bz3tCc91R1 doi: 10.1007/978-3-031-22318-1_9 – ident: 21vm-bz3tCc29R1 doi: 10.22331/q-2022-12-29-886 – ident: 21vm-bz3tCc88R1 doi: 10.1007/s11139-016-9778-0 – ident: 21vm-bz3tCc4R1 doi: 10.1007/978-3-031-15802-5_10 – ident: 21vm-bz3tCc83R1 doi: 10.1103/PhysRevX.11.011020 – ident: 21vm-bz3tCc72R1 doi: 10.1088/1751-8121/ad7211 – ident: 21vm-bz3tCc7R1 doi: 10.26421/QIC13.11-12-1 – issn: 1093-0159 volume-title: Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07) ident: 21vm-bz3tCc77R1 doi: 10.1109/CCC.2007.26 – issn: 0302-9743 volume-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2004 2004, ident: 21vm-bz3tCc1R1 doi: 10.1007/978-3-540-27821-4_23 – issn: 0302-9743 volume-title: Theory of Cryptography, TCC 2019, Lecture Notes in Computer Science ident: 21vm-bz3tCc90R1 doi: 10.1007/978-3-030-36030-6_10 – ident: 21vm-bz3tCc37R1 doi: 10.1007/JHEP04(2017)121 – ident: 21vm-bz3tCc45R1 doi: 10.1103/PhysRevLett.112.240504 – ident: 21vm-bz3tCc3R1 – ident: 21vm-bz3tCc18R1 doi: 10.1098/rspa.2009.0202 – ident: 21vm-bz3tCc15R1 doi: 10.1109/TIT.2004.839515 – ident: 21vm-bz3tCc5R1 doi: 10.1007/978-3-031-15802-5_8 – ident: 21vm-bz3tCc78R1 doi: 10.1007/11685654 – ident: 21vm-bz3tCc25R1 doi: 10.1038/nphys444 – ident: 21vm-bz3tCc49R1 doi: 10.1103/PRXQuantum.3.020357 – volume-title: Quantum Computation and Quantum Information: 10th Anniversary Edition year: 2010 ident: 21vm-bz3tCc53R1 – ident: 21vm-bz3tCc9R1 doi: 10.1038/s41586-019-1666-5 – ident: 21vm-bz3tCc73R1 doi: 10.1103/PhysRevLett.134.180403 – ident: 21vm-bz3tCc11R1 doi: 10.1016/j.acha.2015.07.007 – ident: 21vm-bz3tCc76R1 doi: 10.1103/PhysRevLett.131.250401 – ident: 21vm-bz3tCc42R1 doi: 10.1103/PhysRevA.77.012307 – ident: 21vm-bz3tCc89R1 doi: 10.1103/PhysRevA.86.012301 – ident: 21vm-bz3tCc56R1 doi: 10.1016/B978-0-12-189420-7.50020-7 – ident: 21vm-bz3tCc70R1 doi: 10.1126/science.adv8590 – ident: 21vm-bz3tCc85R1 doi: 10.1145/3564246.3585225 – ident: 21vm-bz3tCc2R1 doi: 10.1007/s00220-004-1087-6 – ident: 21vm-bz3tCc34R1 doi: 10.1088/1126-6708/2008/10/065 – ident: 21vm-bz3tCc33R1 doi: 10.1038/s41534-024-00951-5 – ident: 21vm-bz3tCc43R1 doi: 10.1103/PhysRevLett.106.180504 – ident: 21vm-bz3tCc16R1 doi: 10.1103/PhysRevLett.93.080501 – volume-title: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020) ident: 21vm-bz3tCc95R1 doi: 10.4230/LIPIcs.ITCS.2020.25 – ident: 21vm-bz3tCc59R1 doi: 10.1103/PRXQuantum.2.030339 – ident: 21vm-bz3tCc26R1 doi: 10.1103/PhysRevE.79.061103 – volume-title: 21st Annual IEEE Conference on Computational Complexity (CCC’06) ident: 21vm-bz3tCc6R1 doi: 10.1109/CCC.2006.37 – ident: 21vm-bz3tCc65R1 doi: 10.1007/s00220-023-04675-z – ident: 21vm-bz3tCc39R1 doi: 10.1103/PhysRevX.14.041051 – ident: 21vm-bz3tCc32R1 doi: 10.22331/q-2023-02-21-928 – ident: 21vm-bz3tCc61R1 doi: 10.1007/s00220-016-2706-8 – volume-title: Encyclopedia of Complexity and Systems Science year: 2009 ident: 21vm-bz3tCc79R1 – ident: 21vm-bz3tCc24R1 doi: 10.1109/TIT.2022.3222775 – ident: 21vm-bz3tCc75R1 doi: 10.1103/PRXQuantum.4.030322 – ident: 21vm-bz3tCc20R1 doi: 10.1088/1367-2630/15/5/053022 – ident: 21vm-bz3tCc10R1 doi: 10.1038/s41567-018-0318-2 – volume-title: 16th Innovations in Theoretical Computer Science Conference (ITCS 2025) ident: 21vm-bz3tCc69R1 doi: 10.4230/LIPIcs.ITCS.2025.69 – ident: 21vm-bz3tCc8R1 doi: 10.1038/s41567-018-0124-x – ident: 21vm-bz3tCc57R1 doi: 10.1007/BF03187604 – ident: 21vm-bz3tCc22R1 doi: 10.1007/s00220-006-0118-x – ident: 21vm-bz3tCc46R1 doi: 10.1103/PhysRevA.93.012301 |
| SSID | ssj0002513149 |
| Score | 2.3028402 |
| Snippet | We investigate unitary and state t -designs from a computational complexity perspective. First, we address the problems of computing frame potentials that... We investigate unitary and state t-designs from a computational complexity perspective. First, we address the problems of computing frame potentials that... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 030345 |
| Title | Computational Complexity of Unitary and State Design Properties |
| URI | https://doaj.org/article/3af3c323dca64845b32b6d845d0e1748 |
| Volume | 6 |
| WOSCitedRecordID | wos001567984000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2691-3399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513149 issn: 2691-3399 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-3399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513149 issn: 2691-3399 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kKHgRn1hfLOI1NJvZTTYn8dHiQUsPKr2FfQU8mEoaC_Xgb3dnE6WevHgJm7CE8A1kvtmZ-YaQC6bAhxVCRFnsRMTB8kjm2huEMZMZ7z9YyJ4_32fjsZxO88nKqC-sCWvlgVvgBqBKMJCANSrlkgsNiU6tX9jYeTYd2nzjLF8JpvAf7L02eO7fSQmxGAYJW7xG-gOaXw5oRac_OJTRNtnqmCC9ar9gh6y5apdshIpMM98jl-28he6sjuIdalc2SzorKTJFVS-pqiwNdJHehkoMOsGz9RpFUvfJ02j4eHMXddMOIgOQNp7m4qQoI8skVaVxOhc2ZU7kJYeSKZtzxxMNxjMsa1CKnIUsnhYuttjOXsIB6VWzyh0SykTmnBZMJx4zw5mWjkmVMSUV9t3aPjn_hqB4a0UtihAMxFAgTgXi1CfXCM7PBtShDg-8dYrOOsVf1jn6j5cck80Ep-5iGic_Ib2mfnenZN0smpd5fRYM768Pn8Mvriiz8A |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Complexity+of+Unitary+and+State+Design+Properties&rft.jtitle=PRX+quantum&rft.au=Nakata%2C+Yoshifumi&rft.au=Takeuchi%2C+Yuki&rft.au=Kliesch%2C+Martin&rft.au=Darmawan%2C+Andrew&rft.date=2025-09-09&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1103%2F21vm-bz3t&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_21vm_bz3t |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon |