Online Stochastic DCA With Applications to Principal Component Analysis
Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular,...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 35; no. 5; pp. 7035 - 7047 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA). |
|---|---|
| AbstractList | Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA).Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA). Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA). |
| Author | Dinh, Tao Pham Le Thi, Hoai An Luu, Hoang Phuc Hau |
| Author_xml | – sequence: 1 givenname: Hoai An orcidid: 0000-0002-2239-2100 surname: Le Thi fullname: Le Thi, Hoai An email: hoai-an.le-thi@univ-lorraine.fr organization: Université de Lorraine, Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Metz, France – sequence: 2 givenname: Hoang Phuc Hau orcidid: 0000-0003-0908-9817 surname: Luu fullname: Luu, Hoang Phuc Hau email: hoang-phuc-hau.luu@univ-lorraine.fr organization: Université de Lorraine, Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Metz, France – sequence: 3 givenname: Tao Pham surname: Dinh fullname: Dinh, Tao Pham email: pham@insa-rouen.fr organization: Laboratory of Mathematics, National Institute for Applied Sciences (INSA)-Rouen, University of Normandie, Saint-Étienne-du-Rouvray, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36315540$$D View this record in MEDLINE/PubMed https://hal.univ-lorraine.fr/hal-04003755$$DView record in HAL |
| BookMark | eNpdkU1rGzEQhkVJadI0fyCBsNBLe7A70uhj97i4-SiYpJCU5iZk7RgrrKXtal3Iv886dn2oLiPE8868mvcjO4opEmPnHKacQ_Xt8e5u_jAVIMQUBUelynfsRHAtJgLL8uhwN0_H7CznZxiPBqVl9YEdo0aulIQTdnMf2xCpeBiSX7k8BF98n9XF7zCsirrr2uDdEFLMxZCKn32IPnSuLWZp3Y124lDU0bUvOeRP7P3StZnO9vWU_bq-epzdTub3Nz9m9XziEfUwUY6bRVPKpqLRMwcjqXTScw0SOWnpSrPQUBIZL3XTlA4bqRdL4kajdpXEU_Z113flWtv1Ye36F5tcsLf13G7fQAKgUeovH9kvO7br058N5cGuQ_bUti5S2mQrDIKWqOW27ef_0Oe06ce_ZYugAAErrkbqck9tFmtqDvP_rXMExA7wfcq5p-UB4WC3sdm32Ow2NruPbRRd7ESBiA6CqkI0yPEVlgyPVw |
| CODEN | ITNNAL |
| Cites_doi | 10.1080/01621459.2016.1148611 10.1007/978-3-7908-2604-3_16 10.1002/cjs.10105 10.1051/ps:2005018 10.1016/j.amc.2020.125904 10.1137/s1052623494274313 10.1515/9783110845563 10.1137/19M1276819 10.1007/s10479-004-5022-1 10.1007/978-0-387-70914-7 10.1016/j.ejor.2014.11.031 10.1137/16M1080173 10.1145/1961189.1961200 10.1109/TIT.2015.2457942 10.1137/20M1385706 10.1137/S1052623497331063 10.1109/LWC.2019.2963032 10.1109/GlobalSIP45357.2019.8969411 10.1137/18M1178244 10.1137/18M117337X 10.1007/978-3-642-54455-2_1 10.1016/j.neucom.2014.11.051 10.1145/1143844.1143870 10.1016/j.knosys.2014.08.003 10.1007/s10107-016-1021-7 10.1137/120863277 10.1007/s10107-018-1235-y 10.1109/TSP.2016.2531627 10.1016/j.neunet.2020.08.024 10.1214/aoms/1177729586 10.1137/120880811 10.1007/s10994-021-05996-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC |
| DOI | 10.1109/TNNLS.2022.3213558 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Mathematics |
| EISSN | 2162-2388 |
| EndPage | 7047 |
| ExternalDocumentID | oai:HAL:hal-04003755v1 36315540 10_1109_TNNLS_2022_3213558 9933731 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC |
| ID | FETCH-LOGICAL-c336t-5a17bd84d9e1351074e8a4c160431e64a87b608ee7c46dd8a3d46bfe17636a943 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001214608800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Wed Nov 05 07:32:18 EST 2025 Sat Sep 27 21:21:35 EDT 2025 Sun Nov 30 04:37:24 EST 2025 Mon Jul 21 06:07:44 EDT 2025 Sat Nov 29 01:40:23 EST 2025 Wed Aug 27 02:06:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Difference of Convex functions (DC) programming Online stochastic DCA (osDCA) DC algorithm (DCA) Nonconvex optimization Principal component analysis (PCA) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-5a17bd84d9e1351074e8a4c160431e64a87b608ee7c46dd8a3d46bfe17636a943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0908-9817 0000-0002-2239-2100 |
| PMID | 36315540 |
| PQID | 3050303915 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2022_3213558 proquest_journals_3050303915 pubmed_primary_36315540 ieee_primary_9933731 hal_primary_oai_HAL_hal_04003755v1 proquest_miscellaneous_2730643644 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref34 ref15 Pham Dinh (ref16) 1997; 22 ref37 ref14 ref36 ref30 ref11 ref10 ref32 Mairal (ref24); 26 ref2 Nitanda (ref31) ref1 ref17 ref39 ref38 ref19 ref18 Xu (ref13) Le Thi (ref28) Metel (ref33) ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Henriksen (ref35) 2019 |
| References_xml | – ident: ref4 doi: 10.1080/01621459.2016.1148611 – ident: ref21 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref3 doi: 10.1002/cjs.10105 – ident: ref37 doi: 10.1051/ps:2005018 – start-page: 6942 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref13 article-title: Stochastic optimization for DC functions and non-smooth non-convex regularizers with non-asymptotic convergence – ident: ref12 doi: 10.1016/j.amc.2020.125904 – ident: ref17 doi: 10.1137/s1052623494274313 – ident: ref38 doi: 10.1515/9783110845563 – ident: ref30 doi: 10.1137/19M1276819 – ident: ref15 doi: 10.1007/s10479-004-5022-1 – ident: ref39 doi: 10.1007/978-0-387-70914-7 – ident: ref2 doi: 10.1016/j.ejor.2014.11.031 – ident: ref20 doi: 10.1137/16M1080173 – volume: 26 start-page: 2283 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref24 article-title: Stochastic majorization-minimization algorithms for large-scale optimization – ident: ref9 doi: 10.1145/1961189.1961200 – start-page: 4537 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref33 article-title: Simple stochastic gradient methods for non-smooth non-convex regularized optimization – start-page: 470 volume-title: Proc. 20th Int. Conf. Artif. Intell. Stat. ident: ref31 article-title: Stochastic difference of convex algorithm and its application to training deep Boltzmann machines – ident: ref11 doi: 10.1109/TIT.2015.2457942 – volume: 22 start-page: 289 issue: 1 year: 1997 ident: ref16 article-title: Convex analysis approach to DC programming: Theory, algorithms and applications publication-title: Acta Math. Vietnamica – ident: ref32 doi: 10.1137/20M1385706 – year: 2019 ident: ref35 article-title: AdaOja: Adaptive learning rates for streaming PCA publication-title: arXiv:1905.12115 – ident: ref23 doi: 10.1137/S1052623497331063 – ident: ref26 doi: 10.1109/LWC.2019.2963032 – ident: ref36 doi: 10.1109/GlobalSIP45357.2019.8969411 – ident: ref8 doi: 10.1137/18M1178244 – ident: ref10 doi: 10.1137/18M117337X – ident: ref18 doi: 10.1007/978-3-642-54455-2_1 – ident: ref14 doi: 10.1016/j.neucom.2014.11.051 – ident: ref6 doi: 10.1145/1143844.1143870 – start-page: 3394 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref28 article-title: Stochastic DCA for the large-sum of non-convex functions problem and its application to group variable selection in classification – ident: ref7 doi: 10.1016/j.knosys.2014.08.003 – ident: ref25 doi: 10.1007/s10107-016-1021-7 – ident: ref34 doi: 10.1137/120863277 – ident: ref1 doi: 10.1007/s10107-018-1235-y – ident: ref27 doi: 10.1109/TSP.2016.2531627 – ident: ref29 doi: 10.1016/j.neunet.2020.08.024 – ident: ref19 doi: 10.1214/aoms/1177729586 – ident: ref22 doi: 10.1137/120880811 – ident: ref5 doi: 10.1007/s10994-021-05996-7 |
| SSID | ssj0000605649 |
| Score | 2.4742796 |
| Snippet | Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 7035 |
| SubjectTerms | Algorithms Big Data Computer Science Convex functions DC~algorithm (DCA) Difference of Convex functions (DC) programming Divers Learning algorithms Machine learning Machine learning algorithms Martingales Mathematics nonconvex optimization online stochastic DCA (osDCA) Optimization Principal component analysis principal component analysis (PCA) Principal components analysis Programming Stochastic processes Stochasticity |
| Title | Online Stochastic DCA With Applications to Principal Component Analysis |
| URI | https://ieeexplore.ieee.org/document/9933731 https://www.ncbi.nlm.nih.gov/pubmed/36315540 https://www.proquest.com/docview/3050303915 https://www.proquest.com/docview/2730643644 https://hal.univ-lorraine.fr/hal-04003755 |
| Volume | 35 |
| WOSCitedRecordID | wos001214608800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH5qK4R6oZSyBNrKIG6QNrEd2zmOutDDaFSpRczN8tgeTS8T1Mn09_OeswgkOHDLYtnWW_w-L-8zwGcneRkwzOVCCZ9LfM1dXIp8WdfRmcorFxK7_lTPZmY-r2934OuYCxNjTIfP4hk9pr380PgtLZWdYywVmpKmd7VWXa7WuJ5SIC5XCe3yUvGcCz0fcmSK-vx-Npve4WyQ8zPBS6IU34fn2D2KpsUfIWl3RQci000r_wadKfhcH_xft1_Cix5ksklnFYewE9ev4GC4wIH1_nwE3zqiUXbXNn7liLGZXV5M2I-HdsUmv-1ss7Zht92qPFZL9TRrbJINjCav4fv11f3FTd7frJB7IVSbV67Ui2BkqCPd0IcwIhonfamIaicq6YxeqMLEqL1UIRgnglSLZSxxNFKuluIN7K2xpXfAyugRIVToxgj-eBlNFTHm81DjUKG5dxl8GYRrf3YEGjZNPIraJq1Y0orttZLBJ5T_WJC4r28mU0vfaLQRuqqeygyOSMhjqV6-GRwP6rK9I26sIL6bxIKfwcfxN7oQ7Yu4dWy2G4sIjoAZIsMM3nZqHusebOT939v8APvYfdmdgDyGvfZxG0_gmX9qHzaPp2inc3Oa7PQXljreeQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgqAXCpRHaAGDuEHa2E6c5LgqlEWEqFIXsTfLa3u1vWxQN9vfz4zzUJHaA7e8ZDszHs_nx3wD8NGkgjt0c7FU0sYp3sbGL2W8LEtviswq4wK7fpXXdTGfl-c78HmMhfHeh8Nn_pguw16-a-yWlspO0JfKnIKm71PmrD5aa1xRSRCZq4B3BVciFjKfD1EySXkyq-vqAueDQhxLwYlUfA8eYgPJnyb_OKV7KzoSGXKt3A07g_s52_-_hj-Bxz3MZJOuXzyFHb9-BvtDCgfWW_QBfOuoRtlF29iVIc5m9uV0wn5ftis2ubG3zdqGnXfr8lgsldOssUo2cJo8h19nX2en07jPrRBbKVUbZ4bnC1ekrvSUow-BhC9Markish2vUlPkC5UU3uc2Vc4VRrpULZae43ikTJnKF7C7xppeAePeIkbI0JAR_gnui8yj1xeuxMEiF9ZE8GkQrv7TUWjoMPVISh20okkrutdKBB9Q_uOHxH49nVSantF4I_Msu-YRHJCQx696-UZwNKhL96a40ZIYbwIPfgTvx9doRLQzYta-2W40YjiCZogNI3jZqXkse-gjr2-v8x08ms5-Vrr6Xv84hD38lbQ7D3kEu-3V1r-BB_a6vdxcvQ299S8bR-Da |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Stochastic+DCA+With+Applications+to+Principal+Component+Analysis&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Thi%2C+Hoai+An+Le&rft.au=Luu%2C+Hoang+Phuc+Hau&rft.au=Dinh%2C+Tao+Pham&rft.date=2024-05-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2022.3213558&rft_id=info%3Apmid%2F36315540&rft.externalDocID=36315540 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |