Multi-class pattern classification using neural networks

Multi-class pattern classification has many applications including text document classification, speech recognition, object recognition, etc. Multi-class pattern classification using neural networks is not a trivial extension from two-class neural networks. This paper presents a comprehensive and co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 40; číslo 1; s. 4 - 18
Hlavní autori: Ou, Guobin, Murphey, Yi Lu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 2007
Elsevier Science
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multi-class pattern classification has many applications including text document classification, speech recognition, object recognition, etc. Multi-class pattern classification using neural networks is not a trivial extension from two-class neural networks. This paper presents a comprehensive and competitive study in multi-class neural learning with focuses on issues including neural network architecture, encoding schemes, training methodology and training time complexity. Our study includes multi-class pattern classification using either a system of multiple neural networks or a single neural network, and modeling pattern classes using one-against-all, one-against-one, one-against-higher-order, and P-against- Q. We also discuss implementations of these approaches and analyze training time complexity associated with each approach. We evaluate six different neural network system architectures for multi-class pattern classification along the dimensions of imbalanced data, large number of pattern classes, large vs. small training data through experiments conducted on well-known benchmark data.
AbstractList Multi-class pattern classification has many applications including text document classification, speech recognition, object recognition, etc. Multi-class pattern classification using neural networks is not a trivial extension from two-class neural networks. This paper presents a comprehensive and competitive study in multi-class neural learning with focuses on issues including neural network architecture, encoding schemes, training methodology and training time complexity. Our study includes multi-class pattern classification using either a system of multiple neural networks or a single neural network, and modeling pattern classes using one-against-all, one-against-one, one-against-higher-order, and P-against- Q. We also discuss implementations of these approaches and analyze training time complexity associated with each approach. We evaluate six different neural network system architectures for multi-class pattern classification along the dimensions of imbalanced data, large number of pattern classes, large vs. small training data through experiments conducted on well-known benchmark data.
Author Ou, Guobin
Murphey, Yi Lu
Author_xml – sequence: 1
  givenname: Guobin
  surname: Ou
  fullname: Ou, Guobin
– sequence: 2
  givenname: Yi Lu
  surname: Murphey
  fullname: Murphey, Yi Lu
  email: yilu@umich.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18400433$$DView record in Pascal Francis
BookMark eNp9kE9LAzEQxYNUsK1-Aw978bjr5E-7ux4EKVaFihc9h-wkW1LXbElSxW9v2hUPHgoDj2He7zG8CRm53hlCLikUFOj8elNsVcR-XTCAeQEiDT0hY1qVPJ9RwUZkDMBpzhnwMzIJYQNAy3QYk-p510WbY6dCyFJKNN5lh822FlW0vct2wbp15szOqy5J_Or9ezgnp63qgrn41Sl5W96_Lh7z1cvD0-JulSPn85iLWgEojZWmTVVxbnjNSq4bNkM2A2Ssoai0rhnqhpu6YrUwusYy-YQB0fIpuRpytyqg6lqvHNogt95-KP8taSUABOfJdzP40PcheNNKtPHwf_TKdpKC3HclN3LoSu67kiDS0ASLf_Bf_nHsdsBMKuDTGi8DWuPQaOsNRql7ezzgByvfiB0
CODEN PTNRA8
CitedBy_id crossref_primary_10_1109_TNSRE_2018_2831444
crossref_primary_10_1007_s41870_018_0187_z
crossref_primary_10_1016_j_cogsys_2018_11_009
crossref_primary_10_1016_j_neunet_2009_07_027
crossref_primary_10_1109_TSC_2022_3144265
crossref_primary_10_1007_s00521_017_3300_5
crossref_primary_10_1016_j_cie_2015_02_022
crossref_primary_10_1016_j_apacoust_2014_06_006
crossref_primary_10_1038_s41534_021_00377_3
crossref_primary_10_1016_j_cageo_2013_01_022
crossref_primary_10_1016_j_patcog_2014_08_023
crossref_primary_10_1016_j_knosys_2009_11_020
crossref_primary_10_1016_j_patcog_2020_107528
crossref_primary_10_1016_j_mbs_2008_11_001
crossref_primary_10_1016_j_aspen_2012_03_006
crossref_primary_10_1007_s11063_014_9376_3
crossref_primary_10_1080_02678292_2023_2292635
crossref_primary_10_1109_TKDE_2008_128
crossref_primary_10_1007_s11432_020_3170_2
crossref_primary_10_1016_j_engappai_2025_111292
crossref_primary_10_1016_j_asoc_2008_04_005
crossref_primary_10_1002_minf_201100098
crossref_primary_10_3745_KIPSTB_2007_14_B_4_287
crossref_primary_10_1016_j_cageo_2013_12_002
crossref_primary_10_1109_TNNLS_2018_2826553
crossref_primary_10_1002_minf_201400142
crossref_primary_10_1016_j_patrec_2010_05_030
crossref_primary_10_1109_TIV_2020_3044257
crossref_primary_10_1016_j_jngse_2017_10_003
crossref_primary_10_1007_s00521_012_0844_2
crossref_primary_10_1109_TDSC_2024_3523561
crossref_primary_10_1016_j_chemolab_2015_05_013
crossref_primary_10_1109_TVT_2024_3360262
crossref_primary_10_1016_j_medengphy_2025_104318
crossref_primary_10_3390_e21080763
crossref_primary_10_1103_PhysRevApplied_23_044033
crossref_primary_10_1109_TMC_2025_3568614
crossref_primary_10_1109_ACCESS_2019_2917526
crossref_primary_10_3233_HIS_160221
crossref_primary_10_1109_TAP_2021_3069467
crossref_primary_10_1155_2020_6296209
crossref_primary_10_7737_JKORMS_2013_38_1_139
crossref_primary_10_1016_j_ins_2018_01_034
crossref_primary_10_1016_j_labinv_2023_100320
crossref_primary_10_1016_j_neucom_2012_09_011
crossref_primary_10_1109_JIOT_2020_3027586
crossref_primary_10_1016_j_patcog_2014_04_026
crossref_primary_10_1016_j_eswa_2010_06_077
crossref_primary_10_1109_JSEN_2022_3166957
crossref_primary_10_1016_j_inffus_2024_102723
crossref_primary_10_1080_00423114_2019_1645860
crossref_primary_10_1016_j_marpetgeo_2020_104720
crossref_primary_10_1007_s11063_017_9588_4
crossref_primary_10_26552_com_C_2021_3_B165_B177
crossref_primary_10_1007_s00521_010_0458_5
crossref_primary_10_1016_j_ins_2017_02_059
crossref_primary_10_3390_info10070239
crossref_primary_10_1109_TVT_2009_2027710
crossref_primary_10_1016_j_patcog_2007_01_002
crossref_primary_10_1007_s42405_020_00266_7
crossref_primary_10_1007_s11063_020_10236_5
crossref_primary_10_3390_pr11020595
crossref_primary_10_1149_1945_7111_ad69c5
crossref_primary_10_1007_s00521_013_1494_8
crossref_primary_10_1177_1077546313488408
crossref_primary_10_1007_s12652_020_02437_6
crossref_primary_10_1016_j_neunet_2012_05_009
crossref_primary_10_1109_ACCESS_2018_2881199
crossref_primary_10_1007_s00521_012_1303_9
crossref_primary_10_1016_j_trac_2012_02_005
crossref_primary_10_1109_TNN_2010_2046423
crossref_primary_10_1007_s10115_009_0240_0
crossref_primary_10_1109_ACCESS_2021_3075385
crossref_primary_10_3390_app6070200
crossref_primary_10_1109_ACCESS_2020_3044697
crossref_primary_10_1109_TAC_2021_3138728
crossref_primary_10_3390_app8050697
crossref_primary_10_1016_j_eswa_2017_02_048
crossref_primary_10_1016_j_inffus_2016_11_009
crossref_primary_10_1016_j_patcog_2013_07_021
crossref_primary_10_1016_j_physa_2016_06_025
crossref_primary_10_3390_electronics10091002
crossref_primary_10_1016_j_patcog_2014_07_023
crossref_primary_10_1016_j_eswa_2012_02_046
crossref_primary_10_2514_1_G002866
crossref_primary_10_1016_j_hlpt_2018_12_003
crossref_primary_10_1016_j_inffus_2016_11_004
crossref_primary_10_1016_j_ress_2021_107787
crossref_primary_10_1016_j_eswa_2014_05_018
crossref_primary_10_1109_TGRS_2018_2868141
crossref_primary_10_1016_j_aspen_2013_12_004
crossref_primary_10_1155_2015_387805
crossref_primary_10_1007_s11063_014_9374_5
crossref_primary_10_1007_s40815_015_0022_7
crossref_primary_10_1016_j_neucom_2012_11_056
crossref_primary_10_1016_j_patcog_2009_09_025
crossref_primary_10_1109_TCOMM_2022_3194074
crossref_primary_10_1016_j_patcog_2008_07_010
crossref_primary_10_1002_minf_201100052
crossref_primary_10_1364_AO_419494
crossref_primary_10_1016_j_knosys_2012_07_018
crossref_primary_10_1109_TCYB_2013_2240451
crossref_primary_10_1016_j_petrol_2015_02_006
crossref_primary_10_3390_app15010088
crossref_primary_10_1088_1741_2560_12_6_066008
crossref_primary_10_1016_j_neunet_2011_10_003
crossref_primary_10_1049_iet_gtd_2012_0472
crossref_primary_10_1109_TCOMM_2022_3169813
crossref_primary_10_1109_TII_2025_3528571
crossref_primary_10_1007_s11004_012_9421_6
crossref_primary_10_3390_electronics13193951
crossref_primary_10_1155_2021_6690590
crossref_primary_10_1002_minf_201200126
crossref_primary_10_1016_j_jag_2014_07_002
crossref_primary_10_1109_TSMCC_2012_2215851
crossref_primary_10_1080_20476965_2018_1510040
crossref_primary_10_1016_j_asoc_2010_04_012
crossref_primary_10_1016_j_jlp_2024_105343
crossref_primary_10_3390_s20051523
crossref_primary_10_1109_TIFS_2021_3056206
crossref_primary_10_1007_s10489_010_0212_9
crossref_primary_10_1016_j_jbi_2019_103341
crossref_primary_10_1007_s12046_016_0561_0
crossref_primary_10_1016_j_cmpb_2017_04_012
crossref_primary_10_1016_j_patcog_2017_01_013
crossref_primary_10_1016_j_patcog_2011_02_019
crossref_primary_10_1109_TNN_2010_2041468
crossref_primary_10_1016_j_engappai_2024_108771
crossref_primary_10_1080_20476965_2017_1390635
crossref_primary_10_1007_s00500_014_1475_6
crossref_primary_10_1109_TAP_2022_3157895
crossref_primary_10_1016_j_inffus_2014_09_002
crossref_primary_10_1016_j_sigpro_2012_11_009
crossref_primary_10_1186_s13662_022_03718_4
crossref_primary_10_1016_j_neucom_2017_06_053
crossref_primary_10_1007_s12652_021_02905_7
crossref_primary_10_1016_j_aca_2010_01_059
crossref_primary_10_1108_17563781211282277
crossref_primary_10_4028_www_scientific_net_AMM_471_40
crossref_primary_10_1007_s11518_007_5050_x
crossref_primary_10_3389_frai_2024_1299169
crossref_primary_10_1016_S1005_8885_13_60238_1
crossref_primary_10_1016_j_asoc_2018_05_035
crossref_primary_10_1007_s10462_019_09706_7
crossref_primary_10_1016_j_asoc_2011_12_004
crossref_primary_10_1016_j_neucom_2009_03_013
crossref_primary_10_1109_ACCESS_2020_3018911
Cites_doi 10.1109/72.788664
10.1613/jair.105
10.1109/72.991427
10.1109/TNN.2002.804228
10.1093/nar/28.1.235
10.1162/089976600300014827
10.1109/72.363444
10.1162/neco.1989.1.4.541
10.1007/978-3-642-76153-9_5
10.1023/A:1007379606734
10.1007/3-540-36169-3_29
ContentType Journal Article
Copyright 2006 Pattern Recognition Society
2007 INIST-CNRS
Copyright_xml – notice: 2006 Pattern Recognition Society
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patcog.2006.04.041
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 18
ExternalDocumentID 18400433
10_1016_j_patcog_2006_04_041
S0031320306002081
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-49a00adc8d1b8833e39273db25c250c22b1cadd92cdb3e98294ed9c7e394e04f3
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000241837300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Mon Jul 21 09:15:54 EDT 2025
Sat Nov 29 03:51:59 EST 2025
Tue Nov 18 22:33:20 EST 2025
Fri Feb 23 02:33:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-class classification
Pattern recognition
Neural networks
Machine learning
System architecture
Network architecture
Neural network
Object recognition
Modeling
Implementation
Learning
Coding
Pattern classification
Object detection
Speech recognition
Open market
Time complexity
Speech processing
Target detection
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-49a00adc8d1b8833e39273db25c250c22b1cadd92cdb3e98294ed9c7e394e04f3
PageCount 15
ParticipantIDs pascalfrancis_primary_18400433
crossref_citationtrail_10_1016_j_patcog_2006_04_041
crossref_primary_10_1016_j_patcog_2006_04_041
elsevier_sciencedirect_doi_10_1016_j_patcog_2006_04_041
PublicationCentury 2000
PublicationDate 2007
2007-1-00
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Pattern recognition
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Aha, Bankert (bib2) 1997; 11
Maass (bib26) 2000; 12
Y.L. Murphey, Y. Luo, Feature extraction for a multiple pattern classification neural network system, IEEE International Conference on Pattern Recognition, August 2002.
Wu, Lin, Weng (bib30) 2004; 5
D. Rumelhart, G. Hinton, R. Williams, Learning internal representations by error propagation, in: D.E. Rumelhart, J.L. McClelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructures of Cognition, vol. 1, MIT Press, Cambridge, MA, 1986, pp. 318–362.
Le Cun, Boser, Denker, Hendersen, Howard, Hubbard, Jackel (bib1) 1989; 1
Lu, Ito (bib20) 1999; 10
Kong, Dietterich (bib32) 1995
Wang, Zhou, Liew (bib33) 1999
Berman, Westbrook, Feng, Gilliland, Bhat, Weissig, Shindyalov, Bourne (bib37) 2000; 28
B. Zhang, Z. Chen, Y.L. Murphey, Protein secondary structure prediction using machine learning, IEEE International Joint Conference on Neural Networks, July 2005.
Y. Even-Zohar, D. Roth, A sequential model for multiclass classification, in: SIGDAT Conference on Empirical Methods in Natural Language Processing, 2001, pp. 10–19.
Anthony, Bartlett (bib15) 1999
E. Brill, Some advances in transformation-based part of speech tagging, In: AAAI Conference, vol. 1, 1994, pp. 722–727.
Allwein, Schapire (bib18) 2000; 1
H. Blockeel, M. Bruynooghe, S. Dzeroski, J. Ramon, J. Struyf, Hierarchical multi-classification, in: First International Workshop on Multi-Relational Data Mining (KDD-2003), 2003.
Vapnik (bib11) 1998
J.C. Platt, N. Cristianini, Large margin DAGs for multiclass classification, Advances in Neural Information Processing Systems, 12th ed., 2000, pp. 547–553.
Gelenbe, Hussain (bib17) 2002; 13
Clare, King (bib7) 2001
J. Furnkranz, Round robin classification, J. Mach. Learn. Res. (2) (2002) 721–747.
K. Crammer, Y. Singer, On the learnability and design of output codes for multiclass problems, in: Computational Learning Theory, 2000, pp. 35–46.
Hsu, Lin (bib12) 2002; 13
T.G. Dietterich, G. Bakiri, Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res. (2) (1995) 263–286.
Apte, Damerau, Weiss (bib9) 1994; 12
S. Har-Peled, D. Roth, Constraint classification: a new approach for multiclass classification and ranking, in: 13th International Conference on Algorithmic Learning Theory, 2002, pp.365–379.
G. James, Majority vote classifiers: theory and applications, Ph.D. Thesis, Stanford University, 1998.
Murphey, Guo, Feldkamp (bib25) 2004; 21
Anand, Mehrotra, Mohan, Ranka (bib16) 1995; 6
S. Knerr, L. Personnaz, G. Dreyfus, Single-layer learning revisited: a stepwise procedure for building and training a neural network, in: Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series, Springer, Berlin, 1990.
Natarajan (bib10) 1991
Caruana (bib36) 1997; 28
Bishop (bib13) 1995
Allwein, Schapire, Singer (bib21) 2000
Hastie, Tibshirani (bib24) 1998
Baldi, Pollastri (bib6) 2002; 17
Price, Knerr (bib19) 1994; 7
Hastie (10.1016/j.patcog.2006.04.041_bib24) 1998
Apte (10.1016/j.patcog.2006.04.041_bib9) 1994; 12
Anand (10.1016/j.patcog.2006.04.041_bib16) 1995; 6
Berman (10.1016/j.patcog.2006.04.041_bib37) 2000; 28
10.1016/j.patcog.2006.04.041_bib22
Baldi (10.1016/j.patcog.2006.04.041_bib6) 2002; 17
Le Cun (10.1016/j.patcog.2006.04.041_bib1) 1989; 1
Anthony (10.1016/j.patcog.2006.04.041_bib15) 1999
10.1016/j.patcog.2006.04.041_bib23
Aha (10.1016/j.patcog.2006.04.041_bib2) 1997; 11
Allwein (10.1016/j.patcog.2006.04.041_bib18) 2000; 1
10.1016/j.patcog.2006.04.041_bib29
10.1016/j.patcog.2006.04.041_bib28
Wang (10.1016/j.patcog.2006.04.041_bib33) 1999
Bishop (10.1016/j.patcog.2006.04.041_bib13) 1995
10.1016/j.patcog.2006.04.041_bib27
Wu (10.1016/j.patcog.2006.04.041_bib30) 2004; 5
Kong (10.1016/j.patcog.2006.04.041_bib32) 1995
Lu (10.1016/j.patcog.2006.04.041_bib20) 1999; 10
Caruana (10.1016/j.patcog.2006.04.041_bib36) 1997; 28
Natarajan (10.1016/j.patcog.2006.04.041_bib10) 1991
Gelenbe (10.1016/j.patcog.2006.04.041_bib17) 2002; 13
Price (10.1016/j.patcog.2006.04.041_bib19) 1994; 7
Allwein (10.1016/j.patcog.2006.04.041_bib21) 2000
Hsu (10.1016/j.patcog.2006.04.041_bib12) 2002; 13
10.1016/j.patcog.2006.04.041_bib31
Vapnik (10.1016/j.patcog.2006.04.041_bib11) 1998
10.1016/j.patcog.2006.04.041_bib14
10.1016/j.patcog.2006.04.041_bib35
10.1016/j.patcog.2006.04.041_bib34
10.1016/j.patcog.2006.04.041_bib4
10.1016/j.patcog.2006.04.041_bib3
10.1016/j.patcog.2006.04.041_bib5
Clare (10.1016/j.patcog.2006.04.041_bib7) 2001
Murphey (10.1016/j.patcog.2006.04.041_bib25) 2004; 21
10.1016/j.patcog.2006.04.041_bib8
Maass (10.1016/j.patcog.2006.04.041_bib26) 2000; 12
References_xml – volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: bib1
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– start-page: 313
  year: 1995
  end-page: 321
  ident: bib32
  article-title: Error-correcting output coding corrects bias and variance
  publication-title: Proceedings of the 12th International Conference on Machine Learning
– reference: E. Brill, Some advances in transformation-based part of speech tagging, In: AAAI Conference, vol. 1, 1994, pp. 722–727.
– reference: Y.L. Murphey, Y. Luo, Feature extraction for a multiple pattern classification neural network system, IEEE International Conference on Pattern Recognition, August 2002.
– reference: H. Blockeel, M. Bruynooghe, S. Dzeroski, J. Ramon, J. Struyf, Hierarchical multi-classification, in: First International Workshop on Multi-Relational Data Mining (KDD-2003), 2003.
– reference: K. Crammer, Y. Singer, On the learnability and design of output codes for multiclass problems, in: Computational Learning Theory, 2000, pp. 35–46.
– year: 2000
  ident: bib21
  article-title: Reducing multiclass to binary: a unifying approach for margin classifiers
  publication-title: Proceedings of the 17th International Conference on Machine Learning
– reference: J. Furnkranz, Round robin classification, J. Mach. Learn. Res. (2) (2002) 721–747.
– reference: S. Knerr, L. Personnaz, G. Dreyfus, Single-layer learning revisited: a stepwise procedure for building and training a neural network, in: Neurocomputing: Algorithms, Architectures and Applications, NATO ASI Series, Springer, Berlin, 1990.
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bib12
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Networks
– reference: S. Har-Peled, D. Roth, Constraint classification: a new approach for multiclass classification and ranking, in: 13th International Conference on Algorithmic Learning Theory, 2002, pp.365–379.
– volume: 21
  start-page: 117
  year: 2004
  end-page: 128
  ident: bib25
  article-title: Neural learning from imbalanced data
  publication-title: Appl. Intell. Neural Networks Appl.
– volume: 12
  start-page: 2519
  year: 2000
  end-page: 2536
  ident: bib26
  article-title: On the computational power of winner-take-all
  publication-title: Neural Comput.
– reference: J.C. Platt, N. Cristianini, Large margin DAGs for multiclass classification, Advances in Neural Information Processing Systems, 12th ed., 2000, pp. 547–553.
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  ident: bib37
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: bib36
  article-title: Multitask learning
  publication-title: Mach. Learn.
– volume: 13
  start-page: 1257
  year: 2002
  end-page: 1267
  ident: bib17
  article-title: Learning in the multiple class random neural network
  publication-title: IEEE Trans. Neural Networks
– year: 1995
  ident: bib13
  article-title: Neural Networks for Pattern Recognition
– volume: 6
  start-page: 117
  year: 1995
  end-page: 124
  ident: bib16
  article-title: Efficient classification for multiclass problems using modular neural networks
  publication-title: IEEE Trans. Neural Networks
– reference: T.G. Dietterich, G. Bakiri, Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res. (2) (1995) 263–286.
– reference: Y. Even-Zohar, D. Roth, A sequential model for multiclass classification, in: SIGDAT Conference on Empirical Methods in Natural Language Processing, 2001, pp. 10–19.
– volume: 12
  start-page: 233
  year: 1994
  end-page: 251
  ident: bib9
  article-title: Automated learning of decision rules for text categorization
  publication-title: Inf. Syst.
– year: 1991
  ident: bib10
  article-title: Machine Learning: A Theoretical Approach
– year: 1998
  ident: bib11
  article-title: Statistical Learning Theory
– volume: 1
  start-page: 113
  year: 2000
  end-page: 141
  ident: bib18
  article-title: Reducing multiclass to binary: a unifying approach for margin classifiers
  publication-title: J. Mach. Learn. Res.
– volume: 7
  year: 1994
  ident: bib19
  article-title: Pairwise neural network classifiers with probabilistic outputs
  publication-title: Neural Inf. Process. Syst.
– volume: 17
  start-page: 28
  year: 2002
  end-page: 35
  ident: bib6
  article-title: A machine learning strategy for protein analysis
  publication-title: IEEE Intell. Syst.
– year: 1999
  ident: bib15
  article-title: Neural Network Learning: Theoretical Foundations
– reference: D. Rumelhart, G. Hinton, R. Williams, Learning internal representations by error propagation, in: D.E. Rumelhart, J.L. McClelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructures of Cognition, vol. 1, MIT Press, Cambridge, MA, 1986, pp. 318–362.
– start-page: 507
  year: 1998
  end-page: 513
  ident: bib24
  article-title: Classification by pairwise coupling
  publication-title: Conference on Advances in Neural Information Processing Systems
– reference: B. Zhang, Z. Chen, Y.L. Murphey, Protein secondary structure prediction using machine learning, IEEE International Joint Conference on Neural Networks, July 2005.
– volume: 5
  start-page: 975
  year: 2004
  end-page: 1005
  ident: bib30
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: bib7
  article-title: Knowledge discovery in multi-label phenotype data
  publication-title: Fifth European Conference on Principles of Data Mining and Knowledge Discovery
– volume: 10
  start-page: 1244
  year: 1999
  end-page: 1256
  ident: bib20
  article-title: Task decomposition and module combination based on class relations: a modular neural network for pattern classification
  publication-title: IEEE Trans. Neural Networks
– start-page: 363
  year: 1999
  end-page: 374
  ident: bib33
  article-title: Building hierarchical classifiers using class proximity
  publication-title: 25th International Conference on Very Large Data Bases
– reference: G. James, Majority vote classifiers: theory and applications, Ph.D. Thesis, Stanford University, 1998.
– volume: 11
  start-page: 13
  year: 1997
  end-page: 28
  ident: bib2
  article-title: Cloud classification using error-correcting output codes
  publication-title: Artif. Intell. Appl. Nat. Resour. Agric. Environ. Sci.
– year: 2001
  ident: 10.1016/j.patcog.2006.04.041_bib7
  article-title: Knowledge discovery in multi-label phenotype data
– volume: 7
  year: 1994
  ident: 10.1016/j.patcog.2006.04.041_bib19
  article-title: Pairwise neural network classifiers with probabilistic outputs
  publication-title: Neural Inf. Process. Syst.
– volume: 12
  start-page: 233
  issue: 3
  year: 1994
  ident: 10.1016/j.patcog.2006.04.041_bib9
  article-title: Automated learning of decision rules for text categorization
  publication-title: Inf. Syst.
– volume: 10
  start-page: 1244
  issue: 5
  year: 1999
  ident: 10.1016/j.patcog.2006.04.041_bib20
  article-title: Task decomposition and module combination based on class relations: a modular neural network for pattern classification
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.788664
– start-page: 313
  year: 1995
  ident: 10.1016/j.patcog.2006.04.041_bib32
  article-title: Error-correcting output coding corrects bias and variance
– year: 1998
  ident: 10.1016/j.patcog.2006.04.041_bib11
– year: 1991
  ident: 10.1016/j.patcog.2006.04.041_bib10
– volume: 1
  start-page: 113
  year: 2000
  ident: 10.1016/j.patcog.2006.04.041_bib18
  article-title: Reducing multiclass to binary: a unifying approach for margin classifiers
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.patcog.2006.04.041_bib35
  doi: 10.1613/jair.105
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 10.1016/j.patcog.2006.04.041_bib12
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.991427
– ident: 10.1016/j.patcog.2006.04.041_bib34
– year: 1999
  ident: 10.1016/j.patcog.2006.04.041_bib15
– volume: 13
  start-page: 1257
  issue: 6
  year: 2002
  ident: 10.1016/j.patcog.2006.04.041_bib17
  article-title: Learning in the multiple class random neural network
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2002.804228
– start-page: 507
  year: 1998
  ident: 10.1016/j.patcog.2006.04.041_bib24
  article-title: Classification by pairwise coupling
– ident: 10.1016/j.patcog.2006.04.041_bib5
– volume: 28
  start-page: 235
  year: 2000
  ident: 10.1016/j.patcog.2006.04.041_bib37
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– volume: 11
  start-page: 13
  issue: 1
  year: 1997
  ident: 10.1016/j.patcog.2006.04.041_bib2
  article-title: Cloud classification using error-correcting output codes
  publication-title: Artif. Intell. Appl. Nat. Resour. Agric. Environ. Sci.
– ident: 10.1016/j.patcog.2006.04.041_bib28
– year: 2000
  ident: 10.1016/j.patcog.2006.04.041_bib21
  article-title: Reducing multiclass to binary: a unifying approach for margin classifiers
– volume: 12
  start-page: 2519
  issue: 11
  year: 2000
  ident: 10.1016/j.patcog.2006.04.041_bib26
  article-title: On the computational power of winner-take-all
  publication-title: Neural Comput.
  doi: 10.1162/089976600300014827
– volume: 6
  start-page: 117
  year: 1995
  ident: 10.1016/j.patcog.2006.04.041_bib16
  article-title: Efficient classification for multiclass problems using modular neural networks
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.363444
– ident: 10.1016/j.patcog.2006.04.041_bib3
– ident: 10.1016/j.patcog.2006.04.041_bib22
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.patcog.2006.04.041_bib1
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– year: 1995
  ident: 10.1016/j.patcog.2006.04.041_bib13
– ident: 10.1016/j.patcog.2006.04.041_bib14
– volume: 5
  start-page: 975
  year: 2004
  ident: 10.1016/j.patcog.2006.04.041_bib30
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J. Mach. Learn. Res.
– start-page: 363
  year: 1999
  ident: 10.1016/j.patcog.2006.04.041_bib33
  article-title: Building hierarchical classifiers using class proximity
– ident: 10.1016/j.patcog.2006.04.041_bib27
  doi: 10.1007/978-3-642-76153-9_5
– volume: 17
  start-page: 28
  issue: 2
  year: 2002
  ident: 10.1016/j.patcog.2006.04.041_bib6
  article-title: A machine learning strategy for protein analysis
  publication-title: IEEE Intell. Syst.
– ident: 10.1016/j.patcog.2006.04.041_bib31
– volume: 28
  start-page: 41
  year: 1997
  ident: 10.1016/j.patcog.2006.04.041_bib36
  article-title: Multitask learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007379606734
– volume: 21
  start-page: 117
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2006.04.041_bib25
  article-title: Neural learning from imbalanced data
  publication-title: Appl. Intell. Neural Networks Appl.
– ident: 10.1016/j.patcog.2006.04.041_bib8
– ident: 10.1016/j.patcog.2006.04.041_bib4
– ident: 10.1016/j.patcog.2006.04.041_bib23
– ident: 10.1016/j.patcog.2006.04.041_bib29
  doi: 10.1007/3-540-36169-3_29
SSID ssj0017142
Score 2.3657737
Snippet Multi-class pattern classification has many applications including text document classification, speech recognition, object recognition, etc. Multi-class...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 4
SubjectTerms Applied sciences
Artificial intelligence
Coding, codes
Computer science; control theory; systems
Connectionism. Neural networks
Exact sciences and technology
Information, signal and communications theory
Machine learning
Multi-class classification
Neural networks
Pattern recognition
Signal and communications theory
Signal processing
Speech processing
Telecommunications and information theory
Title Multi-class pattern classification using neural networks
URI https://dx.doi.org/10.1016/j.patcog.2006.04.041
Volume 40
WOSCitedRecordID wos000241837300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBZbsodB2da1o92P4oe9BQ1bUizpsRvdmrGlYdSQN2OfbVgZXoiT0j-_J0tynIWS7WFgTCLk2NH3-e50Ot0R8h6VXlXp9kWKY4qk4FRziChEcYHaNh8LAW2xCTmdqvlcz1xluqYtJyDrWt3d6cV_hRrbEGyzdfYf4O5-FBvwM4KOZ4Qdz38FfLulloKxik3WVOPwG7XfTFCQhXvdOghMKksEqLaB4E3fTJ2567rwos1i_Zfk6uNkOrpKOnkxGX1LRt-TH7NLZ-t6J4Lc-LT8vhYnSvqykkeUs5D3ZaVNrbTFCSv4RE-DWoG6I5utm-DmA_51fHa3DiTwiDa6yK-__6GiusBBMx81KdcekyGTOBcakOH55GL-tVs4kpGwCeLdw_vdkm1I3-6dH7JGDhZZg-9IZYub9CyO6xfkmZsqBOcW4kPyqKxfkudu2hC4kWywyVfm8G1HRPVIEDgSBNskCFoSBJYEgSfBMUk-X1x_uqSuRgYFzuMVFToLw6wAVUS5qRtdor0reZGzMaBxC4zlEaAK0wyKnJdaMS3KQoPEfqIMRcVfkUH9uy5PSMCAxZWoFJMgRVaOlYSxyiDjKo5RrxWnhPuxSsElkDd1TH6lPlLwJrUjbGqbxmko8IhOCe2uWtgEKnv6Sw9D6oxAa9ylyKM9V55toba5nSPN630d3pCn1nVvPGxvyWC1XJfvyBO4Xf1slmeOavdr2Ic4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-class+pattern+classification+using+neural+networks&rft.jtitle=Pattern+recognition&rft.au=GUOBIN+OU&rft.au=YI+LU+MURPHEY&rft.date=2007&rft.pub=Elsevier+Science&rft.issn=0031-3203&rft.volume=40&rft.issue=1&rft.spage=4&rft.epage=18&rft_id=info:doi/10.1016%2Fj.patcog.2006.04.041&rft.externalDBID=n%2Fa&rft.externalDocID=18400433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon