Online Stochastic DCA With Applications to Principal Component Analysis

Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 35; no. 5; pp. 7035 - 7047
Main Authors: Le Thi, Hoai An, Luu, Hoang Phuc Hau, Dinh, Tao Pham
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA).
AbstractList Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA).Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA).
Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA).
Author Dinh, Tao Pham
Le Thi, Hoai An
Luu, Hoang Phuc Hau
Author_xml – sequence: 1
  givenname: Hoai An
  orcidid: 0000-0002-2239-2100
  surname: Le Thi
  fullname: Le Thi, Hoai An
  email: hoai-an.le-thi@univ-lorraine.fr
  organization: Université de Lorraine, Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Metz, France
– sequence: 2
  givenname: Hoang Phuc Hau
  orcidid: 0000-0003-0908-9817
  surname: Luu
  fullname: Luu, Hoang Phuc Hau
  email: hoang-phuc-hau.luu@univ-lorraine.fr
  organization: Université de Lorraine, Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Metz, France
– sequence: 3
  givenname: Tao Pham
  surname: Dinh
  fullname: Dinh, Tao Pham
  email: pham@insa-rouen.fr
  organization: Laboratory of Mathematics, National Institute for Applied Sciences (INSA)-Rouen, University of Normandie, Saint-Étienne-du-Rouvray, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36315540$$D View this record in MEDLINE/PubMed
https://hal.univ-lorraine.fr/hal-04003755$$DView record in HAL
BookMark eNpdkU1rGzEQhkVJadI0fyCBsNBLe7A70uhj97i4-SiYpJCU5iZk7RgrrKXtal3Iv886dn2oLiPE8868mvcjO4opEmPnHKacQ_Xt8e5u_jAVIMQUBUelynfsRHAtJgLL8uhwN0_H7CznZxiPBqVl9YEdo0aulIQTdnMf2xCpeBiSX7k8BF98n9XF7zCsirrr2uDdEFLMxZCKn32IPnSuLWZp3Y124lDU0bUvOeRP7P3StZnO9vWU_bq-epzdTub3Nz9m9XziEfUwUY6bRVPKpqLRMwcjqXTScw0SOWnpSrPQUBIZL3XTlA4bqRdL4kajdpXEU_Z113flWtv1Ye36F5tcsLf13G7fQAKgUeovH9kvO7br058N5cGuQ_bUti5S2mQrDIKWqOW27ef_0Oe06ce_ZYugAAErrkbqck9tFmtqDvP_rXMExA7wfcq5p-UB4WC3sdm32Ow2NruPbRRd7ESBiA6CqkI0yPEVlgyPVw
CODEN ITNNAL
Cites_doi 10.1080/01621459.2016.1148611
10.1007/978-3-7908-2604-3_16
10.1002/cjs.10105
10.1051/ps:2005018
10.1016/j.amc.2020.125904
10.1137/s1052623494274313
10.1515/9783110845563
10.1137/19M1276819
10.1007/s10479-004-5022-1
10.1007/978-0-387-70914-7
10.1016/j.ejor.2014.11.031
10.1137/16M1080173
10.1145/1961189.1961200
10.1109/TIT.2015.2457942
10.1137/20M1385706
10.1137/S1052623497331063
10.1109/LWC.2019.2963032
10.1109/GlobalSIP45357.2019.8969411
10.1137/18M1178244
10.1137/18M117337X
10.1007/978-3-642-54455-2_1
10.1016/j.neucom.2014.11.051
10.1145/1143844.1143870
10.1016/j.knosys.2014.08.003
10.1007/s10107-016-1021-7
10.1137/120863277
10.1007/s10107-018-1235-y
10.1109/TSP.2016.2531627
10.1016/j.neunet.2020.08.024
10.1214/aoms/1177729586
10.1137/120880811
10.1007/s10994-021-05996-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
DOI 10.1109/TNNLS.2022.3213558
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 2162-2388
EndPage 7047
ExternalDocumentID oai:HAL:hal-04003755v1
36315540
10_1109_TNNLS_2022_3213558
9933731
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
ID FETCH-LOGICAL-c336t-5a17bd84d9e1351074e8a4c160431e64a87b608ee7c46dd8a3d46bfe17636a943
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001214608800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Wed Nov 05 07:32:18 EST 2025
Sat Sep 27 21:21:35 EDT 2025
Sun Nov 30 04:37:24 EST 2025
Mon Jul 21 06:07:44 EDT 2025
Sat Nov 29 01:40:23 EST 2025
Wed Aug 27 02:06:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Difference of Convex functions (DC) programming
Online stochastic DCA (osDCA)
DC algorithm (DCA)
Nonconvex optimization
Principal component analysis (PCA)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-5a17bd84d9e1351074e8a4c160431e64a87b608ee7c46dd8a3d46bfe17636a943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0908-9817
0000-0002-2239-2100
PMID 36315540
PQID 3050303915
PQPubID 85436
PageCount 13
ParticipantIDs crossref_primary_10_1109_TNNLS_2022_3213558
proquest_journals_3050303915
pubmed_primary_36315540
ieee_primary_9933731
hal_primary_oai_HAL_hal_04003755v1
proquest_miscellaneous_2730643644
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
ref15
Pham Dinh (ref16) 1997; 22
ref37
ref14
ref36
ref30
ref11
ref10
ref32
Mairal (ref24); 26
ref2
Nitanda (ref31)
ref1
ref17
ref39
ref38
ref19
ref18
Xu (ref13)
Le Thi (ref28)
Metel (ref33)
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Henriksen (ref35) 2019
References_xml – ident: ref4
  doi: 10.1080/01621459.2016.1148611
– ident: ref21
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref3
  doi: 10.1002/cjs.10105
– ident: ref37
  doi: 10.1051/ps:2005018
– start-page: 6942
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref13
  article-title: Stochastic optimization for DC functions and non-smooth non-convex regularizers with non-asymptotic convergence
– ident: ref12
  doi: 10.1016/j.amc.2020.125904
– ident: ref17
  doi: 10.1137/s1052623494274313
– ident: ref38
  doi: 10.1515/9783110845563
– ident: ref30
  doi: 10.1137/19M1276819
– ident: ref15
  doi: 10.1007/s10479-004-5022-1
– ident: ref39
  doi: 10.1007/978-0-387-70914-7
– ident: ref2
  doi: 10.1016/j.ejor.2014.11.031
– ident: ref20
  doi: 10.1137/16M1080173
– volume: 26
  start-page: 2283
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Stochastic majorization-minimization algorithms for large-scale optimization
– ident: ref9
  doi: 10.1145/1961189.1961200
– start-page: 4537
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref33
  article-title: Simple stochastic gradient methods for non-smooth non-convex regularized optimization
– start-page: 470
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Stat.
  ident: ref31
  article-title: Stochastic difference of convex algorithm and its application to training deep Boltzmann machines
– ident: ref11
  doi: 10.1109/TIT.2015.2457942
– volume: 22
  start-page: 289
  issue: 1
  year: 1997
  ident: ref16
  article-title: Convex analysis approach to DC programming: Theory, algorithms and applications
  publication-title: Acta Math. Vietnamica
– ident: ref32
  doi: 10.1137/20M1385706
– year: 2019
  ident: ref35
  article-title: AdaOja: Adaptive learning rates for streaming PCA
  publication-title: arXiv:1905.12115
– ident: ref23
  doi: 10.1137/S1052623497331063
– ident: ref26
  doi: 10.1109/LWC.2019.2963032
– ident: ref36
  doi: 10.1109/GlobalSIP45357.2019.8969411
– ident: ref8
  doi: 10.1137/18M1178244
– ident: ref10
  doi: 10.1137/18M117337X
– ident: ref18
  doi: 10.1007/978-3-642-54455-2_1
– ident: ref14
  doi: 10.1016/j.neucom.2014.11.051
– ident: ref6
  doi: 10.1145/1143844.1143870
– start-page: 3394
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref28
  article-title: Stochastic DCA for the large-sum of non-convex functions problem and its application to group variable selection in classification
– ident: ref7
  doi: 10.1016/j.knosys.2014.08.003
– ident: ref25
  doi: 10.1007/s10107-016-1021-7
– ident: ref34
  doi: 10.1137/120863277
– ident: ref1
  doi: 10.1007/s10107-018-1235-y
– ident: ref27
  doi: 10.1109/TSP.2016.2531627
– ident: ref29
  doi: 10.1016/j.neunet.2020.08.024
– ident: ref19
  doi: 10.1214/aoms/1177729586
– ident: ref22
  doi: 10.1137/120880811
– ident: ref5
  doi: 10.1007/s10994-021-05996-7
SSID ssj0000605649
Score 2.474203
Snippet Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7035
SubjectTerms Algorithms
Big Data
Computer Science
Convex functions
DC~algorithm (DCA)
Difference of Convex functions (DC) programming
Divers
Learning algorithms
Machine learning
Machine learning algorithms
Martingales
Mathematics
nonconvex optimization
online stochastic DCA (osDCA)
Optimization
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Programming
Stochastic processes
Stochasticity
Title Online Stochastic DCA With Applications to Principal Component Analysis
URI https://ieeexplore.ieee.org/document/9933731
https://www.ncbi.nlm.nih.gov/pubmed/36315540
https://www.proquest.com/docview/3050303915
https://www.proquest.com/docview/2730643644
https://hal.univ-lorraine.fr/hal-04003755
Volume 35
WOSCitedRecordID wos001214608800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BqiouPEpbAhS5Fbc2kMSO7RxXFMoBrZCg6t4sJ55ouWwqNsvvx-M8BBIcuEWJNY5mxp7Pj_kG4EQTB4moytjVaR2LmmdxYRMbS7TIM5WroqxDsQk1nerZrLhZg19jLgwihstneEqP4SzfNdWKtsrOfCzlipKm15WSXa7WuJ-SeFwuA9rNUpnFGVezIUcmKc7uptPrW78azLJTnqVEKb4JH7nkFE2TFyFpfU4XIkOllbdBZwg-l9vv--0d2OpBJpt0XrELa7j4BNtDAQfWj-c9-NMRjbLbtqnmlhib2e_zCft3387Z5NnJNmsbdtPtynuxJKdZ-C7ZwGjyGf5eXtydX8V9ZYW44ly2cW5TVTotXIFUoc_DCNRWVKkkqh2UwmpVykQjqkpI57TlTsiyxtTPRtIWgn-BjYXvaR8YrScr7dclmFphE2cdahResk7ynCuM4OegXPO_I9AwYeGRFCZYxZBVTG-VCH54_Y8Nifv6anJt6B3NNlzl-WMawR4peWzV6zeCo8Fcph-IS8OJ7yaw4EfwffzshxCdi9gFNqul8QiOgJlHhhF87cw8yh585OD1Pg9h0_--6G5AHsFG-7DCb_Chemzvlw_H3k9n-jj46RNWUd82
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgqAXCpRHoIBB3CBtEju2c1wVyiKWqFIXsTfLiSfaXjaom-3vx-M8BBIcuEWJNU5m7Mw3tucbgHeaOEhEXcWuSZtYNDyLC5vYWKJFnqlcFVUTik2ostSrVXGxBx-mXBhEDIfP8IQuw16-a-sdLZWdel_KFSVN36bKWUO21rSiknhkLgPezVKZxRlXqzFLJilOl2W5uPTxYJad8CwlUvEDuMslJ3-a_OGUbq3pSGSotfJv2Bncz_nh_734A7g_wEw268fFQ9jDzSM4HEs4sGFGH8HnnmqUXXZtvbbE2cw-ns3Yj6tuzWa_7W2zrmUX_bq8F0ty2o3vko2cJo_h-_mn5dk8HmorxDXnsotzm6rKaeEKpBp9HkigtqJOJZHtoBRWq0omGlHVQjqnLXdCVg2m_n8kbSH4E9jf-J6eAaOIstY-MsHUCps461Cj8JJ1kudcYQTvR-Wanz2FhgmhR1KYYBVDVjGDVSJ46_U_NST26_lsYege_W-4yvObNIIjUvLUatBvBMejucwwFbeGE-NN4MGP4M302E8i2hmxG2x3W-MxHEEzjw0jeNqbeZI9jpHnf-_zNdybL78tzOJL-fUFHPhPEf15yGPY7653-BLu1Dfd1fb6VRitvwDfqeGX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Stochastic+DCA+With+Applications+to+Principal+Component+Analysis&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Thi%2C+Hoai+An+Le&rft.au=Luu%2C+Hoang+Phuc+Hau&rft.au=Dinh%2C+Tao+Pham&rft.date=2024-05-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2022.3213558&rft_id=info%3Apmid%2F36315540&rft.externalDocID=36315540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon