Optimized algorithm for evapotranspiration retrieval via remote sensing

Many algorithms for surface energy balance (SEB) based on remote sensing (RS) have been advanced to determine evapotranspiration (ET). These algorithms were developed for specific conditions (e.g., sensors, land use, and crop management) in which functions and empirical parameters within its algorit...

Full description

Saved in:
Bibliographic Details
Published in:Agricultural water management Vol. 262; p. 107390
Main Authors: Wagner Wolff, Francisco, João Paulo, Flumignan, Danilton Luiz, Marin, Fábio Ricardo, Folegatti, Marcos Vinícius
Format: Journal Article
Language:English
Published: Elsevier B.V 31.03.2022
Subjects:
ISSN:0378-3774, 1873-2283
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many algorithms for surface energy balance (SEB) based on remote sensing (RS) have been advanced to determine evapotranspiration (ET). These algorithms were developed for specific conditions (e.g., sensors, land use, and crop management) in which functions and empirical parameters within its algorithms concur with those conditions. Therefore, this study aims to develop a SEB-RS algorithm for retrieving ET adjusted to in situ observations. The study was conducted in two experimental fields in Brazil with the crops Jatropha curcas, maize, soybean, and sugarcane. We used multispectral images from the orbital sensors, Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) coupled in Landsat 8 satellite and from the terrestrial sensor, Altum, on board of an unmanned aerial vehicle. The proposed algorithm termed as Ground-truthed Surface Energy Balance (GT-SEB) is based on physical formulation of SEB-RS algorithms, where two extra computational processes using in situ ET observations were proposed for originating the new algorithm. The first additional process for optimizing the automatic “anchor” pixels selection and another for algorithm parameters optimization. Thus, both processes aim to reduce the difference between the observed ET and estimated by GT-SEB. Being assessed for both orbital (OLI/TIRS) and suborbital (Altum) sensors, the GT-SEB yielded excellent results (root-mean-square-error, RMSE, ≤ 0.48 mm and modified Kling-Gupta efficiency, KGE, ≥ 0.92). In addition to GT-SEB being an optimized algorithm, it uses a classic parameterization of SEB-RS algorithms, providing efficiency and scalability for other remote sensors, climates, and surfaces. •A new algorithm for mapping evapotranspiration (ET) from remote sensing (RS) is proposed.•ET in situ observed is employed to drive an optimal ET mapping.•The uncertainties in the ET mapping via RS are reduced.•The algorithm is scalable for different kind of sensors, climates and surfaces.
AbstractList Many algorithms for surface energy balance (SEB) based on remote sensing (RS) have been advanced to determine evapotranspiration (ET). These algorithms were developed for specific conditions (e.g., sensors, land use, and crop management) in which functions and empirical parameters within its algorithms concur with those conditions. Therefore, this study aims to develop a SEB-RS algorithm for retrieving ET adjusted to in situ observations. The study was conducted in two experimental fields in Brazil with the crops Jatropha curcas, maize, soybean, and sugarcane. We used multispectral images from the orbital sensors, Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) coupled in Landsat 8 satellite and from the terrestrial sensor, Altum, on board of an unmanned aerial vehicle. The proposed algorithm termed as Ground-truthed Surface Energy Balance (GT-SEB) is based on physical formulation of SEB-RS algorithms, where two extra computational processes using in situ ET observations were proposed for originating the new algorithm. The first additional process for optimizing the automatic “anchor” pixels selection and another for algorithm parameters optimization. Thus, both processes aim to reduce the difference between the observed ET and estimated by GT-SEB. Being assessed for both orbital (OLI/TIRS) and suborbital (Altum) sensors, the GT-SEB yielded excellent results (root-mean-square-error, RMSE, ≤ 0.48 mm and modified Kling-Gupta efficiency, KGE, ≥ 0.92). In addition to GT-SEB being an optimized algorithm, it uses a classic parameterization of SEB-RS algorithms, providing efficiency and scalability for other remote sensors, climates, and surfaces.
Many algorithms for surface energy balance (SEB) based on remote sensing (RS) have been advanced to determine evapotranspiration (ET). These algorithms were developed for specific conditions (e.g., sensors, land use, and crop management) in which functions and empirical parameters within its algorithms concur with those conditions. Therefore, this study aims to develop a SEB-RS algorithm for retrieving ET adjusted to in situ observations. The study was conducted in two experimental fields in Brazil with the crops Jatropha curcas, maize, soybean, and sugarcane. We used multispectral images from the orbital sensors, Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) coupled in Landsat 8 satellite and from the terrestrial sensor, Altum, on board of an unmanned aerial vehicle. The proposed algorithm termed as Ground-truthed Surface Energy Balance (GT-SEB) is based on physical formulation of SEB-RS algorithms, where two extra computational processes using in situ ET observations were proposed for originating the new algorithm. The first additional process for optimizing the automatic “anchor” pixels selection and another for algorithm parameters optimization. Thus, both processes aim to reduce the difference between the observed ET and estimated by GT-SEB. Being assessed for both orbital (OLI/TIRS) and suborbital (Altum) sensors, the GT-SEB yielded excellent results (root-mean-square-error, RMSE, ≤ 0.48 mm and modified Kling-Gupta efficiency, KGE, ≥ 0.92). In addition to GT-SEB being an optimized algorithm, it uses a classic parameterization of SEB-RS algorithms, providing efficiency and scalability for other remote sensors, climates, and surfaces. •A new algorithm for mapping evapotranspiration (ET) from remote sensing (RS) is proposed.•ET in situ observed is employed to drive an optimal ET mapping.•The uncertainties in the ET mapping via RS are reduced.•The algorithm is scalable for different kind of sensors, climates and surfaces.
ArticleNumber 107390
Author Flumignan, Danilton Luiz
Folegatti, Marcos Vinícius
Marin, Fábio Ricardo
Wagner Wolff
Francisco, João Paulo
Author_xml – sequence: 1
  surname: Wagner Wolff
  fullname: Wagner Wolff
  email: wwolff@usp.br
  organization: Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture - University of São Paulo, Piracicaba, Brazil
– sequence: 2
  givenname: João Paulo
  surname: Francisco
  fullname: Francisco, João Paulo
  email: jpfrancisco2@uem.br
  organization: Department of Agronomic Sciences, State University of Maringa, Umuarama, Brazil
– sequence: 3
  givenname: Danilton Luiz
  surname: Flumignan
  fullname: Flumignan, Danilton Luiz
  email: danilton.flumignan@embrapa.br
  organization: Embrapa Western Agriculture, Dourados, Brazil
– sequence: 4
  givenname: Fábio Ricardo
  surname: Marin
  fullname: Marin, Fábio Ricardo
  email: fabio.marin@usp.br
  organization: Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture - University of São Paulo, Piracicaba, Brazil
– sequence: 5
  givenname: Marcos Vinícius
  surname: Folegatti
  fullname: Folegatti, Marcos Vinícius
  email: mvfolega@usp.br
  organization: Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture - University of São Paulo, Piracicaba, Brazil
BookMark eNqFkD1PwzAQhi1UJNrCL2DJyJLir8TOwIAqKEiVusBsufaluEriYLtF8OtJWyYGmE736n1OumeCRp3vAKFrgmcEk_J2O9ObD51mFFMyJIJV-AyNiRQsp1SyERpjJmTOhOAXaBLjFmPMMRdjtFj1ybXuC2ymm40PLr21We1DBnvd-xR0F3sXdHK-ywKk4Ia8yfZOD1vrE2QRuui6zSU6r3UT4epnTtHr48PL_ClfrhbP8_tlbhgrUy6o4FxQQ0XBjLEFJriuZF2vLWG6rgouCwmGU1utTSkxt0BLa8qaApeUl5RN0c3pbh_8-w5iUq2LBppGd-B3UdGSlbyoJJFDtTpVTfAxBqiVcen4yfCWaxTB6iBPbdVRnjrIUyd5A8t-sX1wrQ6f_1B3JwoGA3sHQUXjoDNgXQCTlPXuT_4bBhCMnQ
CitedBy_id crossref_primary_10_1007_s13201_023_01941_2
crossref_primary_10_3390_w17111597
crossref_primary_10_1016_j_agwat_2023_108346
crossref_primary_10_3390_w14050719
crossref_primary_10_1007_s00704_025_05561_5
crossref_primary_10_3389_fpls_2022_871859
crossref_primary_10_3390_rs16173280
crossref_primary_10_1080_19475705_2024_2324975
crossref_primary_10_1038_s41598_024_76915_8
crossref_primary_10_3390_su151612201
Cites_doi 10.1002/hyp.8408
10.5194/hess-20-1523-2016
10.1016/S0168-1923(99)00080-5
10.1111/jawr.12056
10.1007/s10712-010-9102-2
10.1016/j.agwat.2019.03.003
10.1590/1807-1929/agriambi.v20n1p3-8
10.1002/andp.18842580616
10.1016/j.advwatres.2013.06.003
10.1002/2017GL072621
10.1016/j.rse.2016.04.008
10.1090/S0025-5718-1970-0258249-6
10.1109/ACCESS.2018.2818741
10.1080/01431169308904400
10.1016/0168-1923(95)02265-Y
10.1016/j.agwat.2016.06.027
10.1016/j.agrformet.2008.09.014
10.1016/j.jhydrol.2012.01.011
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1103/PhysRev.27.779
10.1137/0916069
10.1016/j.rse.2018.12.033
10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
10.1016/S0022-1694(99)00202-4
10.1061/(ASCE)0733-9437(2005)131:1(85)
10.1029/92JD00255
10.3390/rs12071108
10.5194/hess-11-1633-2007
10.1016/j.rse.2017.05.009
10.13031/aea.13941
10.1016/0168-1923(87)90086-4
10.1016/j.jhydrol.2006.11.010
10.1016/S1464-1909(99)00128-8
10.5194/hess-19-507-2015
10.1016/j.rse.2019.111594
10.1080/02723646.1981.10642213
10.1016/j.agwat.2015.01.020
10.1590/1678-992x-2017-0158
10.1002/qj.49709640708
10.1093/imamat/6.1.76
10.1016/j.eja.2017.11.002
10.5194/hess-6-85-2002
10.1007/978-94-017-1497-6
10.1007/s00704-019-02940-7
10.1175/1520-0469(1951)008<0135:TMOVTO>2.0.CO;2
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.1016/j.jhydrol.2014.08.004
10.1093/comjnl/13.3.317
10.1090/S0025-5718-1970-0274029-X
10.1016/S0022-1694(98)00253-4
10.1016/j.rse.2014.02.001
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agwat.2021.107390
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
ExternalDocumentID 10_1016_j_agwat_2021_107390
S0378377421006673
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
VH1
WUQ
XPP
ZMT
~HD
7S9
L.6
ID FETCH-LOGICAL-c336t-7274472c2753ccd5010f98ffbd13af954858ec42d9bc6804de26dc6f2e4824623
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788796200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-3774
IngestDate Thu Oct 02 09:51:07 EDT 2025
Tue Nov 18 22:17:49 EST 2025
Sat Nov 29 07:11:08 EST 2025
Fri Feb 23 02:41:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Precision agriculture
Irrigation
Data-driven
Geoprocessing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-7274472c2753ccd5010f98ffbd13af954858ec42d9bc6804de26dc6f2e4824623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636459818
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636459818
crossref_citationtrail_10_1016_j_agwat_2021_107390
crossref_primary_10_1016_j_agwat_2021_107390
elsevier_sciencedirect_doi_10_1016_j_agwat_2021_107390
PublicationCentury 2000
PublicationDate 2022-03-31
PublicationDateYYYYMMDD 2022-03-31
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-31
  day: 31
PublicationDecade 2020
PublicationTitle Agricultural water management
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gago, Douthe, Coopman, Gallego, Ribas-Carbo, Flexas, Escalona, Medrano (bib28) 2015; 153
Boltzmann (bib12) 1884; 258
Senay, Friedrichs, Singh, Velpuri (bib54) 2015
Vermote, Justice, Claverie, Franch (bib63) 2016
Wang, Melton, Pôças, Johnson, Thao, Post, Cassel-Sharma (bib64) 2021
Boursianis, Papadopoulou, Diamantoulakis, Liopa-Tsakalidi, Barouchas, Salahas, Karagiannidis, Wan, Goudos (bib14) 2020
Priestley, Taylor (bib47) 1972; 100
Olmedo, G., Ortega-Farias, S., Fonseca-Luengo, D., de la Fuente-Saiz, D., Peñailillo, F., 2017. Water: actual evapotranspiration with energy balance models.
Laipelt, Ruhoff, Fleischmann, Kayser, Kich, da Rocha, Neale (bib38) 2020; 12
Norman, Kustas, Humes (bib41) 1995; 77
da Silva, Gonçalves, Pereira, Fattori Júnior, Sobenko, Marin (bib23) 2019; 218
Webb (bib65) 1970; 96
Blatchford, Mannaerts, Zeng, Nouri, Karimi (bib11) 2019; 234
Jin, Kumar, Li, Feng, Xu, Yang, Wang (bib34) 2018; 92
Marin, Angelocci, Nassif, Vianna, Pilau, daSilva, Sobenko, Gonçalves, Pereira, Carvalho (bib40) 2019; 138
Costa, Coelho, Wolff, José, Folegatti, Ferraz (bib22) 2019; 76
Bastiaanssen, Menenti, Feddes, Holtslag (bib7) 1998; 212–213
Roerink, Su, Menenti (bib51) 2000; 25
Bastiaanssen, W., 1995. Regionalization of surface flux densities and moisture indicators in composite terrain. A remote sensing approach under clear skies in Mediterranean climates 271. URL
Broyden (bib16) 1970; 6
Xia, Kustas, Anderson, Alfieri, Gao, McKee, Prueger, Geli, Neale, Sanchez, Alsina, Wang (bib67) 2016; 20
Food and Agriculture Organization of the United Nations (FAO), 2021. Aquastat website. URL
GRASS Development Team, 2020. Geographic resources analysis support system (GRASS-GIS) software, version 7.8.2. URL
.
Yilma, W., 2017. Computation and spatial observation of water productivity in Awash River Basin. MSc Thesis WSE-HELWD. UNESCO-IHE. URL
Friedl (bib27) 2018
Hoffmann, Nieto, Jensen, Guzinski, Zarco-Tejada, Friborg (bib32) 2016; 12
Koloskov, Mukhamejanov, Tanton (bib37) 2007; 335
Kling, Fuchs, Paulin (bib36) 2012; 424–425
Fletcher (bib25) 1970; 13
Brutsaert, W., 1982. Evaporation into the atmosphere: Theory.History, and Applications. D. Reidel.
Rouse, J. W., Hass, R. H., Schell, J., Deering, D., 1974. Monitoring vegetation systems in the great plains with ERTS, Third Earth Resources Technology Satellite (ERTS) symposium 1, 309–317. URL
Thornthwaite, Mather (bib61) 1955
Karimi, Bastiaanssen (bib35) 2015; 19
Bastiaanssen (bib6) 2000; 229
Shanno (bib55) 1970; 24
Li, Jiang (bib39) 2018; 6
Allen, Irmak, Trezza, Hendrickx, Bastiaanssen, Kjaersgaard (bib2) 2011; 25
Van de Griend, Owe (bib62) 1993; 14
Teixeira, Bastiaanssen, Ahmad, Bos (bib60) 2009; 149
R Core Team, 2019. R: A language and environment for statistical computing, version 3.6.2. URL
Allen, Tasumi, Trezza (bib4) 2007; 133
Roy, Wulder, Loveland, C.E, Allen, Anderson, Helder, Irons, Johnson, Kennedy, Scambos, Schaaf, Schott, Sheng, Vermote, Belward, Bindschadler, Cohen, Gao, Hipple, Hostert, Huntington, Justice, Kilic, Kovalskyy, Lee, Lymburner, Masek, McCorkel, Shuai, Trezza, Vogelmann, Wynne, Zhu (bib53) 2014; 145
Goldfarb (bib30) 1970; 24
Silva, Braga, Braga, Oliveira, Montenegro, Barbosa (bib56) 2016; 20
Bosman (bib13) 1987; 41
Su (bib57) 2002; 6
Allen, Pereira, Raes, Smith (bib3) 1998
Chávez, Torres-Rua, Woldt, Zhang, Robertson, Marek, Wang, Heeren, Taghvaeian, Neale (bib20) 2020; 36
Glenn, Nagler, Huete (bib29) 2010; 31
Bastiaanssen, Noordman, Pelgrum, Davids, Thoreson, Allen (bib8) 2005; 131
Willmott (bib66) 1981; 2
Al Zayed, Elagib, Ribbe, Heinrich (bib1) 2016; 177
Paul, Gowda, Vara Prasad, Howell, Staggenborg, Neale (bib43) 2013; 59
Paulson (bib44) 1970; 9
Quebrajo, Perez-Ruiz, Pérez-Urrestarazu, Martínez, Egea (bib48) 2017
Tang, Li (bib59) 2017; 44
Allen, Burnett, Kramber, Huntington, Kjaersgaard, Kilic, Kelly, Trezza (bib5) 2013; 49
Duffie, Beckman (bib24) 2013
Peel, Finlayson, McMahon (bib45) 2007; 11
Jaafar, Ahmad (bib33) 2020; 238
Chen, Liu (bib21) 2020; 237
Zhou, Bi, Yang, Tian, Ren (bib69) 2014; 519
Bowen (bib15) 1926; 27
Radoglou-Grammatikis, Sarigiannidis, Lagkas, Moscholios (bib50) 2020
Brutsaert, Sugita (bib18) 1992; 97
Byrd, Lu, Nocedal, Zhu (bib19) 1995; 16
Perez, Castellvi, Ibañez, Rosell (bib46) 1999; 97
Swinbank (bib58) 1951; 8
Bhattarai, Quackenbush, Im, Shaw (bib10) 2017; 196
Boursianis (10.1016/j.agwat.2021.107390_bib14) 2020
10.1016/j.agwat.2021.107390_bib49
Priestley (10.1016/j.agwat.2021.107390_bib47) 1972; 100
Brutsaert (10.1016/j.agwat.2021.107390_bib18) 1992; 97
10.1016/j.agwat.2021.107390_bib42
Perez (10.1016/j.agwat.2021.107390_bib46) 1999; 97
Radoglou-Grammatikis (10.1016/j.agwat.2021.107390_bib50) 2020
Jaafar (10.1016/j.agwat.2021.107390_bib33) 2020; 238
Bastiaanssen (10.1016/j.agwat.2021.107390_bib8) 2005; 131
Su (10.1016/j.agwat.2021.107390_bib57) 2002; 6
Costa (10.1016/j.agwat.2021.107390_bib22) 2019; 76
10.1016/j.agwat.2021.107390_bib17
Bowen (10.1016/j.agwat.2021.107390_bib15) 1926; 27
Silva (10.1016/j.agwat.2021.107390_bib56) 2016; 20
Byrd (10.1016/j.agwat.2021.107390_bib19) 1995; 16
Senay (10.1016/j.agwat.2021.107390_bib54) 2015
Allen (10.1016/j.agwat.2021.107390_bib4) 2007; 133
Kling (10.1016/j.agwat.2021.107390_bib36) 2012; 424–425
Roerink (10.1016/j.agwat.2021.107390_bib51) 2000; 25
Allen (10.1016/j.agwat.2021.107390_bib2) 2011; 25
10.1016/j.agwat.2021.107390_bib52
Goldfarb (10.1016/j.agwat.2021.107390_bib30) 1970; 24
Xia (10.1016/j.agwat.2021.107390_bib67) 2016; 20
Norman (10.1016/j.agwat.2021.107390_bib41) 1995; 77
Webb (10.1016/j.agwat.2021.107390_bib65) 1970; 96
Gago (10.1016/j.agwat.2021.107390_bib28) 2015; 153
Li (10.1016/j.agwat.2021.107390_bib39) 2018; 6
Duffie (10.1016/j.agwat.2021.107390_bib24) 2013
Koloskov (10.1016/j.agwat.2021.107390_bib37) 2007; 335
10.1016/j.agwat.2021.107390_bib26
Wang (10.1016/j.agwat.2021.107390_bib64) 2021
Boltzmann (10.1016/j.agwat.2021.107390_bib12) 1884; 258
Allen (10.1016/j.agwat.2021.107390_bib3) 1998
Karimi (10.1016/j.agwat.2021.107390_bib35) 2015; 19
Teixeira (10.1016/j.agwat.2021.107390_bib60) 2009; 149
Hoffmann (10.1016/j.agwat.2021.107390_bib32) 2016; 12
Paul (10.1016/j.agwat.2021.107390_bib43) 2013; 59
Peel (10.1016/j.agwat.2021.107390_bib45) 2007; 11
10.1016/j.agwat.2021.107390_bib68
Bosman (10.1016/j.agwat.2021.107390_bib13) 1987; 41
Van de Griend (10.1016/j.agwat.2021.107390_bib62) 1993; 14
Willmott (10.1016/j.agwat.2021.107390_bib66) 1981; 2
Broyden (10.1016/j.agwat.2021.107390_bib16) 1970; 6
Blatchford (10.1016/j.agwat.2021.107390_bib11) 2019; 234
Roy (10.1016/j.agwat.2021.107390_bib53) 2014; 145
da Silva (10.1016/j.agwat.2021.107390_bib23) 2019; 218
Glenn (10.1016/j.agwat.2021.107390_bib29) 2010; 31
Marin (10.1016/j.agwat.2021.107390_bib40) 2019; 138
Shanno (10.1016/j.agwat.2021.107390_bib55) 1970; 24
Laipelt (10.1016/j.agwat.2021.107390_bib38) 2020; 12
Fletcher (10.1016/j.agwat.2021.107390_bib25) 1970; 13
Vermote (10.1016/j.agwat.2021.107390_bib63) 2016
Bhattarai (10.1016/j.agwat.2021.107390_bib10) 2017; 196
Allen (10.1016/j.agwat.2021.107390_bib5) 2013; 49
Bastiaanssen (10.1016/j.agwat.2021.107390_bib7) 1998; 212–213
Friedl (10.1016/j.agwat.2021.107390_bib27) 2018
Swinbank (10.1016/j.agwat.2021.107390_bib58) 1951; 8
Paulson (10.1016/j.agwat.2021.107390_bib44) 1970; 9
Chen (10.1016/j.agwat.2021.107390_bib21) 2020; 237
10.1016/j.agwat.2021.107390_bib31
Zhou (10.1016/j.agwat.2021.107390_bib69) 2014; 519
Tang (10.1016/j.agwat.2021.107390_bib59) 2017; 44
Al Zayed (10.1016/j.agwat.2021.107390_bib1) 2016; 177
Bastiaanssen (10.1016/j.agwat.2021.107390_bib6) 2000; 229
10.1016/j.agwat.2021.107390_bib9
Thornthwaite (10.1016/j.agwat.2021.107390_bib61) 1955
Chávez (10.1016/j.agwat.2021.107390_bib20) 2020; 36
Jin (10.1016/j.agwat.2021.107390_bib34) 2018; 92
Quebrajo (10.1016/j.agwat.2021.107390_bib48) 2017
References_xml – volume: 76
  start-page: 93
  year: 2019
  end-page: 101
  ident: bib22
  article-title: Spatial variability of coffee plant water consumption based on the SEBAL algorithm
  publication-title: Sci. Agric.
– volume: 335
  start-page: 170
  year: 2007
  end-page: 179
  ident: bib37
  article-title: Monin-Obukhov length as a cornerstone of the SEBAL calculations of evapotranspiration
  publication-title: J. Hydrol.
– volume: 14
  start-page: 1119
  year: 1993
  end-page: 1131
  ident: bib62
  article-title: On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces
  publication-title: Int. J. Remote Sens.
– volume: 6
  start-page: 76
  year: 1970
  end-page: 90
  ident: bib16
  article-title: The convergence of a class of double-rank minimization algorithms 1
  publication-title: Gen. Consid. IMA J. Appl. Math.
– volume: 8
  start-page: 135
  year: 1951
  end-page: 145
  ident: bib58
  article-title: The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere
  publication-title: J. Meteorol.
– volume: 424–425
  start-page: 264
  year: 2012
  end-page: 277
  ident: bib36
  article-title: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios
  publication-title: J. Hydrol.
– volume: 212–213
  start-page: 198
  year: 1998
  end-page: 212
  ident: bib7
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation
  publication-title: J. Hydrol.
– volume: 44
  start-page: 2319
  year: 2017
  end-page: 2326
  ident: bib59
  article-title: An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations
  publication-title: Geophys. Res. Lett.
– volume: 41
  start-page: 307
  year: 1987
  end-page: 323
  ident: bib13
  article-title: The influence of installation practices on evaporation from Symon’s tank and American Class A-pan evaporimeters
  publication-title: Agric. For. Meteorol.
– volume: 12
  start-page: 7469
  year: 2016
  end-page: 7502
  ident: bib32
  article-title: Estimating evapotranspiration with thermal UAV data and two source energy balance models
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 77
  start-page: 263
  year: 1995
  end-page: 293
  ident: bib41
  article-title: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature
  publication-title: Agric. For. Meteorol.
– start-page: 244
  year: 2021
  ident: bib64
  article-title: Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry
  publication-title: Agric. Water Manag.
– volume: 218
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib23
  article-title: Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil
  publication-title: Agric. Water Manag.
– volume: 9
  start-page: 857
  year: 1970
  end-page: 861
  ident: bib44
  article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer
  publication-title: J. Appl. Meteorol.
– reference: 〉.
– volume: 59
  start-page: 157
  year: 2013
  end-page: 168
  ident: bib43
  article-title: Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08
  publication-title: Adv. Water Resour.
– volume: 133
  start-page: 380
  year: 2007
  end-page: 394
  ident: bib4
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model
  publication-title: J. Irrig. Drain. Eng.
– volume: 24
  start-page: 23
  year: 1970
  ident: bib30
  article-title: A family of variable-metric methods derived by variational means
  publication-title: Math. Comput.
– year: 1955
  ident: bib61
  publication-title: The Water Balance
– volume: 25
  start-page: 4011
  year: 2011
  end-page: 4027
  ident: bib2
  article-title: Satellite-based ET estimation in agriculture using SEBAL and METRIC
  publication-title: Hydrol. Process.
– start-page: 172
  year: 2020
  ident: bib50
  article-title: A compilation of UAV applications for precision agriculture
  publication-title: Comput. Netw.
– volume: 131
  start-page: 85
  year: 2005
  end-page: 93
  ident: bib8
  article-title: SEBAL model with remotely sensed data to improve water-resources management under actual field conditions
  publication-title: J. Irrig. Drain. Eng.
– year: 1998
  ident: bib3
  article-title: Crop evapotranspiration – guidelines for computing crop water requirements
  publication-title: Rome
– volume: 12
  start-page: 1108
  year: 2020
  ident: bib38
  article-title: Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest-savanna transition in Brazil
  publication-title: Remote Sens.
– year: 2020
  ident: bib14
  article-title: Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: a comprehensive review
  publication-title: Internet Things
– year: 2013
  ident: bib24
  publication-title: Solar Engineering of Thermal Processes
– volume: 238
  year: 2020
  ident: bib33
  article-title: Time series trends of landsat-based et using automated calibration in metric and sebal: the bekaa valley, lebanon
  publication-title: Remote Sens. Environ.
– reference: GRASS Development Team, 2020. Geographic resources analysis support system (GRASS-GIS) software, version 7.8.2. URL 〈
– volume: 258
  start-page: 291
  year: 1884
  end-page: 294
  ident: bib12
  article-title: Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der temperatur aus der electromagnetischen Lichttheorie
  publication-title: Ann. Phys.
– year: 2016
  ident: bib63
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: 24
  start-page: 647
  year: 1970
  ident: bib55
  article-title: Conditioning of quasi-newton methods for function minimization
  publication-title: Math. Comput.
– volume: 25
  start-page: 147
  year: 2000
  end-page: 157
  ident: bib51
  article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance
  publication-title: Phys. Chem. Earth Part B Hydrol. Oceans Atmos.
– reference: Brutsaert, W., 1982. Evaporation into the atmosphere: Theory.History, and Applications. D. Reidel.
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: bib19
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
– volume: 20
  start-page: 1523
  year: 2016
  end-page: 1545
  ident: bib67
  article-title: Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 92
  start-page: 141
  year: 2018
  end-page: 152
  ident: bib34
  article-title: A review of data assimilation of remote sensing and crop models
  publication-title: Eur. J. Agron.
– reference: Rouse, J. W., Hass, R. H., Schell, J., Deering, D., 1974. Monitoring vegetation systems in the great plains with ERTS, Third Earth Resources Technology Satellite (ERTS) symposium 1, 309–317. URL 〈
– volume: 2
  start-page: 184
  year: 1981
  end-page: 194
  ident: bib66
  article-title: On the validation of models
  publication-title: Phys. Geogr.
– volume: 6
  start-page: 18149
  year: 2018
  end-page: 18162
  ident: bib39
  article-title: Land surface temperature retrieval from Landsat-8 data with the generalized split-window algorithm
  publication-title: IEEE Access
– volume: 149
  start-page: 477
  year: 2009
  end-page: 490
  ident: bib60
  article-title: Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil
  publication-title: Agric. For. Meteorol.
– start-page: 1
  year: 2017
  end-page: 11
  ident: bib48
  article-title: Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet
  publication-title: Biosyst. Eng.
– volume: 20
  start-page: 3
  year: 2016
  end-page: 8
  ident: bib56
  article-title: Procedures for calculation of the albedo with OLI-Landsat 8 images: application to the Brazilian semi-arid
  publication-title: Rev. Bras. Eng. Agríc. Ambient.
– volume: 97
  start-page: 18377
  year: 1992
  ident: bib18
  article-title: Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation
  publication-title: J. Geophys. Res.
– reference: Bastiaanssen, W., 1995. Regionalization of surface flux densities and moisture indicators in composite terrain. A remote sensing approach under clear skies in Mediterranean climates 271. URL 〈
– volume: 237
  year: 2020
  ident: bib21
  article-title: Evolution of evapotranspiration models using thermal and shortwave remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 196
  start-page: 178
  year: 2017
  end-page: 192
  ident: bib10
  article-title: A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models
  publication-title: Remote Sens. Environ.
– volume: 234
  year: 2019
  ident: bib11
  article-title: Status of accuracy in remotely sensed and in-situ agricultural water productivity estimates: a review
  publication-title: Remote Sens. Environ.
– volume: 229
  start-page: 87
  year: 2000
  end-page: 100
  ident: bib6
  article-title: SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey
  publication-title: J. Hydrol.
– volume: 27
  start-page: 779
  year: 1926
  end-page: 787
  ident: bib15
  article-title: The ratio of heat losses by conduction and by evaporation from any water surface
  publication-title: Phys. Rev.
– volume: 11
  start-page: 1633
  year: 2007
  end-page: 1644
  ident: bib45
  article-title: Updated world map of the Köppen-Geiger climate classification
  publication-title: Hydrol. Earth Syst. Sci.
– start-page: 78
  year: 2018
  end-page: 95
  ident: bib27
  article-title: Remote sensing of croplands
  publication-title: Comprehensive Remote Sensing
– reference: Yilma, W., 2017. Computation and spatial observation of water productivity in Awash River Basin. MSc Thesis WSE-HELWD. UNESCO-IHE. URL 〈
– volume: 36
  start-page: 423
  year: 2020
  end-page: 436
  ident: bib20
  article-title: A decade of unmanned aerial systems in irrigated agriculture in the Western U.S.
  publication-title: Appl. Eng. Agric.
– reference: Olmedo, G., Ortega-Farias, S., Fonseca-Luengo, D., de la Fuente-Saiz, D., Peñailillo, F., 2017. Water: actual evapotranspiration with energy balance models.
– volume: 177
  start-page: 66
  year: 2016
  end-page: 76
  ident: bib1
  article-title: Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: a comparative study
  publication-title: Agric. Water Manag.
– volume: 6
  start-page: 85
  year: 2002
  end-page: 100
  ident: bib57
  article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 97
  start-page: 141
  year: 1999
  end-page: 150
  ident: bib46
  article-title: Assessment of reliability of Bowen ratio method for partitioning fluxes
  publication-title: Agric. For. Meteorol.
– volume: 49
  start-page: 563
  year: 2013
  end-page: 576
  ident: bib5
  article-title: Automated calibration of the METRIC-Landsat evapotranspiration process
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– reference: Food and Agriculture Organization of the United Nations (FAO), 2021. Aquastat website. URL 〈
– volume: 138
  start-page: 1785
  year: 2019
  end-page: 1793
  ident: bib40
  article-title: Revisiting the crop coefficient-reference evapotranspiration procedure for improving irrigation management
  publication-title: Theor. Appl. Climatol.
– reference: R Core Team, 2019. R: A language and environment for statistical computing, version 3.6.2. URL 〈
– volume: 96
  start-page: 67
  year: 1970
  end-page: 90
  ident: bib65
  article-title: Profile relationships: the log-linear range, and extension to strong stability
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 153
  start-page: 9
  year: 2015
  end-page: 19
  ident: bib28
  article-title: UAVs challenge to assess water stress for sustainable agriculture
  publication-title: Agric. Water Manag.
– volume: 31
  start-page: 531
  year: 2010
  end-page: 555
  ident: bib29
  article-title: Vegetation index methods for estimating evapotranspiration by remote sensing
  publication-title: Surv. Geophys.
– volume: 19
  start-page: 507
  year: 2015
  end-page: 532
  ident: bib35
  article-title: Spatial evapotranspiration, rainfall and land use data in water accounting -part 1: review of the accuracy of the remote sensing data
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 519
  start-page: 769
  year: 2014
  end-page: 776
  ident: bib69
  article-title: Comparison of ET estimations by the three-temperature model, SEBAL model and eddy covariance observations
  publication-title: J. Hydrol.
– volume: 13
  start-page: 317
  year: 1970
  end-page: 322
  ident: bib25
  article-title: A new approach to variable metric algorithms
  publication-title: Comput. J.
– volume: 100
  start-page: 81
  year: 1972
  end-page: 92
  ident: bib47
  article-title: On the assessment of surface heat flux and evaporation using large-scale parameters
  publication-title: Mon. Weather Rev.
– volume: 145
  start-page: 154
  year: 2014
  end-page: 172
  ident: bib53
  article-title: Landsat-8: science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
– year: 2015
  ident: bib54
  article-title: Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin
  publication-title: Remote Sens. Environ. Press
– volume: 25
  start-page: 4011
  issue: 26
  year: 2011
  ident: 10.1016/j.agwat.2021.107390_bib2
  article-title: Satellite-based ET estimation in agriculture using SEBAL and METRIC
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.8408
– volume: 20
  start-page: 1523
  issue: 4
  year: 2016
  ident: 10.1016/j.agwat.2021.107390_bib67
  article-title: Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-1523-2016
– volume: 97
  start-page: 141
  issue: 3
  year: 1999
  ident: 10.1016/j.agwat.2021.107390_bib46
  article-title: Assessment of reliability of Bowen ratio method for partitioning fluxes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00080-5
– volume: 49
  start-page: 563
  issue: 3
  year: 2013
  ident: 10.1016/j.agwat.2021.107390_bib5
  article-title: Automated calibration of the METRIC-Landsat evapotranspiration process
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12056
– volume: 31
  start-page: 531
  year: 2010
  ident: 10.1016/j.agwat.2021.107390_bib29
  article-title: Vegetation index methods for estimating evapotranspiration by remote sensing
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-010-9102-2
– volume: 218
  start-page: 1
  issue: October 2018
  year: 2019
  ident: 10.1016/j.agwat.2021.107390_bib23
  article-title: Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.03.003
– volume: 20
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.agwat.2021.107390_bib56
  article-title: Procedures for calculation of the albedo with OLI-Landsat 8 images: application to the Brazilian semi-arid
  publication-title: Rev. Bras. Eng. Agríc. Ambient.
  doi: 10.1590/1807-1929/agriambi.v20n1p3-8
– volume: 258
  start-page: 291
  issue: 6
  year: 1884
  ident: 10.1016/j.agwat.2021.107390_bib12
  article-title: Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der temperatur aus der electromagnetischen Lichttheorie
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18842580616
– start-page: 244
  year: 2021
  ident: 10.1016/j.agwat.2021.107390_bib64
  article-title: Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry
  publication-title: Agric. Water Manag.
– volume: 59
  start-page: 157
  year: 2013
  ident: 10.1016/j.agwat.2021.107390_bib43
  article-title: Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.06.003
– volume: 44
  start-page: 2319
  issue: 5
  year: 2017
  ident: 10.1016/j.agwat.2021.107390_bib59
  article-title: An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL072621
– year: 2016
  ident: 10.1016/j.agwat.2021.107390_bib63
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
– volume: 24
  start-page: 23
  issue: 109
  year: 1970
  ident: 10.1016/j.agwat.2021.107390_bib30
  article-title: A family of variable-metric methods derived by variational means
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1970-0258249-6
– volume: 6
  start-page: 18149
  year: 2018
  ident: 10.1016/j.agwat.2021.107390_bib39
  article-title: Land surface temperature retrieval from Landsat-8 data with the generalized split-window algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818741
– volume: 14
  start-page: 1119
  issue: 6
  year: 1993
  ident: 10.1016/j.agwat.2021.107390_bib62
  article-title: On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169308904400
– volume: 77
  start-page: 263
  issue: 3–4
  year: 1995
  ident: 10.1016/j.agwat.2021.107390_bib41
  article-title: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02265-Y
– volume: 177
  start-page: 66
  year: 2016
  ident: 10.1016/j.agwat.2021.107390_bib1
  article-title: Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: a comparative study
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.06.027
– year: 2020
  ident: 10.1016/j.agwat.2021.107390_bib14
  article-title: Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: a comprehensive review
  publication-title: Internet Things
– volume: 234
  issue: October
  year: 2019
  ident: 10.1016/j.agwat.2021.107390_bib11
  article-title: Status of accuracy in remotely sensed and in-situ agricultural water productivity estimates: a review
  publication-title: Remote Sens. Environ.
– volume: 149
  start-page: 477
  issue: 3–4
  year: 2009
  ident: 10.1016/j.agwat.2021.107390_bib60
  article-title: Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.09.014
– volume: 424–425
  start-page: 264
  year: 2012
  ident: 10.1016/j.agwat.2021.107390_bib36
  article-title: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.01.011
– volume: 133
  start-page: 380
  issue: 4
  year: 2007
  ident: 10.1016/j.agwat.2021.107390_bib4
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– volume: 27
  start-page: 779
  issue: 6
  year: 1926
  ident: 10.1016/j.agwat.2021.107390_bib15
  article-title: The ratio of heat losses by conduction and by evaporation from any water surface
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.27.779
– volume: 16
  start-page: 1190
  issue: 5
  year: 1995
  ident: 10.1016/j.agwat.2021.107390_bib19
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
– volume: 238
  year: 2020
  ident: 10.1016/j.agwat.2021.107390_bib33
  article-title: Time series trends of landsat-based et using automated calibration in metric and sebal: the bekaa valley, lebanon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.033
– ident: 10.1016/j.agwat.2021.107390_bib9
– volume: 9
  start-page: 857
  year: 1970
  ident: 10.1016/j.agwat.2021.107390_bib44
  article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
– volume: 12
  start-page: 7469
  year: 2016
  ident: 10.1016/j.agwat.2021.107390_bib32
  article-title: Estimating evapotranspiration with thermal UAV data and two source energy balance models
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 229
  start-page: 87
  issue: 1–2
  year: 2000
  ident: 10.1016/j.agwat.2021.107390_bib6
  article-title: SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(99)00202-4
– volume: 131
  start-page: 85
  year: 2005
  ident: 10.1016/j.agwat.2021.107390_bib8
  article-title: SEBAL model with remotely sensed data to improve water-resources management under actual field conditions
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2005)131:1(85)
– volume: 97
  start-page: 18377
  issue: D17
  year: 1992
  ident: 10.1016/j.agwat.2021.107390_bib18
  article-title: Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation
  publication-title: J. Geophys. Res.
  doi: 10.1029/92JD00255
– ident: 10.1016/j.agwat.2021.107390_bib26
– volume: 12
  start-page: 1108
  issue: 7
  year: 2020
  ident: 10.1016/j.agwat.2021.107390_bib38
  article-title: Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest-savanna transition in Brazil
  publication-title: Remote Sens.
  doi: 10.3390/rs12071108
– year: 2013
  ident: 10.1016/j.agwat.2021.107390_bib24
– ident: 10.1016/j.agwat.2021.107390_bib68
– start-page: 1
  year: 2017
  ident: 10.1016/j.agwat.2021.107390_bib48
  article-title: Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet
  publication-title: Biosyst. Eng.
– volume: 11
  start-page: 1633
  issue: 5
  year: 2007
  ident: 10.1016/j.agwat.2021.107390_bib45
  article-title: Updated world map of the Köppen-Geiger climate classification
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-11-1633-2007
– volume: 196
  start-page: 178
  year: 2017
  ident: 10.1016/j.agwat.2021.107390_bib10
  article-title: A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.05.009
– volume: 36
  start-page: 423
  issue: 4
  year: 2020
  ident: 10.1016/j.agwat.2021.107390_bib20
  article-title: A decade of unmanned aerial systems in irrigated agriculture in the Western U.S.
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/aea.13941
– start-page: 78
  year: 2018
  ident: 10.1016/j.agwat.2021.107390_bib27
  article-title: Remote sensing of croplands
– volume: 41
  start-page: 307
  issue: 3–4
  year: 1987
  ident: 10.1016/j.agwat.2021.107390_bib13
  article-title: The influence of installation practices on evaporation from Symon’s tank and American Class A-pan evaporimeters
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(87)90086-4
– volume: 335
  start-page: 170
  issue: 1–2
  year: 2007
  ident: 10.1016/j.agwat.2021.107390_bib37
  article-title: Monin-Obukhov length as a cornerstone of the SEBAL calculations of evapotranspiration
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.11.010
– volume: 25
  start-page: 147
  issue: 2
  year: 2000
  ident: 10.1016/j.agwat.2021.107390_bib51
  article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance
  publication-title: Phys. Chem. Earth Part B Hydrol. Oceans Atmos.
  doi: 10.1016/S1464-1909(99)00128-8
– volume: 19
  start-page: 507
  issue: 1
  year: 2015
  ident: 10.1016/j.agwat.2021.107390_bib35
  article-title: Spatial evapotranspiration, rainfall and land use data in water accounting -part 1: review of the accuracy of the remote sensing data
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-507-2015
– volume: 237
  year: 2020
  ident: 10.1016/j.agwat.2021.107390_bib21
  article-title: Evolution of evapotranspiration models using thermal and shortwave remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111594
– year: 1955
  ident: 10.1016/j.agwat.2021.107390_bib61
– volume: 2
  start-page: 184
  issue: 2
  year: 1981
  ident: 10.1016/j.agwat.2021.107390_bib66
  article-title: On the validation of models
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.1981.10642213
– volume: 153
  start-page: 9
  year: 2015
  ident: 10.1016/j.agwat.2021.107390_bib28
  article-title: UAVs challenge to assess water stress for sustainable agriculture
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.01.020
– volume: 76
  start-page: 93
  year: 2019
  ident: 10.1016/j.agwat.2021.107390_bib22
  article-title: Spatial variability of coffee plant water consumption based on the SEBAL algorithm
  publication-title: Sci. Agric.
  doi: 10.1590/1678-992x-2017-0158
– volume: 96
  start-page: 67
  issue: 407
  year: 1970
  ident: 10.1016/j.agwat.2021.107390_bib65
  article-title: Profile relationships: the log-linear range, and extension to strong stability
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49709640708
– volume: 6
  start-page: 76
  issue: 1
  year: 1970
  ident: 10.1016/j.agwat.2021.107390_bib16
  article-title: The convergence of a class of double-rank minimization algorithms 1
  publication-title: Gen. Consid. IMA J. Appl. Math.
  doi: 10.1093/imamat/6.1.76
– volume: 92
  start-page: 141
  year: 2018
  ident: 10.1016/j.agwat.2021.107390_bib34
  article-title: A review of data assimilation of remote sensing and crop models
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.11.002
– volume: 6
  start-page: 85
  issue: 1
  year: 2002
  ident: 10.1016/j.agwat.2021.107390_bib57
  article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-85-2002
– ident: 10.1016/j.agwat.2021.107390_bib17
  doi: 10.1007/978-94-017-1497-6
– year: 2015
  ident: 10.1016/j.agwat.2021.107390_bib54
  article-title: Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin
  publication-title: Remote Sens. Environ. Press
– ident: 10.1016/j.agwat.2021.107390_bib42
– volume: 138
  start-page: 1785
  issue: 3–4
  year: 2019
  ident: 10.1016/j.agwat.2021.107390_bib40
  article-title: Revisiting the crop coefficient-reference evapotranspiration procedure for improving irrigation management
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-019-02940-7
– volume: 8
  start-page: 135
  issue: 3
  year: 1951
  ident: 10.1016/j.agwat.2021.107390_bib58
  article-title: The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere
  publication-title: J. Meteorol.
  doi: 10.1175/1520-0469(1951)008<0135:TMOVTO>2.0.CO;2
– volume: 100
  start-page: 81
  issue: 2
  year: 1972
  ident: 10.1016/j.agwat.2021.107390_bib47
  article-title: On the assessment of surface heat flux and evaporation using large-scale parameters
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– ident: 10.1016/j.agwat.2021.107390_bib52
– volume: 519
  start-page: 769
  issue: PA
  year: 2014
  ident: 10.1016/j.agwat.2021.107390_bib69
  article-title: Comparison of ET estimations by the three-temperature model, SEBAL model and eddy covariance observations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.08.004
– year: 1998
  ident: 10.1016/j.agwat.2021.107390_bib3
  article-title: Crop evapotranspiration – guidelines for computing crop water requirements
  publication-title: Rome
– ident: 10.1016/j.agwat.2021.107390_bib31
– volume: 13
  start-page: 317
  issue: 3
  year: 1970
  ident: 10.1016/j.agwat.2021.107390_bib25
  article-title: A new approach to variable metric algorithms
  publication-title: Comput. J.
  doi: 10.1093/comjnl/13.3.317
– volume: 24
  start-page: 647
  issue: 111
  year: 1970
  ident: 10.1016/j.agwat.2021.107390_bib55
  article-title: Conditioning of quasi-newton methods for function minimization
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1970-0274029-X
– start-page: 172
  year: 2020
  ident: 10.1016/j.agwat.2021.107390_bib50
  article-title: A compilation of UAV applications for precision agriculture
  publication-title: Comput. Netw.
– volume: 212–213
  start-page: 198
  issue: 1–4
  year: 1998
  ident: 10.1016/j.agwat.2021.107390_bib7
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00253-4
– volume: 145
  start-page: 154
  year: 2014
  ident: 10.1016/j.agwat.2021.107390_bib53
  article-title: Landsat-8: science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.001
– ident: 10.1016/j.agwat.2021.107390_bib49
SSID ssj0004047
Score 2.4237747
Snippet Many algorithms for surface energy balance (SEB) based on remote sensing (RS) have been advanced to determine evapotranspiration (ET). These algorithms were...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107390
SubjectTerms algorithms
Brazil
corn
crop management
Data-driven
energy balance
evapotranspiration
Geoprocessing
Irrigation
Jatropha curcas
land use
Landsat
Precision agriculture
soybeans
sugarcane
unmanned aerial vehicles
water management
Title Optimized algorithm for evapotranspiration retrieval via remote sensing
URI https://dx.doi.org/10.1016/j.agwat.2021.107390
https://www.proquest.com/docview/2636459818
Volume 262
WOSCitedRecordID wos000788796200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AIEXJ
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag44E9TOOmjTEUJMRLyZTYaRI_TqjloqrjoWN9s1LHyTK1cUjbMe3Xc3xJgihM44GXqI2cm88nn2Of4-9D6K2IsygDz-KCdyJugEXm0oyELvU4TXAqIqFVIr6No8kkns3oV7uqtNJyAlFZxjc3tPqvpoZzYGy1dfYfzN3eFE7AbzA6HMHscLyX4c9gEFgWtxBIJotcwtz_ctnweldyrbnMC2v2WstpwcP710UC_8Bsor9SJe3WnzX0tHndUXT8SBSv4nKrbOZCLgzD40WSl13Nr1Xu4CbDI3VinkhdkSg78GyWRW6VktWmdyV13R9vittuwbw2ZAcjfQN_XkjFCQDwlr-uW8CU127ka4c3ogozIqPR04zFOMT96sRX6UPP_eMIbxYbrk6SHD4X5vfYt807h9Yk8SdnbHQ-HrPpcDZ9V313ldSYSslb3ZWHaAdHAxr30M7p5-HsS7ed1tO6dO0LNmRVuixw67l_C2h-c-06Xpnuoz070XBODUCeoAeifIp2O0uKZ-hjCxWnhYoDUHG2oeK0UHEAKo6BimOh8hydj4bTD59cK6zhckLCtRspWsgIc_h8wnk6gDl5RuMsm6c-STJFATiIBQ9wSuc8jL0gFThMeZhhEcQ4gID5BeqVshQHyPEIhVaxoFj4ASeYpgH4rSQSEIpCbIsPEW56h3HLOq_ETxasKS-8YrpLmepSZrr0EL1vL6oM6crdzcOm25mNG008yAA0d1_4pjESg1FVpcqSUsjNiuFQpecpRLMv79HmCD3uEP4K9db1RhyjR_x6Xazq1xZePwGlU5sh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+algorithm+for+evapotranspiration+retrieval+via+remote+sensing&rft.jtitle=Agricultural+water+management&rft.au=Wolff%2C+Wagner&rft.au=Francisco%2C+Jo%C3%A3o+Paulo&rft.au=Flumignan%2C+Danilton+Luiz&rft.au=Marin%2C+F%C3%A1bio+Ricardo&rft.date=2022-03-31&rft.issn=0378-3774&rft.volume=262+p.107390-&rft_id=info:doi/10.1016%2Fj.agwat.2021.107390&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon