A new class of string transformations for compressed text indexing
Introduced about thirty years ago in the field of data compression, the Burrows-Wheeler Transform (BWT) is a string transformation that, besides being a booster of the performance of memoryless compressors, plays a fundamental role in the design of efficient self-indexing compressed data structures....
Uloženo v:
| Vydáno v: | Information and computation Ročník 294; s. 105068 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.10.2023
|
| Témata: | |
| ISSN: | 0890-5401 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Introduced about thirty years ago in the field of data compression, the Burrows-Wheeler Transform (BWT) is a string transformation that, besides being a booster of the performance of memoryless compressors, plays a fundamental role in the design of efficient self-indexing compressed data structures. Finding other string transformations with the same remarkable properties of BWT has been a challenge for many researchers for a long time. In this paper, we introduce a whole class of new string transformations, called local orderings-based transformations, which have all the “myriad virtues” of BWT. As a further result, we show that such new string transformations can be used for the construction of the recently introduced r-index, which makes them suitable also for highly repetitive collections. In this context, we consider the problem of finding, for a given string, the BWT variant that minimizes the number of runs in the transformed string. |
|---|---|
| ISSN: | 0890-5401 |
| DOI: | 10.1016/j.ic.2023.105068 |