Feature Keypoint-Based Image Compression Technique Using a Well-Posed Nonlinear Fourth-Order PDE-Based Model

A digital image compression framework based on nonlinear partial differential equations (PDEs) is proposed in this research article. First, a feature keypoint-based sparsification algorithm is proposed for the image coding stage. The interest keypoints corresponding to various scale-invariant image...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 8; číslo 6; s. 930
Hlavní autor: Barbu, Tudor
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI AG 01.06.2020
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A digital image compression framework based on nonlinear partial differential equations (PDEs) is proposed in this research article. First, a feature keypoint-based sparsification algorithm is proposed for the image coding stage. The interest keypoints corresponding to various scale-invariant image feature descriptors, such as SIFT, SURF, MSER, ORB, and BRIEF, are extracted, and the points from their neighborhoods are then used as sparse pixels and coded using a lossless encoding scheme. An effective nonlinear fourth-order PDE-based scattered data interpolation is proposed for solving the decompression task. A rigorous mathematical investigation of the considered PDE model is also performed, with the well-posedness of this model being demonstrated. It is then solved numerically by applying a consistent finite difference method-based numerical approximation algorithm that is next successfully applied in the image compression and decompression experiments, which are also discussed in this work.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8060930